$B_{J}(5840)^{0}$ $$I(J^P) = \frac{1}{2}(?^?)$$ Status: ** I, J, P need confirmation. #### OMITTED FROM SUMMARY TABLE Quantum numbers shown are quark-model predictions. #### $B_{J}(5840)^{0}$ MASS OUR FIT uses m_{B^+} and $m_{B_1(5840)^0} - m_{B^+}$ to determine $m_{B_1(5840)^0}$. VALUE (MeV) DOCUMENT ID #### 5863 ± 9 OUR FIT | $m_{B_1(5840)^0}$ | _ | m_{B^+} | |-------------------|---|-----------| |-------------------|---|-----------| | VALUE (MeV) | EVTS | DOCUMENT ID | TECN | COMMENT | |----------------|------|-------------|------|---------| | 584± 9 OUR FIT | · | _ | | | 584± 5±7 12k ¹ AAIJ 15AB LHCB pp at 7, 8 TeV ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet $610 \pm 22 \pm 7$ 12k ² AAIJ 15AB LHCB pp at 7, 8 TeV 1 AAIJ 15AB reports $[m_{B^0_J} - m_{B^+}] - m_{\pi^-} =$ 444 \pm 5 \pm 7 MeV which we adjust by the π^- mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P=(-1)^J$ and uses two relativistic Breit-Wigner functions in the fit for mass difference. 2 AAIJ 15AB reports $[m_{B^0}^{-} - m_{B^+}] - m_{\pi^-} = 471 \pm 22 \pm 7$ MeV which we adjust by the π^- mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P=(-1)^J$ and uses three relativistic Breit-Wigner functions in the fit for mass difference. ### $m_{B_J(5840)^0} - m_{B^{*+}}$ VALUE (MeV) ___EVTS __DOCUMENT_ID __TECN __COMMENT_ ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet $584 \pm 5 \pm 7$ L2k ³ AAIJ 15AB LHCB pp at 7, 8 TeV Created: 10/1/2016 20:06 3 AAIJ 15AB reports $[m_{B_J^0} - m_{B^+}] - (m_{B^{*+}} - m_{B^+}) - m_{\pi^-} = 444 \pm 5 \pm 7 \text{ MeV}$ which we adjust by the π^- mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P=-(-1)^J$, $(m_{B^{*+}}-m_{B^+})=45.01\pm0.30\pm0.23$ MeV, and uses three relativistic Breit-Wigner functions in the fit for mass difference. ### $B_{J}(5840)^{0}$ WIDTH | VALUE (MeV) | EVTS | DOCUMENT ID | TECN | COMMENT | |------------------------|-------------|---------------------|--------------------|-----------------------| | $127 \pm 17 \pm 34$ | 12k | ⁴ AAIJ | 15AB LHCB | <i>pp</i> at 7, 8 TeV | | • • • We do not use th | e following | g data for averages | s, fits, limits, e | etc. • • • | | $107 \pm 20 \pm 34$ | 12k | ⁵ AAIJ | 15AB LHCB | <i>pp</i> at 7, 8 TeV | | $119 \pm 17 \pm 34$ | 12k | ⁶ AAIJ | 15AB LHCB | pp at 7, 8 TeV | # $B_J(5840)^0$ DECAY MODES | | Mode | Fraction (Γ_i/Γ) | |----------------|-----------------|------------------------------| | Γ ₁ | $B^{*+}\pi^{-}$ | seen | | Γ ₂ | $B^{+}\pi^{-}$ | possibly seen | ## $B_J(5840)^0$ BRANCHING RATIOS | $\Gamma(B^{*+}\pi^-)/\Gamma_{ ext{total}}$ | | | | | Γ_1/Γ | |--|-------------|-------------------|-----------|-----------------------|-------------------| | VALUE | <u>EVTS</u> | DOCUMENT ID | TECN | COMMENT | | | seen | 12k | AAIJ | 15AB LHCB | <i>pp</i> at 7, 8 TeV | | | $\Gamma(B^+\pi^-)/\Gamma_{ m total}$ | | | | | Γ_2/Γ | | VALUE | | DOCUMENT ID | TECN | COMMENT | | | possibly seen | | ⁷ AAIJ | 15AB LHCB | <i>pp</i> at 7, 8 TeV | | | 7 A $B\pi$ decay is forbidden from a $P=-(-1)^J$ parent, whereas $B^*\pi$ is allowed. | | | | | | # B_J(5840)⁰ REFERENCES AAIJ 15AB JHEP 1504 024 R. Aaij et al. (LHCb Collab.) Created: 10/1/2016 20:06 ⁴ Assuming $P = (-1)^J$ and using two relativistic Breit-Wigner functions in the fit for mass difference. difference. 5 Assuming $P=(-1)^J$ and using three relativistic Breit-Wigner functions in the fit for mass difference mass difference. 6 Assuming $P=-(-1)^J$ and using three relativistic Breit-Wigner functions in the fit for mass difference.