$D^0 - \overline{D}^0$ MIXING

Revised August 2015 by D. M. Asner (Pacific Northwest National Laboratory)

The detailed formalism for $D^0 - \overline{D}^0$ mixing is presented in the note on “CP Violation in Meson Decays” in this Review. For completeness, we present an overview here. The time evolution of the $D^0 - \overline{D}^0$ system is described by the Schrödinger equation

$$i \frac{\partial}{\partial t} \left(\frac{D^0(t)}{\overline{D}^0(t)} \right) = \left(M - \frac{i}{2} \Gamma \right) \left(\frac{D^0(t)}{\overline{D}^0(t)} \right),$$

(1)

where the M and Γ matrices are Hermitian, and CP invariance requires that $M_{11} = M_{22} \equiv M$ and $\Gamma_{11} = \Gamma_{22} \equiv \Gamma$. The off-diagonal elements of these matrices describe the dispersive and absorptive parts of the mixing.

Because CP violation is expected to be quite small here, it is convenient to label the mass eigenstates by the CP quantum number in the limit of CP conservation. Thus, we write

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle,$$

(2)

where

$$\left(\frac{q}{p} \right)^2 = \frac{M_{12}^* - \frac{i}{2} \Gamma_{12}^*}{M_{12} - \frac{i}{2} \Gamma_{12}}.$$

(3)

The normalization condition is $|p|^2 + |q|^2 = 1$. Our phase convention is $CP|D^0\rangle = +|\overline{D}^0\rangle$, and the sign is chosen so that D_1 has CP even, or nearly so.

The corresponding eigenvalues are

$$\omega_{1,2} \equiv m_{1,2} - \frac{i}{2} \Gamma_{1,2} = \left(M - \frac{i}{2} \Gamma \right) \pm \frac{q}{p} \left(M_{12} - \frac{i}{2} \Gamma_{12} \right),$$

(4)

where $m_{1,2}$ and $\Gamma_{1,2}$ are the masses and widths of the $D_{1,2}$.

We define dimensionless mixing parameters x and y by

$$x \equiv (m_1 - m_2)/\Gamma = \Delta m/\Gamma$$

(5)

and

$$y \equiv (\Gamma_1 - \Gamma_2)/2\Gamma = \Delta \Gamma/2\Gamma,$$

(6)

where $\Gamma \equiv (\Gamma_1 + \Gamma_2)/2$. If CP is conserved, then M_{12} and Γ_{12} are real, $\Delta m = 2M_{12}$, $\Delta \Gamma = 2\Gamma_{12}$, and $p = q = 1/\sqrt{2}$. The signs of Δm and $\Delta \Gamma$ are to be determined experimentally.
The parameters x and y are measured in several ways. The most precise values are obtained using the time dependence of D decays. Since D^0-\bar{D}^0 mixing is a small effect, the identifying tag of the initial particle as a D^0 or a \bar{D}^0 must be extremely accurate. The usual tag is the charge of the distinctive slow pion in the decay sequence $D^{*+} \to D^0 \pi^+$ or $D^{*-} \to \bar{D}^0 \pi^-$. In current experiments, the probability of mistagging is about 0.1%. The large data samples produced at the B-factories allow the production flavor to also be determined by fully reconstructing charm on the “other side” of the event—significantly reducing the mistag rate [1]. Another tag of comparable accuracy is identification of one of the D’s produced from $\psi(3770) \to D^0 \bar{D}^0$ decays. Although time-dependent analyses are not possible at symmetric charm-threshold facilities (the D^0 and \bar{D}^0 do not travel far enough), the quantum-coherent $C = -1 \psi(3770) \to D^0 \bar{D}^0$ state provides time-integrated sensitivity [2,3].

Time-Dependent Analyses: We extend the formalism of this Review’s note on “CP Violation in Meson Decays.” In addition to the “right-sign” instantaneous decay amplitudes $\overline{A}_f \equiv \langle f | H | D^0 \rangle$ and $A_\overline{f} \equiv \langle \overline{f} | H | D^0 \rangle$ for final states $f = K^+ \pi^-, \ldots$ and their CP conjugate $\overline{f} = K^- \pi^+, \ldots$, we include “wrong-sign” amplitudes $\overline{A}_\overline{f} \equiv \langle \overline{f} | H | \bar{D}^0 \rangle$ and $A_f \equiv \langle f | H | D^0 \rangle$.

It is conventional to normalize the wrong-sign decay distributions to the integrated rate of right-sign decays and to express time in units of the precisely measured neutral D-meson mean lifetime, $\tau_{D^0} = 1/\Gamma = 2/(\Gamma_1 + \Gamma_2)$. Starting from a pure $|D^0\rangle$ or $|\bar{D}^0\rangle$ state at $t = 0$, the time-dependent rates of decay to wrong-sign final states relative to the integrated right-sign decay rates are, to leading order:

$$r(t) \equiv \frac{|\langle f | H | D^0(t) \rangle|^2}{|\overline{A}_f|^2} = \left| \frac{q}{p} \right|^2 \left| g_+(t) \lambda_{\overline{f}}^{-1} + g_-(t) \right|^2,$$

and

$$\overline{r}(t) \equiv \frac{|\langle \overline{f} | H | \bar{D}^0(t) \rangle|^2}{|A_{\overline{f}}|^2} = \left| \frac{p}{q} \right|^2 \left| g_+(t) \lambda_{\overline{f}} + g_-(t) \right|^2.$$

February 8, 2016 19:55
where
\[\lambda_f \equiv qA_f/pA_f, \quad \lambda \bar{f} \equiv qA_{\bar{f}}/pA_{\bar{f}}, \] (9)
and
\[g_{\pm}(t) = \frac{1}{2} \left(e^{-iz_1 t} \pm e^{-iz_2 t} \right), \quad z_{1,2} = \frac{\omega_{1,2}}{\Gamma}. \] (10)

Note that a change in the convention for the relative phase of \(D_0 \) and \(\bar{D}_0 \) would cancel between \(q/p \) and \(A_f/A_{\bar{f}} \) and leave \(\lambda_f \) unchanged. We expand \(r(t) \) and \(\tau(t) \) to second order in \(x \) and \(y \) for modes in which the ratio of decay amplitudes, \(R_D = |A_f/A_{\bar{f}}|^2 \), is very small.

Semileptonic decays: Consider the final state \(f = K^+\ell^-\bar{\nu}_\ell \), where \(A_f = \bar{A}_{\bar{f}} = 0 \) in the Standard Model. The final state \(f \) is only accessible through mixing and \(r(t) = \tau(t) \) is
\[r(t) = |g_{-}(t)|^2 \left| \frac{q}{p} \right|^2 \approx \frac{e^{-t}}{4} (x^2 + y^2) t^2 \left| \frac{q}{p} \right|^2. \] (11)

For \(\tau(t) \) \(q/p \) is replaced by \(p/q \). In the Standard Model, \(CP \) violation in charm mixing is small and \(|q/p| \approx 1 \). In the limit of \(CP \) conservation, \(r(t) = \tau(t) \), and the time-integrated mixing rate relative to the time-integrated right-sign decay rate for semileptonic decays is
\[R_M = \int_0^\infty r(t) dt = \left| \frac{q}{p} \right|^2 \frac{\sqrt{x^2 + y^2}}{2 + x^2 - y^2} \approx \frac{1}{2} (x^2 + y^2). \] (12)

Table 1 summarizes results for \(R_M \) from semileptonic decays; the world average from the Heavy Flavor Averaging Group (HFAG) [10] is \(R_M = (1.30 \pm 2.69) \times 10^{-4} \).

Wrong-sign decays to hadronic non-\(CP \) eigenstates: Consider the final state \(f = K^+\pi^- \), where \(A_f \) is doubly Cabibbo-suppressed. The ratio of decay amplitudes is
\[\frac{A_f}{A_{\bar{f}}} = -\sqrt{R_D} e^{-i\delta_f}, \quad \left| \frac{A_f}{A_{\bar{f}}} \right| \sim O(\tan^2 \theta_c), \] (13)
where \(R_D \) is the doubly Cabibbo-suppressed (DCS) decay rate relative to the Cabibbo-favored (CF) rate, \(\delta_f \) is the strong phase difference between DCS and CF processes, and \(\theta_c \) is the Cabibbo angle. The minus sign originates from the sign of \(V_{us} \) relative to \(V_{cd} \).
Table 1: Results for R_M in D^0 semileptonic decays.

<table>
<thead>
<tr>
<th>Year</th>
<th>Exper.</th>
<th>Final state(s)</th>
<th>$R_M \times 10^{-3}$</th>
<th>90% C.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>Belle [4]</td>
<td>$K^*(+e^−\nu_e)$</td>
<td>0.13±0.22±0.20</td>
<td>< 0.61 $\times 10^{-3}$</td>
</tr>
<tr>
<td>2007</td>
<td>BaBar [1]</td>
<td>$K^*(+e^−\nu_e)$</td>
<td>0.04$^{+0.70}_{-0.60}$</td>
<td>($-1.3, 1.2$) $\times 10^{-3}$</td>
</tr>
<tr>
<td>2005*</td>
<td>Belle [5]</td>
<td>$K^*(+e^−\nu_e)$</td>
<td>0.02±0.47±0.14</td>
<td>< 1.0 $\times 10^{-3}$</td>
</tr>
<tr>
<td>2005</td>
<td>CLEO [6]</td>
<td>$K^*(+e^−\nu_e)$</td>
<td>1.6±2.9±2.9</td>
<td>< 7.8 $\times 10^{-3}$</td>
</tr>
<tr>
<td>2004*</td>
<td>BaBar [7]</td>
<td>$K^*(+e^−\nu_e)$</td>
<td>2.3±1.2±0.4</td>
<td>< 4.2 $\times 10^{-3}$</td>
</tr>
<tr>
<td>2002*</td>
<td>FOCUS [8]</td>
<td>$K^+(\mu^−\nu_\mu)$</td>
<td>$-0.76^{+0.99}_{-0.93}$</td>
<td>< 1.01 $\times 10^{-3}$</td>
</tr>
<tr>
<td>1996</td>
<td>E791 [9]</td>
<td>$K^+\ell^-\nu_\ell$</td>
<td>($1.1^{+3.0}_{-2.7}$) $\times 10^{-3}$</td>
<td>< 5.0 $\times 10^{-3}$</td>
</tr>
<tr>
<td></td>
<td>HFAG [10]</td>
<td></td>
<td>0.13±0.27</td>
<td></td>
</tr>
</tbody>
</table>

*These measurements are excluded from the HFAG average.

The FOCUS result is unpublished, the statistical correlation of the BaBar result with Ref. 1 has not been established, and the Belle result is superseded by Ref. 4. The HFAG average assumes reported statistical and systematic uncertainties are uncorrelated.

We characterize the violation of CP with the real-valued parameters A_M, A_D, and ϕ. We adopt the parametrization (see Refs. 11 and 12)

$$\left| \frac{q}{p} \right|^2 = \frac{1 + A_M}{1 - A_M},$$

$$\lambda_f^{-1} \equiv \frac{pA_f}{qA_f} = -\sqrt{R_D} \left(\frac{(1 + A_D)(1 - A_M)}{(1 - A_D)(1 + A_M)} \right)^{1/4} e^{-i(\delta_f + \phi)},$$

$$\lambda_f \equiv \frac{qA_f}{pA_f} = -\sqrt{R_D} \left(\frac{(1 - A_D)(1 + A_M)}{(1 + A_D)(1 - A_M)} \right)^{1/4} e^{-i(\delta_f - \phi)},$$

and A_D is a measure of direct CP violation, while A_M is a measure of CP violation in mixing. From these relations, we obtain

$$\sqrt{\frac{1 + A_D}{1 - A_D}} = \left| \frac{A_f/A_f}{A_f/A_f} \right|,$$
The angle ϕ measures CP violation in interference between mixing and decay. While A_M is independent of the decay process, A_D and ϕ, in general, depend on f.

In general, λf and $\lambda^{-1} f$ are independent complex numbers. More detail on CP violation in meson decays can be found in Ref. 13. To leading order, for A_D and $A_M \ll 1$,

$$r(t) = e^{-t} \left[R_D (1 + A_D) + \sqrt{R_D (1 + A_M)(1 + A_D)} y' t + \frac{1}{2} (1 + A_M) R_M t^2 \right]$$

(18)

and

$$\tau(t) = e^{-t} \left[R_D (1 - A_D) + \sqrt{R_D (1 - A_M)(1 - A_D)} y'_+ t + \frac{1}{2} (1 - A_M) R_M t^2 \right]$$

(19)

Here

$$y'_\pm \equiv y' \cos \phi \pm x' \sin \phi$$

$$= y \cos (\delta_K \pi \mp \phi) - x \sin (\delta_K \pi \mp \phi) ,$$

(20)

where

$$x' \equiv x \cos \delta_K \pi + y \sin \delta_K \pi ,$$

$$y' \equiv y \cos \delta_K \pi - x \sin \delta_K \pi ,$$

(21)

and $R_M = (x^2 + y^2) / 2 = (x'^2 + y'^2) / 2$ is the mixing rate relative to the time-integrated Cabibbo-favored rate.

The three terms in Eq. (18) and Eq. (19) probe the three fundamental types of CP violation. In the limit of CP conservation, A_M, A_D, and ϕ are all zero. Then

$$r(t) = \tau(t) = e^{-t} \left(R_D + \sqrt{R_D} y' t + \frac{1}{2} R_M t^2 \right) ,$$

(22)

and the time-integrated wrong-sign rate relative to the integrated right-sign rate is

$$R = \int_0^\infty r(t) \, dt = R_D + \sqrt{R_D} y' + R_M .$$

(23)
The ratio R is the most readily accessible experimental quantity. In Table 2 are reported the measurements of R, R_D and A_D in $D^0 \to K^+\pi^-$, and their HFAG average [24] from a general fit; that allows for both mixing and CP violation. Typically, the fit parameters are R_D, x^2, and y'. Table 3 summarizes the results for x^2 and y'. Allowing for CP violation, the separate contributions to R can be extracted by fitting the $D^0 \to K^+\pi^-$ and $\bar{D}^0 \to K^-\pi^+$ decay rates.

Table 2: Results for R, R_D, and A_D in $D^0 \to K^+\pi^-$.

<table>
<thead>
<tr>
<th>Year</th>
<th>Exper.</th>
<th>$R (\times 10^{-3})$</th>
<th>$R_D (\times 10^{-3})$</th>
<th>A_D (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Belle [14]</td>
<td>3.86±0.06</td>
<td>3.53±0.13</td>
<td>—</td>
</tr>
<tr>
<td>2013</td>
<td>LHCb [15]</td>
<td>—</td>
<td>3.57±0.07</td>
<td>−0.7±1.9</td>
</tr>
<tr>
<td>2013</td>
<td>CDF [16]</td>
<td>4.30±0.05</td>
<td>3.51±0.35</td>
<td>—</td>
</tr>
<tr>
<td>2012*</td>
<td>LHCb [17]</td>
<td>4.25±0.04</td>
<td>3.52±0.15</td>
<td>—</td>
</tr>
<tr>
<td>2007*</td>
<td>CDF [18]</td>
<td>4.15±0.10</td>
<td>3.04±0.55</td>
<td>—</td>
</tr>
<tr>
<td>2007</td>
<td>BaBar [19]</td>
<td>3.53±0.08±0.04</td>
<td>3.03±0.16±0.01</td>
<td>−2.1±5.2±1.5</td>
</tr>
<tr>
<td>2006*</td>
<td>Belle [20]</td>
<td>3.77±0.08±0.05</td>
<td>3.64±0.17</td>
<td>2.3±4.7</td>
</tr>
<tr>
<td>2005†</td>
<td>FOCUS [21]</td>
<td>4.29^{+0.63}_{-0.61}±0.28</td>
<td>5.17^{+1.47}_{-0.58}±0.76</td>
<td>13^{+33}_{-25}±10</td>
</tr>
<tr>
<td>2000†</td>
<td>CLEO [22]</td>
<td>3.32^{+0.65}_{-0.65}±0.40</td>
<td>4.8±1.2±0.4</td>
<td>−1^{+16}_{-17}±1</td>
</tr>
<tr>
<td>1998†</td>
<td>E791 [23]</td>
<td>6.8^{+3.4}_{-3.3}±0.7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>3.49±0.04 [24]</td>
<td>−0.39^{+1.01}_{-1.05} [24]</td>
<td>—</td>
</tr>
</tbody>
</table>

*These measurements are excluded from the HFAG average of R_D. The CDF result is superseded by Ref. 16 and the LHCb is superseded by Ref. 15. The LHCb result is included in the average of R. The Belle result for R and R_D is superseded by Ref. 14.

†These measurements are excluded from the HFAG average due to poor precision.
Table 3: Results on the time-dependence of $r(t)$ in $D^0 \to K^+\pi^-$ and $\bar{D}^0 \to K^-\pi^+$ decays. The Belle 2014, LHCb and CDF results assume no CP violation. The FOCUS, CLEO, and Belle 2006 results restrict x'^2 to the physical region. The confidence intervals from FOCUS, CLEO, and BaBar are obtained from the fit, whereas Belle uses a Feldman-Cousins method, and CDF uses a Bayesian method.

<table>
<thead>
<tr>
<th>Year</th>
<th>Exper.</th>
<th>y' (%)</th>
<th>$x'^2 \times 10^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014*†</td>
<td>Belle [14]</td>
<td>0.46±0.34</td>
<td>0.09±0.22</td>
</tr>
<tr>
<td>2013</td>
<td>LHCb [15]</td>
<td>0.48±0.10</td>
<td>0.055±0.049</td>
</tr>
<tr>
<td>2013</td>
<td>CDF [16]</td>
<td>0.43±0.43</td>
<td>0.08±0.18</td>
</tr>
<tr>
<td>2012*</td>
<td>LHCb [17]</td>
<td>0.72±0.24</td>
<td>−0.09±0.13</td>
</tr>
<tr>
<td>2007*</td>
<td>CDF [18]</td>
<td>0.85±0.76</td>
<td>−0.12±0.35</td>
</tr>
<tr>
<td>2007</td>
<td>BaBar [19]</td>
<td>0.97±0.44±0.31</td>
<td>−0.22±0.30±0.21</td>
</tr>
<tr>
<td>2006†</td>
<td>Belle [20]</td>
<td>−2.8 < y' < 2.1</td>
<td>< 0.72 (95% C.L.)</td>
</tr>
<tr>
<td>2005*</td>
<td>FOCUS [21]</td>
<td>−11.2 < y' < 6.7</td>
<td>< 8.0 (95% C.L.)</td>
</tr>
<tr>
<td>2000*</td>
<td>CLEO [22]</td>
<td>−5.8 < y' < 1.0</td>
<td>< 0.81 (95% C.L.)</td>
</tr>
</tbody>
</table>

*These measurements are excluded from the HFAG average. The CDF result is superseded by Ref. 16 and the LHCb result has been superseded by Ref. 15. The CLEO and FOCUS results are excluded due to poor precision.
† This Belle result allows for CP violation. HFAG uses this result for the CP-violation allowed fit. This result is not superseded by Ref. 14.
*† This Belle result does not allow for CP violation. HFAG uses this result for the CP-conserving fit. This result does not supersede Ref. 20.

Extraction of the mixing parameters x and y from the results in Table 3 requires knowledge of the relative strong phase $\delta_{K\pi}$. An interference effect that provides useful sensitivity to $\delta_{K\pi}$ arises in the decay chain $\psi(3770) \to D^0\bar{D}^0 \to (f_{CP})(K^+\pi^-$), where f_{CP} denotes a CP-even or -odd eigenstate from D^0 decay, such as K^+K^- or $K^0\pi^0$, respectively [26]. Here, the amplitude relation

$$\sqrt{2} A(D_\pm \to K^-\pi^+) = A(D^0 \to K^-\pi^+) \pm A(\bar{D}^0 \to K^-\pi^+),$$

(24)
where D_\pm denotes a CP-even or -odd eigenstate, implies that
\[\cos \delta_{K\pi} = \frac{|A(D_+ \to K^-\pi^+)|^2 - |A(D_- \to K^-\pi^+)|^2}{2\sqrt{R_D}|A(D^0 \to K^-\pi^+)|^2}. \] (25)

This neglects CP violation and uses $\sqrt{R_D} \ll 1$.

The asymmetry of CP-tagged D decays rates to $K^-\pi^+$ is denoted as
\[A_{CP}^{K\pi} \equiv \frac{|A(D_- \to K^-\pi^+)|^2 - |A(D_+ \to K^-\pi^+)|^2}{|A(D_- \to K^-\pi^+)|^2 + |A(D_+ \to K^-\pi^+)|^2}. \] (26)

To lowest order in the mixing parameters [2,3]
\[2\sqrt{R_D} \cos \delta_{K\pi} + y = (1 + R)A_{CP}^{K\pi} \] (27)

where R is the time-integrated wrong-sign rate relative to the integrated right-sign rate from Eq. (23).

For multibody final states, Eqs. (13)–(23) apply separately to each point in phase-space. Although x and y do not vary across the space, knowledge of the resonant substructure is needed to extrapolate the strong phase difference δ from point to point to determine x and y. Model-independent methods to measure D mixing parameters require input related to the relative phases of the D^0 and \bar{D}^0 decay amplitudes across the phase-space distribution [25]. The required phase information is accessible at the charm threshold, where CLEO-c and BESIII operate [26,27].

A time-dependent analysis of the process $D^0 \to K^+\pi^-\pi^0$ from BaBar [28,29] determines the relative strong phase variation across the Dalitz plot and reports $x'' = (2.61^{+0.57}_{-0.68} \pm 0.39)\%$, and $y'' = (-0.06^{+0.55}_{-0.64} \pm 0.34)\%$, where x'' and y'' are defined as
\[x'' \equiv x \cos \delta_{K\pi\pi^0} + y \sin \delta_{K\pi\pi^0}, \]
\[y'' \equiv y \cos \delta_{K\pi\pi^0} - x \sin \delta_{K\pi\pi^0}, \] (28)
in parallel to x', y', and $\delta_{K\pi}$ of Eq. (21). Here $\delta_{K\pi\pi^0}$ is the remaining strong phase difference between the DCS $D^0 \to K^+\rho^-$ and the CF $\bar{D}^0 \to K^+\rho^-$ amplitudes and does not vary across the Dalitz plot. Both strong phases, $\delta_{K\pi}$ and $\delta_{K\pi\pi^0}$, can be determined from time-integrated CP asymmetries in correlated $D^0\bar{D}^0$ produced at the $\psi(3770)$ [26,27].
Both the sign and magnitude of x and y without phase or sign ambiguity may be measured using the time-dependent resonant substructure of multibody D^0 decays \cite{30,31}. In $D^0 \to K_S^0 \pi^+ \pi^-$, the DCS and CF decay amplitudes populate the same Dalitz plot, which allows direct measurement of the relative strong phases. CLEO \cite{32}, Belle \cite{31,34}, and BaBar \cite{33} have measured the relative phase between $D^0 \to K^*(892)^-\pi^+$ and $D^0 \to K^*(892)^+\pi^-$ to be $(189 \pm 10 \pm 3_{-5}^{+15})^\circ$, $(173.9 \pm 0.7$ (stat. only))$^\circ$, and $(177.6 \pm 1.1$ (stat. only))$^\circ$, respectively. These results are close to the 180° expected from Cabibbo factors and a small strong phase. Table 4 summarizes the results of a time-dependent Dalitz-plot analyses.

Table 4: Results from time-dependent Dalitz-plot analysis of $D^0 \to K_S^0 \pi^+ \pi^-$ (CLEO and Belle) and $D^0 \to K_S^0 \pi^+ \pi^-, K_S^0 K^+ K^-$ (BaBar). The errors are statistical, experimental systematic, and decay-model systematic, respectively.

<table>
<thead>
<tr>
<th>Year</th>
<th>Exper.</th>
<th>$x \times 10^{-3}$</th>
<th>$y \times 10^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Belle \cite{34}</td>
<td>$5.6 \pm 1.9^{+0.3}{-0.9}^{+0.6}{-0.9}$</td>
<td>$3.0 \pm 1.5^{+0.4}{-0.5}^{+0.3}{-0.8}$</td>
</tr>
<tr>
<td>2010</td>
<td>BaBar \cite{33}</td>
<td>$1.6 \pm 2.3 \pm 1.2 \pm 0.8$</td>
<td>$5.7 \pm 2.0 \pm 1.3 \pm 0.7$</td>
</tr>
<tr>
<td>2007</td>
<td>Belle \cite{31}</td>
<td>$8.0 \pm 2.9^{+0.9}{-0.7}^{+1.0}{-1.4}$</td>
<td>$3.3 \pm 2.4^{+0.8}{-1.2}^{+0.6}{-0.8}$</td>
</tr>
<tr>
<td>2005</td>
<td>CLEO \cite{30}</td>
<td>$19^{+32}_{-33} \pm 4 \pm 4$</td>
<td>$-14 \pm 24 \pm 8 \pm 4$</td>
</tr>
</tbody>
</table>

| Year | Exper. | $|q/p|$ | ϕ |
|------|--------|--------|--------|
| 2014 | Belle \cite{34} | $0.90^{+0.16}_{-0.15}^{+0.05}_{-0.04}^{+0.06}$ | $(-6 \pm 11 \pm 3_{-4}^{+3})^\circ$ |
| 2007 | Belle \cite{31} | $0.86^{+0.30}_{-0.29}^{+0.06}_{-0.03} \pm 0.08$ | $(-14_{-18}^{+16}^{+5}_{-3}^{+3})^\circ$ |

In addition, Belle \cite{31,34} has results for both the relative phase (statistical errors only) and ratio R (central values only) of the DCS fit fraction relative to the CF fit fractions for $K^*(892)^+\pi^-$, $K_0^*(1430)^+\pi^-$, $K_2^*(1430)^+\pi^-$, $K^*(1410)^+\pi^-$, and $K^*(1680)^+\pi^-$. Similarly, BaBar \cite{33,35,36} has reported central values for R for $K^*(892)^+\pi^-$, $K_0^*(1430)^+\pi^-$, and $K_2^*(1430)^+\pi^-$. The systematic uncertainties on R must be
evaluated. The large differences in R among these final states could point to an interesting role for hadronic effects.

Decays to CP Eigenstates: When the final state f is a CP eigenstate, there is no distinction between f and \bar{f}, and $A_f = A_{\bar{f}}$ and $\bar{A}_{\bar{f}} = A_f$. We denote final states with CP eigenvalues ± 1 by f_\pm and write λ_\pm for λ_{f_\pm}.

The quantity y may be measured by comparing the rate for D^0 decays to non-CP eigenstates such as $K^-\pi^+$ with decays to CP eigenstates such as K^+K^- [12]. If decays to K^+K^- have a shorter effective lifetime than those to $K^-\pi^+$, y is positive.

In the limit of slow mixing ($x, y \ll 1$) and the absence of direct CP violation ($A_D = 0$), but allowing for small indirect CP violation ($|A_M|, |\phi| \ll 1$), we can write

$$\lambda_\pm = \frac{q}{p} e^{\pm i \phi}.$$ \hspace{1cm} (29)

In this scenario, to a good approximation, the decay rates for states that are initially D^0 and $\overline{D^0}$ to a CP eigenstate have exponential time dependence:

$$r_\pm(t) \propto \exp \left(-t/\tau_\pm\right),$$ \hspace{1cm} (30)

$$\tau_\pm(t) \propto \exp \left(-t/\bar{\tau}_\pm\right),$$ \hspace{1cm} (31)

where τ is measured in units of $1/\Gamma$.

The effective lifetimes are given by

$$1/\tau_\pm = 1 \pm \frac{q}{p} \left(y \cos \phi - x \sin \phi \right),$$ \hspace{1cm} (32)

$$1/\bar{\tau}_\pm = 1 \pm \frac{p}{q} \left(y \cos \phi + x \sin \phi \right).$$ \hspace{1cm} (33)

The effective decay rate to a CP eigenstate combining both D^0 and $\overline{D^0}$ decays is

$$r_\pm(t) + \bar{r}_\pm(t) \propto e^{-(1 \pm y_{CP})t}.$$ \hspace{1cm} (34)

Here

$$y_{CP} = \frac{1}{2} \left(\frac{q}{p} + \frac{p}{q} \right) y \cos \phi - \frac{1}{2} \left(\frac{q}{p} - \frac{p}{q} \right) x \sin \phi$$ \hspace{1cm} (35)

$$\approx y \cos \phi - A_M x \sin \phi.$$ \hspace{1cm} (36)
If \(CP \) is conserved, \(y_{CP} = y \).

All measurements of \(y_{CP} \) are relative to the \(D^0 \to K^-\pi^+ \) decay rate. Table 5 summarizes the current status of measurements. Belle [41], BaBar [42], LHCb [43], CDF [39] have reported \(y_{CP} \) and the decay-rate asymmetry for \(CP \) even final states (assuming \(A_D = 0 \))

\[
A_{\Gamma} = \frac{\tau_+ - \tau_-}{\tau_+ + \tau_-} = \frac{(1/\tau_+) - (1/\tau_-)}{(1/\tau_+) + (1/\tau_-)}_\text{(37)}
\]

\[
= \frac{1}{2} \left(\frac{|q|}{p} - \frac{|p|}{q} \right) y \cos \phi - \frac{1}{2} \left(\frac{|q|}{p} + \frac{|p|}{q} \right) x \sin \phi \quad (38)
\]

\[
\approx A_M y \cos \phi - x \sin \phi . \quad (39)
\]

Belle [45] has also reported \(y_{CP} \) for the final state \(K^0_S K^+K^- \) which is dominated by the \(CP \) odd final state \(K^0_S \phi \). If \(CP \) is conserved, \(A_{\Gamma} = 0 \).

Substantial work on the time-integrated \(CP \) asymmetries in decays to \(CP \) eigenstates are summarized in this Review [53]. Table 6 summarizes the current status of measurements of the difference in time-integrated \(CP \) asymmetry, \(\Delta A_{CP} = A_K - A_{\pi} \), between \(D^0 \to K^-K^+ \) and \(D^0 \to \pi^-\pi^+ \). The HFAG fit is marginally consistent with no \(CP \) violation at the 5.1% Confidence Level [24].

Coherent \(D^0\overline{D}^0 \) Analyses: Measurements of \(R_D, \cos \delta_{K\pi}, \sin \delta_{K\pi}, x, \) and \(y \) can be determined simultaneously from a combined fit to the time-integrated single-tag (ST) and double-tag (DT) yields in correlated \(D^0\overline{D}^0 \) produced at the \(\psi(3770) \) [26,27].

Due to quantum correlations in the \(C = -1 \) and \(C = +1 \) \(D^0\overline{D}^0 \) pairs produced in the reactions \(e^+e^- \to D^0\overline{D}^0(\pi^0) \) and \(e^+e^- \to D^0\overline{D}^0\gamma(\pi^0) \), respectively, the time-integrated \(D^0\overline{D}^0 \) decay rates are sensitive to interference between amplitudes for indistinguishable final states. The size of this interference is governed by the relevant amplitude ratios and can include contributions from \(D^0-\overline{D}^0 \) mixing.

The following categories of final states are considered:

\(f \) or \(\overline{f} \): Hadronic states accessed from either \(D^0 \) or \(\overline{D}^0 \) decay but that are not \(CP \) eigenstates. An example is \(K^-\pi^+ \),
Table 5: Results for y_{CP} from $D^0 \to K^+K^-$ and $\pi^+\pi^-$.

<table>
<thead>
<tr>
<th>Year</th>
<th>Exper.</th>
<th>final state(s)</th>
<th>y_{CP}(%)</th>
<th>$A_{\Gamma}(\times10^{-3})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>LHCb [37]</td>
<td>$K^+K^-,\pi^+\pi^-$</td>
<td>—</td>
<td>-1.25 ± 0.73</td>
</tr>
<tr>
<td>2015</td>
<td>LHCb [37]</td>
<td>K^+K^-</td>
<td>—</td>
<td>$-1.34\pm0.77^{+0.26}_{-0.24}$</td>
</tr>
<tr>
<td>2015</td>
<td>LHCb [37]</td>
<td>$\pi^+\pi^-$</td>
<td>—</td>
<td>$-0.092\pm1.45^{+0.25}_{-0.33}$</td>
</tr>
<tr>
<td>2014</td>
<td>CDF [39]</td>
<td>$K^0\pi^0, K^0\eta, K^0\omega$</td>
<td>$-2.0\pm1.3\pm0.7$</td>
<td>—</td>
</tr>
<tr>
<td>2012</td>
<td>Belle [41]</td>
<td>$K^+K^-,\pi^+\pi^-$</td>
<td>$1.11\pm0.22\pm0.11$</td>
<td>$-0.3\pm2.0\pm0.8$</td>
</tr>
<tr>
<td>2012</td>
<td>BaBar [42]</td>
<td>$K^+K^-,\pi^+\pi^-$</td>
<td>$0.72\pm0.18\pm0.12$</td>
<td>$0.9\pm2.6\pm0.6$</td>
</tr>
<tr>
<td>2011</td>
<td>LHCb [43]</td>
<td>K^+K^-</td>
<td>$0.55\pm0.63\pm0.41$</td>
<td>$-5.9\pm5.9\pm2.1$</td>
</tr>
<tr>
<td>2009*</td>
<td>BaBar [44]</td>
<td>K^+K^-</td>
<td>$1.16\pm0.22\pm0.18$</td>
<td>—</td>
</tr>
<tr>
<td>2009</td>
<td>Belle [45]</td>
<td>$K^0S^0K^+K^-$</td>
<td>$0.11\pm0.61\pm0.52$</td>
<td>—</td>
</tr>
<tr>
<td>2008*</td>
<td>BaBar [46]</td>
<td>$K^+K^-,\pi^+\pi^-$</td>
<td>$1.03\pm0.33\pm0.19$</td>
<td>$2.6\pm3.6\pm0.8$</td>
</tr>
<tr>
<td>2007*</td>
<td>Belle [47]</td>
<td>$K^+K^-,\pi^+\pi^-$</td>
<td>$1.31\pm0.32\pm0.25$</td>
<td>$0.1\pm3.0\pm1.5$</td>
</tr>
<tr>
<td>2003*</td>
<td>BaBar [48]</td>
<td>$K^+K^-,\pi^+\pi^-$</td>
<td>$0.8\pm0.4^{+0.5}_{-0.4}$</td>
<td>—</td>
</tr>
<tr>
<td>2001</td>
<td>CLEO [49]</td>
<td>$K^+K^-,\pi^+\pi^-$</td>
<td>$-1.2\pm2.5\pm1.4$</td>
<td>—</td>
</tr>
<tr>
<td>2001</td>
<td>Belle [50]</td>
<td>K^+K^-</td>
<td>$-0.5\pm1.0^{+0.7}_{-0.8}$</td>
<td>—</td>
</tr>
<tr>
<td>2000</td>
<td>E791 [51]</td>
<td>K^+K^-</td>
<td>$3.42\pm1.39\pm0.74$</td>
<td>—</td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td>$0.8\pm2.9\pm1.0$</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>HFAG [24]</td>
<td></td>
<td>0.835 ± 0.155</td>
<td>-0.59 ± 0.40</td>
</tr>
</tbody>
</table>

*These measurements are excluded from the HFAG average. The BaBar result is superseded by Ref. 42 and the Belle result has been superseded by Ref. 41.

which results from Cabibbo-favored D^0 transitions or DCS \bar{D}^0 transitions.

$\ell^+ \text{ or } \ell^-$: Semileptonic or purely leptonic final states, which, in the absence of mixing, tag unambiguously the flavor of the parent D^0.

$f_+ \text{ or } f_-$: CP-even and CP-odd eigenstates, respectively.

The decay rates for $D^0\bar{D}^0$ pairs to all possible combinations of the above categories of final states are calculated in Ref. 2, for
Table 6: Results for the difference in time-integrated CP asymmetry ΔA_{CP} between $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$.

<table>
<thead>
<tr>
<th>Year</th>
<th>Exper.</th>
<th>$\Delta A_{CP}(\times 10^{-3})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>LHCb [54]</td>
<td>1.4±1.6±0.8</td>
</tr>
<tr>
<td>2013</td>
<td>LHCb [55]</td>
<td>−3.4±1.5±1.0</td>
</tr>
<tr>
<td>2013</td>
<td>CDF [56]</td>
<td>−6.2±2.1±1.0</td>
</tr>
<tr>
<td>2012</td>
<td>Belle [14]</td>
<td>−8.7±4.1±0.6</td>
</tr>
<tr>
<td>2008</td>
<td>BaBar [57]</td>
<td>2.4±6.2±2.6</td>
</tr>
<tr>
<td></td>
<td>HFAG [24]</td>
<td>−2.53 ± 1.04</td>
</tr>
</tbody>
</table>

both $C = −1$ and $C = +1$, reproducing the work of Ref. 3. Such $D^0\overline{D}^0$ combinations, where both D final states are specified, are double tags. In addition, the rates for single tags, where either the D^0 or \overline{D}^0 is identified and the other neutral D decays generically are given in Ref. 2.

BESIII has reported results using 2.92 pb^{-1} of $e^+e^- \rightarrow \psi(3770)$ data where the quantum-coherent $D^0\overline{D}^0$ pairs are in the $C = −1$ state. The values of $y_{C\overline{C}P} = (−2.0±1.3±0.7)\%$ [38] and $A_{CP}^{K\pi} = (12.7±1.3±0.7)\%$ [61] are determined from DT yields including a CP eigenstate vs semileptonic and vs $K\pi$, respectively. For $y_{C\overline{C}P}$, the CP eigenstates included are $K^-\pi^+(f_+), \pi^+\pi^-(f_+), K_S^0\pi^0\pi^0(f_+), K_S^0\pi^0(f_+), K_S^0\pi^0(f_-), K_S^0\pi^0(f_-)$, and $K_S^0\omega(f_-)$. For $A_{CP}^{K\pi}$, the additional CP eigenstates included are $\pi^0\pi^0(f_+)$ and $\rho^0\pi^0(f_+)$. Using the external inputs from of R_D and y from HFAG [62] and R from PDG [63]- see Eq. (27), they obtain $\cos\delta_{K\pi} = 1.02±0.11±0.06±0.01$ [61] where the third uncertainty is due to the external inputs.

CLEO-c has reported results using 818 pb^{-1} of $e^+e^- \rightarrow \psi(3770)$ data [58-60]. The values of y, R_M, $\cos\delta_{K\pi}$, and $\sin\delta_{K\pi}$ are determined from a combined fit to the ST (hadronic only) and DT yields. The hadronic final states included are $K^-\pi^+(f), K^+\pi^-(\bar{f}), K^-K^+(f_+), \pi^+\pi^-(f_+), K_S^0\pi^0\pi^0(f_+), K_L^0\pi^0(f_+), K_L^0\pi^0(f_-), K_S^0\pi^0(f_-), K_S^0\eta(f_-), K_S^0\omega(f_-), K_S^0\pi^0\pi^0(f_-)$, and $K_S^0\pi^+\pi^-(\text{mixture of } f, \bar{f}, f_+, \text{ and } f_-)$. The two flavored final states, $K^-\pi^+$ and $K^+\pi^-$, can be reached via CF or DCS transitions.
Semileptonic DT yields are also included, where one D is fully reconstructed in one of the hadronic modes listed above, and the other D is partially reconstructed in either $D \rightarrow K\nu \nu$ or $D \rightarrow K\mu\nu$. When the lepton is accompanied by a flavor tag ($D \rightarrow K^−\pi^+$ or $K^+\pi^−$), both the “right-sign” and “wrong-sign” DT samples are used, where the electron and kaon charges are the same and opposite, respectively.

The main results of the CLEO-c analysis are the determination of $\cos \delta_{K\pi} = 0.81_{−0.18}^{+0.22}+0.07$, $\sin \delta_{K\pi} = −0.01 ± 0.49 ± 0.04$, and World Averages for the mixing parameters from an “extended” fit that combines the CLEO-c data with previous mixing and branching-ratio measurements [60]. These fits allow $\cos \delta_{K\pi}$, $\sin \delta_{K\pi}$ and x^2 to be unphysical. Constraining $\cos \delta_{K\pi}$ and $\sin \delta_{K\pi}$ to $[-1, +1]$—that is interpreting $\delta_{K\pi}$ as an angle—yields $\delta_{K\pi} = (18_{−17}^{+11} ± 7)^\circ$. Note that measurements of y (Table 4 and Table 5) and y' (Table 3) contribute to the determination of $\delta_{K\pi}$.

Summary of Experimental Results: Several recent results indicate that charm mixing is at the upper end of the range of Standard Model estimates.

For $D^0 \rightarrow K^+\pi^−$, LHCb [15,17], CDF [16], and Belle [14] each exclude the no-mixing hypothesis by more than 5 standard deviations.

For y_{CP} in $D^0 \rightarrow K^+K^−$ and $\pi^+\pi^−$, Belle [41] and BaBar [42] find 4.5σ and 3.3σ effects. The most sensitive measurement of x and y is in $D^0 \rightarrow K^0_S\pi^+\pi^−$ from Belle [34] and the no mixing solution is only excluded at 2.5σ. In a similar analysis using $D^0 \rightarrow K^0_S\pi^+\pi^−$ and $D^0 \rightarrow K^0_SK^+K^−$ BaBar [33] also finds the no mixing solution excluded at 1.9σ.

The current situation would benefit from better knowledge of the strong phase difference $\delta_{K\pi}$ than provided by the current CLEO-c [60] and BESIII [61] results. This would allow one to unfold x and y from the $D^0 \rightarrow K^+\pi^−$ measurements of x'^2 and y', and directly compare them to the $D^0 \rightarrow K^0_S\pi^+\pi^−$ results.

The experimental data consistently indicate that the D^0 and \bar{D}^0 do mix. The mixing is presumably dominated by long-range processes. Under the assumption that the observed mixing is due entirely to non-Standard Model processes, significant
constraints on a variety of new physics models are obtained [64].

A serious limitation to the interpretation of charm oscillations in terms of New Physics is the theoretical uncertainty of the Standard Model prediction. The evidence for time integrated CP-violation, $\Delta A_{CP} \neq 0$ is intriguing. This result is marginally consistent with Standard Model expectation [65–67].

HFAG Averaging of Charm Mixing Results:

The Heavy Flavor Averaging Group (HFAG) has made a global fit to all mixing measurements to obtain values of x, y, $\delta_{K\pi}$, $\delta_{K\pi\pi}$, R_D, $A_D \equiv (R_D^+ - R_D^-)/(R_D^+ + R_D^-)$, $|q/p|$, $\text{Arg}(q/p) \equiv \phi$, and the time-integrated CP asymmetries A_K and A_π. Correlations among observables are taken into account by using the error matrices from the experiments. The measurements of $D^0 \to K^{(*)+}\ell^-\nu$, K^+K^-, $\pi^+\pi^-$, $K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^-\pi^+\pi^-$, $K^0_S\pi^+\pi^-$, and $K^0_S K^+K^-$ decays, as well as CLEO-c and BESIII results for double-tagged branching fractions measured at the $\psi(3770)$ are used.

Table 7: HFAG Charm Mixing Averages [24].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>No CP Violation</th>
<th>CP Violation Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>x (%)</td>
<td>$0.49^{+0.14}_{-0.15}$</td>
<td>0.37 ± 0.16</td>
</tr>
<tr>
<td>y (%)</td>
<td>0.61 ± 0.08</td>
<td>$0.66^{+0.07}_{-0.10}$</td>
</tr>
<tr>
<td>R_D (%)</td>
<td>0.349 ± 0.004</td>
<td>0.349 ± 0.004</td>
</tr>
<tr>
<td>$\delta_{K\pi}$ ($^\circ$)</td>
<td>$6.9^{+9.7}_{-11.2}$</td>
<td>$11.8^{+9.5}_{-14.7}$</td>
</tr>
<tr>
<td>$\delta_{K\pi\pi}$ ($^\circ$)</td>
<td>$18.1^{+23.2}_{-23.8}$</td>
<td>$27.3^{+24.4}_{-25.4}$</td>
</tr>
<tr>
<td>A_D (%)</td>
<td>$-$</td>
<td>$-0.39^{+1.01}_{-1.05}$</td>
</tr>
<tr>
<td>$</td>
<td>q/p</td>
<td>$</td>
</tr>
<tr>
<td>ϕ ($^\circ$)</td>
<td>$-$</td>
<td>$-9.4^{+11.9}_{-9.8}$</td>
</tr>
<tr>
<td>A_K</td>
<td>$-$</td>
<td>-0.15 ± 0.14</td>
</tr>
<tr>
<td>A_π</td>
<td>$-$</td>
<td>0.10 ± 0.15</td>
</tr>
</tbody>
</table>
Figure 1: Two-dimensional 1σ-5σ contours for (x, y) from measurements of $D^0 \to K^{(*)+} \ell \nu$, $h^+ h^-$, $K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^-\pi^+\pi^-$, $K_S^0\pi^+\pi^-$, and $K_S^0K^+K^-$ decays, and double-tagged branching fractions measured at the $\psi(3770)$ resonance (from HFAG [24]).

For the global fit, confidence contours in the two dimensions (x, y) and $(|q/p|, \phi)$ are obtained by letting, for any point in the two-dimensional plane, all other fit parameters take their preferred values. Figures 1 and 2 show the resulting 1-to-5 σ contours. The fits exclude the no-mixing point $(x = y = 0)$ at more than 11.5σ, when CP violation is allowed. The fits are consistent with no CP violation at the 27% Confidence Level. The parameters x and y differ from zero by 2.1σ and 6.8σ, respectively. One-dimensional likelihood functions for parameters are obtained by allowing, for any value of the parameter, all other fit parameters to take their preferred values. The resulting likelihood functions give central values, 68.3% C.L. intervals, and 95% C.L. intervals as listed in Table 7. The χ^2 for the HFAG fit is 69 for 45 degrees of freedom indicating some
Figure 2: Two-dimensional 1σ-5σ contours for \(|q/p|, \text{Arg}(q/p)\) from measurements of \(D^0 \rightarrow K^{(*)+} \ell \nu, h^+ h^-, K^+\pi^-, K^+\pi^-\pi^0, K^+\pi^-\pi^+\pi^-, K^0_S\pi^+\pi^-,\) and \(K^0_S K^+K^-\) decays, and double-tagged branching fractions measured at the \(\psi(3770)\) resonance (from HFAG [24]).

disagreement among among the measurements included in the combination.

From the results of the HFAG averaging, the following can be concluded: (1) Since \(CP\) violation is small and \(y_{CP}\) is positive, the \(CP\)-even state is shorter-lived, as in the \(K^0\bar{K}^0\) system; (2) However, since \(x\) appears to be positive, the \(CP\)-even state is heavier, unlike in the \(K^0\bar{K}^0\) system; (3) The strong phase difference \(\delta_{K\pi}\) is consistent with the SU(3) expectation of zero but large values are not excluded; (4) There is no evidence yet for \(CP\)-violation in \(D^0\bar{D}^0\) mixing. Observing \(CP\)-violation in mixing \((|q/p| \neq 1)\) at the current level of sensitivity would indicate new physics.

The author would like to acknowledge helpful input from Bostjan Golob, Marco Gersabeck, and especially Alan Schwartz of the Heavy Flavor Averaging Group.
References

13. See the Note on “CP Violation in Meson Decays” in this Review.
25. See "Review of Multibody Charm Analyses" in this Review.

43. R. Aaij et al., JHEP 1204, 129 (2012).

53. See the tabulation of A_{CP} results in the D^0 and D^+ Listings in this Review.

55. R. Aaij et al., LHCB-CONF-2013-003.

66. E. Franco et al., JHEP 1205, 140 (2012).