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MAGNETIC MONOPOLES

Updated August 2015 by D. Milstead (Stockholm Univ.) and
E.J. Weinberg (Columbia Univ.).

The symmetry between electric and magnetic fields in the

sourcefree Maxwell’s equations naturally suggests that electric

charges might have magnetic counterparts, known as magnetic

monopoles. Although the greatest interest has been in the

supermassive monopoles that are a firm prediction of all grand

unified theories, one cannot exclude the possibility of lighter

monopoles, even though there is at present no strong theoretical

motivation for these.

In either case, the magnetic charge is constrained by a

quantization condition first found by Dirac [1]. Consider a

monopole with magnetic charge QM and a Coulomb magnetic

field

B =
QM

4π

r̂

r2
. (1)

Any vector potential A whose curl is equal to B must be singular

along some line running from the origin to spatial infinity. This

Dirac string singularity could potentially be detected through

the extra phase that the wavefunction of a particle with electric

charge QE would acquire if it moved along a loop encircling

the string. For the string to be unobservable, this phase must

be a multiple of 2π. Requiring that this be the case for any

pair of electric and magnetic charges gives the condition that

all charges be integer multiples of minimum charges Qmin
E and

Qmin
M obeying

Qmin
E Qmin

M = 2π . (2)

(For monopoles which also carry an electric charge, called

dyons, the quantization conditions on their electric charges can

be modified. However, the constraints on magnetic charges, as

well as those on all purely electric particles, will be unchanged.)

Another way to understand this result is to note that the

conserved orbital angular momentum of a point electric charge

moving in the field of a magnetic monopole has an additional

component, with

L = mr × v − 4πQEQM r̂ (3)
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Requiring the radial component of L to be quantized in half-

integer units yields Eq. (2).

If there are unbroken gauge symmetries in addition to

the U(1) of electromagnetism, the above analysis must be

modified [2,3]. For example, a monopole could have both a

U(1) magnetic charge and a color magnetic charge. The latter

could combine with the color charge of a quark to give an

additional contribution to the phase factor associated with a

loop around the Dirac string, so that the U(1) charge could

be the Dirac charge QD
M ≡ 2π/e, the result that would be

obtained by substituting the electron charge into Eq. (2). On

the other hand, for monopoles without color-magnetic charge,

one would simply insert the quark electric charges into Eq. (2)

and conclude that QM must be a multiple of 6π/e.

The prediction of GUT monopoles arises from the work

of ’t Hooft [4] and Polyakov [5], who showed that certain

spontaneously broken gauge theories have nonsingular classical

solutions that lead to magnetic monopoles in the quantum

theory. The simplest example occurs in a theory where the

vacuum expectation value of a triplet Higgs field φ breaks an

SU(2) gauge symmetry down to the U(1) of electromagnetism

and gives a mass MV to two of the gauge bosons. In order to

have finite energy, φ must approach a vacuum value at infinity.

However, there is a continuous family of possible vacua, since

the scalar field potential determines only the magnitude v of

〈φ〉, but not its orientation in the internal SU(2) space. In

the monopole solution, the direction of φ in internal space is

correlated with the position in physical space; i.e., φa ∼ vr̂a.

The stability of the solution follows from the fact that this

twisting Higgs field cannot be smoothly deformed to a spatially

uniform vacuum configuration. Reducing the energetic cost of

the spatial variation of φ requires a nonzero gauge potential,

which turns out to yield the magnetic field corresponding to

a charge QM = 4π/e. Numerical solution of the classical field

equations shows that the mass of this monopole is

Mmon ∼
4πMV

e2
. (4)
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The essential ingredient here was the fact that the Higgs

fields at spatial infinity could be arranged in a topologically

nontrivial configuration. A discussion of the general conditions

under which this is possible is beyond the scope of this review,

so we restrict ourselves to the two phenomenologically most

important cases.

The first is the electroweak theory, with SU(2)×U(1) broken

to U(1). There are no topologically nontrivial configurations of

the Higgs field, and hence no topologically stable monopole

solutions.

The second is when any simple Lie group is broken to a

subgroup with a U(1) factor, a case that includes all grand

unified theories. The monopole mass is determined by the mass

scale of the symmetry breaking that allows nontrivial topology.

For example, an SU(5) model with

SU(5)
MX−→ SU(3) × SU(2) × U(1)

MW−→ SU(3) × U(1) (5)

has a monopole [6] with QM = 2π/e and mass

Mmon ∼
4πMX

g2
, (6)

where g is the SU(5) gauge coupling. For a unification scale of

1016 GeV, these monopoles would have a mass Mmon ∼ 1017 –

1018 GeV.

In theories with several stages of symmetry breaking, mono-

poles of different mass scales can arise. In an SO(10) theory

with

SO(10)
M1−→ SU(4) × SU(2) × SU(2)

M2−→ SU(3) × SU(2) × U(1)

(7)

there is monopole with QM = 2π/e and mass ∼ 4πM1/g2

and a much lighter monopole with QM = 4π/e and mass

∼ 4πM2/g2 [7].

The central core of a GUT monopole contains the fields

of the superheavy gauge bosons that mediate baryon number

violation, so one might expect that baryon number conservation

could be violated in baryon–monopole scattering. The surpris-

ing feature, pointed out by Callan [8] and Rubakov [9], is that

these processes are not suppressed by powers of the gauge boson
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mass. Instead, the cross-sections for catalysis processes such as

p + monopole → e+ + π0 + monopole are essentially geometric;

i.e., σ∆Bβ ∼ 10−27 cm2, where β = v/c. Note, however, that

intermediate mass monopoles arising at later stages of symme-

try breakings, such as the doubly charged monopoles of the

SO(10) theory, do not catalyze baryon number violation.

Production and Annihilation: GUT monopoles are far too

massive to be produced in any foreseeable accelerator. How-

ever, they could have been produced in the early universe as

topological defects arising via the Kibble mechanism [10] in

a symmetry-breaking phase transition. Estimates of the ini-

tial monopole abundance, and of the degree to which it can

be reduced by monopole-antimonopole annihilation, predict a

present-day monopole abundance that exceeds by many orders

of magnitude the astrophysical and experimental bounds de-

scribed below [11]. Cosmological inflation and other proposed

solutions to this primordial monopole problem generically lead

to present-day abundances exponentially smaller than could be

plausibly detected, although potentially observable abundances

can be obtained in scenarios with carefully tuned parameters.

If monopoles light enough to be produced at colliders exist,

one would expect that these could be produced by analogs of

the electromagnetic processes that produce pairs of electrically

charged particles. Because of the large size of the magnetic

charge, this is a strong coupling problem for which perturbation

theory cannot be trusted. Indeed, the problem of obtaining

reliable quantitative estimates of the production cross-sections

remains an open one, on which there is no clear consensus.

Astrophysical and Cosmological Bounds: If there were

no galactic magnetic field, one would expect monopoles in

the galaxy to have typical velocities of the order of 10−3c,

comparable to the virial velocity in the galaxy (relevant if the

monopoles cluster with the galaxy) and the peculiar velocity

of the galaxy with respect to the CMB rest frame (relevant if

the monopoles are not bound to the galaxy). This situation is

modified by the existence of a galactic magnetic field B ∼ 3µG.
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A monopole with the Dirac charge and mass M would be

accelerated by this field to a velocity

vmag ∼

{

c, M . 1011GeV ,

10−3c
(

1017 GeV
M

)1/2

, M & 1011GeV .
(8)

Accelerating these monopoles drains energy from the mag-

netic field. Parker [12] obtained an upper bound on the flux

of monopoles in the galaxy by requiring that the rate of this

energy loss be small compared to the time scale on which

the galactic field can be regenerated. With reasonable choices

for the astrophysical parameters (see Ref. 13 for details), this

Parker bound is

F <

{

10−15 cm−2 sr−1 sec−1 , M . 1017 GeV ,

10−15
(

M

1017 GeV

)

cm−2 sr−1 sec−1 , M & 1017 GeV .

(9)

Applying similar arguments to an earlier seed field that was

the progenitor of the current galactic field leads to a tighter

bound [14],

F <

[

M

1017GeV
+ (3 × 10−6)

]

10−16 cm−2sr−1sec−1. (10)

Considering magnetic fields in galactic clusters gives a bound [15]

which, although less secure, is about three orders of magnitude

lower than the Parker bound.

A flux bound can also be inferred from the total mass of

monopoles in the universe. If the monopole mass density is a

fraction ΩM of the critical density, and the monopoles were

uniformly distributed throughout the universe, there would be

a monopole flux

Funiform = 1.3×10−16ΩM

(

1017 GeV

M

)

( v

10−3c

)

cm−2sr−1sec−1.

(11)

If we assume that ΩM ∼ 0.1, this gives a stronger constraint

than the Parker bound for M ∼ 1015 GeV. However, monopoles

with masses ∼ 1017 GeV are not ejected by the galactic field

and can be gravitationally bound to the galaxy. In this case

their flux within the galaxy is increased by about five orders of

magnitude for a given value of ΩM , and the mass density bound
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only becomes stronger than the Parker bound for M ∼ 1018

GeV.

A much more stringent flux bound applies to GUT mono-

poles that catalyze baryon number violation. The essential idea

is that compact astrophysical objects would capture monopoles

at a rate proportional to the galactic flux. These monopoles

would then catalyze proton decay, with the energy released in

the decay leading to an observable increase in the luminosity of

the object. A variety of bounds, based on neutron stars [16–20],

white dwarfs [21], and Jovian planets [22] have been obtained.

These depend in the obvious manner on the catalysis cross

section, but also on the details of the astrophysical scenar-

ios; e.g., on how much the accumulated density is reduced by

monopole-antimonopole annihilation, and on whether mono-

poles accumulated in the progenitor star survive its collapse

to a white dwarf or neutron star. The bounds obtained in this

manner lie in the range

F
( σ∆Bβ

10−27cm2

)

∼ (10−18 − 10−29)cm−2sr−1sec−1. (12)

It is important to remember that not all GUT monopoles

catalyze baryon number nonconservation. In particular, the in-

termediate mass monopoles that arise in some GUTs at later

stages of symmetry-breaking are examples of theoretically mo-

tivated monopoles that are exempt from the bound of Eq. (12).

Searches for Magnetic Monopoles: To date there have

been no confirmed observations of exotic particles possessing

magnetic charge. Precision measurements of the properties of

known particles have led to tight limits on the values of mag-

netic charge they may possess. Using the induction method (see

below), the electron’s magnetic charge has been found to be

Qm
e < 10−24QD

M [23](where QD
M is the Dirac charge). Further-

more, measurements of the anomalous magnetic moment of the

muon have been used to place a model dependent lower limit

of 120 GeV on the monopole mass 1 [24]. Nevertheless, guided

mainly by Dirac’s argument and the predicted existence of

1 Where no ambiguity is likely to arise, a reference to a mono-

pole implies a particle possessing Dirac charge.
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monopoles from spontaneous symmetry breaking mechanisms,

searches have been routinely made for monopoles produced at

accelerators, in cosmic rays, and bound in matter [25]. Al-

though the resultant limits from such searches are usually made

under the assumption of a particle possessing only magnetic

charge, most of the searches are also sensitive to dyons.

Search Techniques: Search strategies are determined by the

expected interactions of monopoles as they pass through mat-

ter. These would give rise to a number of striking characteristic

signatures. Since a complete description of monopole search

techniques falls outside of the scope of this minireview, only

the most common methods are described below. More com-

prehensive descriptions of search techniques can be found in

Refs. [26,27].

The induction method exploits the long-ranged electromag-

netic interaction of the monopole with the quantum state of a

superconducting ring which would lead to a monopole which

passes through such a ring inducing a permanent current. The

induction technique typically uses Superconducting Quantum

Interference Devices (SQUID) technology for detection and is

employed for searches for monopoles in cosmic rays and matter.

Another approach is to exploit the electromagnetic energy loss

of monopoles. Monopoles with Dirac charge would typically lose

energy at a rate which is several thousand times larger than

that expected from particles possessing the elementary electric

charge. Consequently, scintillators, gas chambers and nuclear

track detectors (NTDs) have been used in cosmic ray and col-

lider experiments. A further approach, which has been used at

colliders, is to search for particles describing a non-helical path

in a uniform magnetic field.

Searches for Monopoles Bound in Matter: Monopoles

have been sought in a range of bulk materials which it is

assumed would have absorbed incident cosmic ray monopoles

over a long exposure time of order million years. Materials which

have been studied include moon rock, meteorites, manganese

modules, and sea water [28]. A stringent upper limit on the

monopoles per nucleon ratio of ∼10−29 has been obtained [28].
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Searches in Cosmic Rays: Direct searches for monopoles in

cosmic rays refer to those experiments in which the passage

of the monopole is measured by an active detector. Catalysis

processes in which GUT monopoles could induce nucleon decay

are discussed in the next section. To interpret the results of

the non-catalysis searches, the cross section for the catalysis

process is typically either set to zero [29] or assigned a modest

value (1mb) [30]. Searches which explicitly exploit the expected

catalysed decays are discussed in the next section.

Although early cosmic ray searches using the induction tech-

nique [31] and NTDs [32] observed monopole candidates, none

of these apparent observations have been confirmed. Recent

experiments have typically employed large scale detectors. The

MACRO experiment at the Gran Sasso underground laboratory

comprised three different types of detector: liquid scintillator,

limited stream tubes, and NTDs, which provided a total ac-

ceptance of ∼ 10000m2 for an isotropic flux. As shown in

Fig. 1, this experiment has so far provided the most exten-

sive β-dependent flux limits for GUT monopoles with Dirac

charge [30]. Also shown are limits from an experiment at the

OHYA mine in Japan [29], which used a 2000m2 array of

NTDs.

In Fig. 1, upper flux limits are also shown as a function

of mass for monopole speed β > 0.05. In addition to MACRO

and OYHA flux limits, results from the SLIM [33] high-altitude

experiment are shown. The SLIM experiment provided a good

sensitivity to intermediate mass monopoles (105 .M . 1012

GeV). In addition to the results shown in Fig. 1, limits as

low as ∼ 3 × 10−18 cm−2s−1sr−1 and ∼ 10−17 cm−2s−1sr−1

were obtained for monopoles with β > 0.8 and β > 0.625 by

the IceCube [34] and Antares [35] experiments, respectively.

The most stringent constraints on the flux of ultra-relativistic

monopoles have been obtained by the RICE [36] and ANITA-II

experiments [37] at the South Pole which were sensitive to

monopoles with γ values of 107 . γ . 1012 and 109 . γ . 1013,

respectively, and which produced flux limits as low as 10−19

cm−2s−1sr−1.
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Figure 1: Upper flux limits for (a) GUT
monopoles as a function of β (b) Monopoles
as a function of mass for β > 0.05.

Searches via the Catalysis of Nucleon-Decay: Searches

have been performed for evidence of the catalysed decay of a nu-

cleon by a monopole, as predicted by the Callan-Rubakov mech-

anism. The searches are thus sensitive to the assumed value of

the catalysis decay cross section. Searches have been made with

the Soudan [38] and Macro [39] experiments, using tracking

detectors. Searches at IMB [40], the underwater Lake Baikal

experiment [41] and the The IceCube experiment [42] which ex-

ploit the Cerenkov effect have also been made. The resulting β-

dependent flux limits from these experiments typically vary be-

tween ∼ 10−18 and ∼ 10−14cm−2sr−1s−1 [25]. A recent search

for low energy neutrinos (assumed to be produced from induced

proton decay in the sun) was made at Super-Kamiokande [43].

A β-dependent of limit of 6.3 × 10−24(
β

10−3
)2cm−2sr−1s−1 was

obtained.

Searches at Colliders: Searches have been performed at

hadron-hadron, electron-positron and lepton-hadron experi-

ments. Collider searches can be broadly classed as being direct

or indirect. In a direct search, evidence of the passage of a

monopole through material, such as a charged particle track,

is sought. In indirect searches, virtual monopole processes are

assumed to influence the production rates of certain final states.

Direct Searches at Colliders: Collider experiments typically

express their results in terms of upper limits on a production
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cross section and/or monopole mass. To calculate these lim-

its, ansatzes are used to model the kinematics of monopole-

antimonopole pair production processes since perturbative field

theory cannot be used to calculate the rate and kinematic

properties of produced monopoles. Limits therefore suffer from

a degree of model-dependence, implying that a comparison be-

tween the results of different experiments can be problematic,

in particular when this concerns excluded mass regions. A con-

servative approach with as little model-dependence as possible

is thus to present the upper cross-section limits as a function of

one half the centre-of-mass energy of the collisions, as shown in

Fig. 2 for recent results from high energy colliders.
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Figure 2: Upper limits on the production
cross sections of monopoles from various collider-
based experiments.

Searches for monopoles produced at the highest available

energies in hadron-hadron collisions were made in pp collisions

at the LHC by the ATLAS experiment [44]. In this search,

highly ionising particles leaving characteristic energy deposition

profiles were sought. Tevatron searches have also been carried
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out by the CDF [45] and E882 [46] experiments. The CDF

experiment used a dedicated time-of-flight system whereas the

E882 experiment employed the induction technique to search

for stopped monopoles in discarded detector material which

had been part of the CDF and D0 detectors using periods of

luminosity. Earlier searches at the Tevatron, such as [47], used

NTDs and were based on comparatively modest amounts of in-

tegrated luminosity. Lower energy hadron-hadron experiments

have employed a variety of search techniques including plastic

track detectors [48] and searches for trapped monopoles [49].

The only LEP-2 search was made by OPAL [50] which

quoted cross section limits for the production of monopoles

possessing masses up to around 103 GeV. At LEP-1, searches

were made with NTDs deployed around an interaction region.

This allowed a range of charges to be sought for masses up

to ∼ 45 GeV. The L6-MODAL experiment [51] gave limits for

monopoles with charges in the range 0.9QD
M and 3.6QD

M , whilst

an earlier search by the MODAL experiment was sensitive to

monopoles with charges as low as 0.1QD
M [52]. The deployment

of NTDs around the beam interaction point was also used

at earlier e+e− colliders such as KEK [53] and PETRA [54].

Searches at e+e− facilities have also been made for particles

following non-helical trajectories [55,56].

There has so far been one search for monopole produc-

tion in lepton-hadron scattering. Using the induction method,

monopoles were sought which could have stopped in the alu-

minium beampipe which had been used by the H1 experiment

at HERA [57]. Cross section limits were set for monopoles with

charges in the range QD
M − 6QD

M for masses up to around 140

GeV.

Indirect Searches at Colliders: It has been proposed that

virtual monopoles can mediate processes which give rise to

multi-photon final-states [58,59]. Photon-based searches were

made by the D0 [60] and L3 [61] experiments. The D0 work led

to spin-dependent lower mass limits of between 610 and 1580

GeV, while L3 reported a lower mass limit of 510 GeV. However,

it should be stressed that uncertainties on the theoretical

February 8, 2016 19:56



– 12–

calculations which were used to derive these limits are difficult

to estimate.
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