b-baryon ADMIXTURE $(\Lambda_b, \Xi_b, \Sigma_b, \Omega_b)$

b-baryon ADMIXTURE MEAN LIFE

Each measurement of the *b*-baryon mean life is an average over an admixture of various *b* baryons which decay weakly. Different techniques emphasize different admixtures of produced particles, which could result in a different *b*-baryon mean life. More *b*-baryon flavor specific channels are not included in the measurement.

<i>VALUE</i> (10^{-12} s)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use	the following	data for averages	, fits,	limits, e	etc. • • •
$1.218 {+0.130\atop -0.115} \pm 0.042$		¹ ABAZOV	07 S	D0	Repl. by ABAZOV 120
$1.22 \ ^{+0.22}_{-0.18} \ \pm 0.04$		¹ ABAZOV	05 C	D0	Repl. by ABAZOV 07S
$1.16\ \pm0.20\ \pm0.08$		² ABREU	99W	DLPH	$e^+e^- \rightarrow Z$
$1.19 \pm 0.14 \pm 0.07$		³ ABREU	99W	DLPH	$e^+e^- ightarrow Z$
$1.14 \pm 0.08 \pm 0.04$		⁴ ABREU	99W	DLPH	$e^+e^- ightarrow Z$
$1.11 \ ^{+0.19}_{-0.18} \ \pm 0.05$		⁵ ABREU	99W	DLPH	$e^+e^- ightarrow Z$
$1.29 \ ^{+0.24}_{-0.22} \ \pm 0.06$		⁵ ACKERSTAFF	98 G	OPAL	$e^+e^- ightarrow Z$
$1.20\ \pm0.08\ \pm0.06$		⁶ BARATE	98 D	ALEP	$e^+e^- ightarrow Z$
1.21 ± 0.11		⁵ BARATE	98 D	ALEP	$e^+e^- ightarrow Z$
$1.32 \pm 0.15 \pm 0.07$		⁷ ABE	96M	CDF	$p\overline{p}$ at 1.8 TeV
$1.46 \begin{array}{c} +0.22 & +0.07 \\ -0.21 & -0.09 \end{array}$		ABREU	96 D	DLPH	Repl. by ABREU 99W
$1.10 \ ^{+ 0.19}_{- 0.17} \ \pm 0.09$		⁵ ABREU	96 D	DLPH	$e^+e^- ightarrow Z$
$1.16 \ \pm 0.11 \ \pm 0.06$		⁵ AKERS	96	OPAL	$e^+e^- ightarrow Z$
$1.27 \ ^{+0.35}_{-0.29} \ \pm 0.09$		ABREU	95 S	DLPH	Repl. by ABREU 99W
$1.05 \ ^{+ 0.12}_{- 0.11} \ \pm 0.09$	290	BUSKULIC	95L	ALEP	Repl. by BARATE 98D
$1.04 ^{+0.48}_{-0.38} \pm 0.10$	11	⁸ ABREU	93F	DLPH	Excess $\Lambda\mu^-$, decay lengths
$1.05 \ ^{+0.23}_{-0.20} \ \pm 0.08$	157	⁹ AKERS	93	OPAL	Excess $\Lambda \ell^-$, decay lengths
$1.12 \begin{array}{c} +0.32 \\ -0.29 \end{array} \pm 0.16$	101	¹⁰ BUSKULIC	921	ALEP	Excess $\Lambda \ell^-$, impact parameters

 $^{^1}$ Measured mean life using fully reconstructed $\varLambda_h^0 \to J/\psi \varLambda$ decays.

Created: 10/1/2016 20:06

 $^{^2}$ Measured using $\Lambda\ell^-$ decay length.

 $^{^3}$ Measured using $p\ell^-$ decay length.

⁴ This ABREU 99W result is the combined result of the $\Lambda\ell^-$, $p\ell^-$, and excess $\Lambda\mu^-$ impact parameter measurements.

 $^{^5\,\}mathrm{Measured}$ using $\varLambda_{\mathcal{C}}\,\ell^-$ and $\varLambda\ell^+\,\ell^-.$

 $^{^6\,\}mathrm{Measured}$ using the excess of $\Lambda\ell^-$, lepton impact parameter.

⁷ Measured using $\Lambda_c \ell^-$.

⁸ ABREU 93F superseded by ABREU 96D.

b-baryon ADMIXTURE DECAY MODES $(\Lambda_b, \Xi_b, \Sigma_b, \Omega_b)$

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates at the LHC, LEP, and Tevatron, branching ratios, and detection efficiencies. They scale with the b-baryon production fraction B($b \rightarrow b$ -baryon).

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$p\mu^-\overline{ u}$ anything	$(5.5^{+}_{-}) \%$
Γ_2	$ ho \ell \overline{ u}_\ell$ anything	(5.3 ± 1.2) %
Γ_3	<i>p</i> anything	(66 ± 21) %
Γ_4	$arLambda \ell^- \overline{ u}_\ell$ anything	(3.6± 0.6) %
Γ_5	$arLambda\ell^+ u_\ell$ anything	(3.0 ± 0.8) %
Γ_6	arLambdaanything	$(37 \pm 7)\%$
Γ ₇	$ar{arXi}^-\ell^-ar{ u}_\ell$ anything	$(6.2\pm\ 1.6)\times10^{-3}$

b-baryon ADMIXTURE (Λ_b , Ξ_b , Σ_b , Ω_b) BRANCHING RATIOS

$$\Gamma(p\ell\overline{\nu}_{\ell} \text{ anything})/\Gamma_{\text{total}}$$
 $VALUE$
 $O.053 \pm 0.009 \pm 0.008$
 $O.053 \pm 0.009 \pm 0.008$
 $O.053 \pm 0.009 \pm 0.008$
 $O.050 \pm 0.008$
 $O.$

Created: 10/1/2016 20:06

⁹ AKERS 93 superseded by AKERS 96.

 $^{^{}m 10}$ BUSKULIC 921 superseded by BUSKULIC 95L.

 $^{^{11}}$ ABREU 95S reports $[\Gamma(b\text{-baryon}\to p\mu^-\overline{\nu}\text{anything})/\Gamma_{\text{total}}]\times[B(\overline{b}\to b\text{-baryon})]$ $=0.0049\pm0.0011^{+0.0015}_{-0.0011}$ which we divide by our best value $B(\overline{b}\to b\text{-baryon})=(8.9\pm1.3)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^{12}}$ BARATE 98V reports $[\Gamma(b\text{-baryon}\to p\ell\overline{\nu}_\ell\,\text{anything})/\Gamma_{\text{total}}]\times[B(\overline{b}\to b\text{-baryon})]$ $=(4.72\pm0.66\pm0.44)\times10^{-3}$ which we divide by our best value $B(\overline{b}\to b\text{-baryon})$ $=(8.9\pm1.3)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(p\ell\overline{\nu}_{\ell}\text{anything})/\Gamma(p\text{anything})$

 Γ_2/Γ_3

VALUE	DOCUMENT ID	TECN	COMMENT
$0.080\pm0.012\pm0.014$	BARATE 98V	AI FP	$e^+e^- \rightarrow 7$

$\Gamma(\Lambda \ell^- \overline{\nu}_{\ell} \text{ anything}) / \Gamma_{\text{total}}$

 Γ_4/Γ

The values and averages in this section serve only to show what values result if one assumes our $B(b \to b\text{-baryon})$. They cannot be thought of as measurements since the underlying product branching fractions were also used to determine $B(b \to b\text{-baryon})$ as described in the note on "Production and Decay of b-Flavored Hadrons."

<u>VALUE</u>	EVTS	DOCUMENT ID		TECN	COMMENT
0.036 ± 0.006 OUR AVE	RAGE				
$0.037\!\pm\!0.005\!\pm\!0.005$		¹³ BARATE	98 D	ALEP	$e^+e^- \rightarrow Z$
$0.033 \pm 0.004 \pm 0.005$		¹⁴ AKERS	96	OPAL	Excess of $\Lambda \ell^-$ over $\Lambda \ell^+$
$0.034 \pm 0.008 \pm 0.005$	262	¹⁵ ABREU	95 S	DLPH	Excess of $\Lambda \ell^-$ over $\Lambda \ell^+$
$0.069\!\pm\!0.013\!\pm\!0.010$	290	¹⁶ BUSKULIC	95L	ALEP	Excess of $\Lambda \ell^-$ over $\Lambda \ell^+$
• • • We do not use th	e followi	ng data for average	s, fits,	limits, e	710
seen	157	¹⁷ AKERS	93	OPAL	Excess of $\Lambda \ell^-$ over $\Lambda \ell^+$
$0.079 \pm 0.023 \pm 0.011$	101	¹⁸ BUSKULIC	921	ALEP	Excess of $\Lambda \ell^-$ over $\Lambda \ell^+$

- ¹³ BARATE 98D reports $[\Gamma(b\text{-baryon} \to \Lambda \ell^- \overline{\nu}_\ell \, \text{anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})]$ = 0.00326 \pm 0.00016 \pm 0.00039 which we divide by our best value $B(\overline{b} \to b\text{-baryon})$ = (8.9 \pm 1.3) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Measured using the excess of $\Lambda \ell^-$, lepton impact parameter.
- ¹⁴ AKERS 96 reports $[\Gamma(b\text{-baryon} \to \Lambda \ell^- \overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})] = 0.00291 \pm 0.00023 \pm 0.00025$ which we divide by our best value $B(\overline{b} \to b\text{-baryon}) = (8.9 \pm 1.3) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ¹⁵ ABREU 95s reports [$\Gamma(b\text{-baryon} \to \Lambda \ell^- \overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}$] \times [B($\overline{b} \to b\text{-baryon}$)] = 0.0030 \pm 0.0006 \pm 0.0004 which we divide by our best value B($\overline{b} \to b\text{-baryon}$) = (8.9 \pm 1.3) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ¹⁶ BUSKULIC 95L reports $[\Gamma(b\text{-baryon} \to \Lambda \ell^- \overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})] = 0.0061 \pm 0.0006 \pm 0.0010$ which we divide by our best value $B(\overline{b} \to b\text{-baryon}) = (8.9 \pm 1.3) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ¹⁷ AKERS 93 superseded by AKERS 96.
- ¹⁸ BUSKULIC 92I reports [$\Gamma(b\text{-baryon} \to \Lambda \ell^- \overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}$] \times [B($\overline{b} \to b\text{-baryon}$)] = 0.0070 \pm 0.0010 \pm 0.0018 which we divide by our best value B($\overline{b} \to b\text{-baryon}$) = (8.9 \pm 1.3) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Superseded by BUSKULIC 95L.

$\Gamma(\Lambda \ell^+ \nu_\ell \text{ anything})/\Gamma(\Lambda \text{ anything})$

 Γ_5/Γ_6

Created: 10/1/2016 20:06

	•/	5, 5
VALUE	DOCUMENT ID	TECN COMMENT
$0.080 \pm 0.012 \pm 0.008$	ABBIENDI 99L	OPAL $e^+e^- \rightarrow Z$
• • • We do not use the following of	data for averages, fits,	limits, etc. • • •
$0.070 \pm 0.012 \pm 0.007$	ACKERSTAFF 97N	OPAL Repl. by ABBI- ENDI 99L

HTTP://PDG.LBL.GOV

Page 3

$\Gamma(\Lambda \text{anything})/\Gamma_{\text{total}}$					Γ_6/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.37±0.07 OUR AVERAGE					
$0.39\!\pm\!0.05\!\pm\!0.06$	¹⁹ ABBIENDI	99L	OPAL	$e^+e^- ightarrow Z$	
$0.25^{igoplus 0.14}_{-0.09} \pm 0.04$	²⁰ ABREU	95 C	DLPH	$e^+e^- ightarrow Z$	
• • • We do not use the following	ng data for average	es, fits,	limits, e	etc. • • •	
$0.44 \pm 0.07 \pm 0.06$	²¹ ACKERSTAFI	= 97N	OPAL	Repl. by ABBI- ENDI 99L	
19 ABBIENDI 99L reports [$\Gamma(b)$	-baryon $ ightarrow \Lambda$ an	ything	$/\Gamma_{\rm total}$	$] \times [B(\overline{b} \rightarrow b)]$	-baryon)]

- ¹⁹ ABBIENDI 99L reports $[\Gamma(b\text{-baryon} \rightarrow \Lambda \text{anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \rightarrow b\text{-baryon})]$ = 0.035 ± 0.0032 ± 0.0035 which we divide by our best value $B(\overline{b} \rightarrow b\text{-baryon}) = (8.9 \pm 1.3) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- the systematic error from using our best value.
 20 ABREU 95C reports $0.28^{+0.17}_{-0.12}$ from a measurement of $[\Gamma(b\text{-baryon} \rightarrow \Lambda \text{anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \rightarrow b\text{-baryon})]$ assuming $B(\overline{b} \rightarrow b\text{-baryon}) = 0.08 \pm 0.02$, which we rescale to our best value $B(\overline{b} \rightarrow b\text{-baryon}) = (8.9 \pm 1.3) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ²¹ ACKERSTAFF 97N reports $[\Gamma(b\text{-baryon} \to \Lambda \text{anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})] = 0.0393 \pm 0.0046 \pm 0.0037$ which we divide by our best value $B(\overline{b} \to b\text{-baryon}) = (8.9 \pm 1.3) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\Xi^-\ell^-\overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_7/Γ

Created: 10/1/2016 20:06

(• ,
VALUE	DOCUMENT ID		TECN	COMMENT
0.0062±0.0016 OUR AVERAGE				
$0.0061 \pm 0.0015 \pm 0.0009$	²² BUSKULIC	96T	ALEP	Excess $\underline{\Xi}^- \ell^-$ over
$0.0066 \pm 0.0026 \pm 0.0010$	²³ ABREU	95∨	DLPH	$= \ell'$ Excess $= \ell'$ over $= \ell'$

- ²² BUSKULIC 96T reports $[\Gamma(b\text{-baryon} \to \Xi^-\ell^-\overline{\nu}_\ell \, \text{anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \to b\text{-baryon})] = 0.00054 \pm 0.00011 \pm 0.00008$ which we divide by our best value $B(\overline{b} \to b\text{-baryon}) = (8.9 \pm 1.3) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ²³ ABREU 95V reports [$\Gamma(b\text{-baryon} \to \Xi^-\ell^-\overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}$] \times [B($\overline{b} \to b\text{-baryon}$)] = 0.00059 \pm 0.00021 \pm 0.0001 which we divide by our best value B($\overline{b} \to b\text{-baryon}$) = (8.9 \pm 1.3) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

b-baryon ADMIXTURE (Λ_b , Ξ_b , Σ_b , Ω_b) REFERENCES

ABAZOV	12U	PR D85 112003	V.M. Abazov et al.	(D0	Collab.)
ABAZOV	07S	PRL 99 142001	V.M. Abazov et al.	(D0	Collab.)
ABAZOV	05C	PRL 94 102001	V.M. Abazov et al.	(D0	Collab.)
ABBIENDI	99L	EPJ C9 1	G. Abbiendi et al.	(OPAL	Collab.)
ABREU	99W	EPJ C10 185	P. Abreu <i>et al.</i>	(DELPHI	Collab.)
ACKERSTAFF	98G	PL B426 161	K. Ackerstaff et al.	(OPAL	Collab.)
BARATE	98D	EPJ C2 197	R. Barate et al.	(ÀLEPH	Collab.)
BARATE	98V	EPJ C5 205	R. Barate et al.	(ALEPH	Collab.)
ACKERSTAFF	97N	ZPHY C74 423	K. Ackerstaff et al.	(OPAL	Collab.)
ABE	96M	PRL 77 1439	F. Abe <i>et al.</i>	(CDF	Collab.)
ABREU	96D	ZPHY C71 199	P. Abreu <i>et al.</i>	(DELPHI	Collab.)

ABREU 93F PL B311 379 P. Abreu <i>et al.</i> (DELPHI Co AKERS 93 PL B316 435 R. Akers <i>et al.</i> (OPAL Co	AKERS	95V 95L 93F 93	PL B316 435	R. Akers <i>et al.</i>	(OPAL Collab (ALEPH Collab (DELPHI Collab (DELPHI Collab (DELPHI Collab (ALEPH Collab (DELPHI Collab (OPAL Collab (ALEPH Collab	.) .) .) .)
--	-------	-------------------------	-------------	------------------------	---	----------------------