In 1970 van Dam and Veltman (VANDAM 70) showed that "... there is a discrete difference between the theory with zero-mass and a theory with finite mass, no matter how small as compared to all external momenta. ... We may conclude that the graviton has rigorously zero mass." However, see GOLDHABER 10 and references therein. It has been of interest to set experimental limits, whether or not a finite mass can exist. In most (but not all) cases limits have been set on the distance without evidence for a Yukawa cutoff. h_0 is the Hubble constant in units of $100 \text{ km s}^{-1} \text{ Mpc}^{-1}$.

The following conversions are useful: $1 \text{ eV} = 1.783 \times 10^{-33} \text{ g} = 1.957 \times 10^{-6} \text{ m}_e$; $\lambda_C = (1.973 \times 10^{-7} \text{ m}) \times (1 \text{ eV}/m_g)$.
DAMOUR 91 is an analysis of the orbital period change in binary pulsar PSR 1913+16, and confirms the general relativity prediction to 0.8%. “The theoretical importance of the [rate of orbital period decay] measurement has long been recognized as a direct confirmation that the gravitational interaction propagates with velocity c (which is the immediate cause of the appearance of a damping force in the binary pulsar system) and thereby as a test of the existence of gravitational radiation and of its quadrupolar nature.” TAYLOR 93 adds that orbital parameter studies now agree with general relativity to 0.5%, and set limits on the level of scalar contribution in the context of a family of tensor [spin 2]-biscalar theories.