$$\Lambda_c(2595)^+$$

$$I(J^P) = 0(\frac{1}{2})$$
 Status: ***

The $\Lambda_c^+\pi^+\pi^-$ mode is largely, and perhaps entirely, $\Sigma_c\pi$, which is just at threshold; since the Σ_c has $J^P=1/2^+$, the J^P here is almost certainly $1/2^-$. This result is in accord with the theoretical expectation that this is the charm counterpart of the strange $\Lambda(1405)$.

$\Lambda_c(2595)^{+}$ MASS

The mass is obtained from the $\Lambda_{\it C}(2595)^+ - \Lambda_{\it C}^+$ mass-difference measurements below.

VALUE (MeV)

DOCUMENT ID

2592.25 ± 0.28 OUR FIT

$\Lambda_c(2595)^+ - \Lambda_c^+$ MASS DIFFERENCE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT	
305.79 ± 0.24 OUR F	iT.					
$305.79 \pm 0.14 \pm 0.20$	3.5k	AALTONEN	11H	CDF	$p\overline{p}$ at 1.96 TeV	
• • • We do not use	ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$					
305.6 ± 0.3		$^{ m 1}$ BLECHMAN	03		Threshold shift	
$309.7 \pm 0.9 \pm 0.4$	19	ALBRECHT	97	ARG	e^+e^-pprox 10 GeV	
$309.2 \pm 0.7 \pm 0.3$	14 ± 4.5	FRABETTI	96	E687	$\gamma\mathrm{Be}$, $\overline{E}_{\gamma}pprox$ 220 GeV	
$307.5 \pm 0.4 \pm 1.0$	112 ± 17	EDWARDS	95	CLE2	e^+e^-pprox 10.5 GeV	
1						

 $^{^1}$ BLECHMAN 03 finds that a more sophisticated treatment than a simple Breit-Wigner for the proximity of the threshold of the dominant decay, $\Sigma_c(2455)\pi$, lowers the $\Lambda_c(2595)^+ - \Lambda_c^+$ mass difference by 2 or 3 MeV. The analysis of AALTONEN 11H bears this out.

$\Lambda_{c}(2595)^{+}$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
$2.59 \pm 0.30 \pm 0.47$	3.5k	² AALTONEN	11H	CDF	$p\overline{p}$ at 1.96 TeV
• • • We do not use t	he following da	ata for averages, f	its, lin	nits, etc	. • • •
$2.9 \begin{array}{c} +2.9 & +1.8 \\ -2.1 & -1.4 \end{array}$	19	ALBRECHT	97	ARG	e^+e^-pprox 10 GeV
$3.9 \begin{array}{c} +1.4 & +2.0 \\ -1.2 & -1.0 \end{array}$	112 ± 17	EDWARDS	95	CLE2	$e^+e^-pprox~10.5~\text{GeV}$
2 AALTONEN 11H treats the three charged modes $\varLambda_c(2595)^+\to \varSigma_c(2455)^{++}\pi^-$, $\varSigma_c(2455)^+\pi^0$, $\varSigma_c(2455)^0\pi^+$ separately in terms of a common coupling constant h_2 and obtains $h_2^2=0.36\pm0.08$. From this the width is determined.					

Created: 10/1/2016 20:05

$\Lambda_c(2595)^+$ DECAY MODES

 $\Lambda_C^+\pi\pi$ and its submode $\Sigma_C(2455)\pi$ — the latter just barely — are the only strong decays allowed to an excited Λ_C^+ having this mass; and the submode seems to dominate.

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$\Lambda_c^+\pi^+\pi^-$	[a] —
Γ_2	$\Sigma_c(2455)^{++}\pi^-$	24 \pm 7 %
Γ_3	$\Sigma_{c}^{(2455)^{0}}\pi^{+}$	24 \pm 7 %
Γ_4	$\Lambda_c^+ \pi^+ \pi^-$ 3-body	18 \pm 10 %
Γ_5	$\Lambda_c^+ \pi^0$ $\Lambda_c^+ \gamma$	[b] not seen
Γ_6	$\Lambda_c^+ \gamma$	not seen

- [a] See AALTONEN 11H, Fig. 8, for the calculated ratio of $\Lambda_c^+\pi^0\pi^0$ and $\Lambda_c^+\pi^+\pi^-$ partial widths as a function of the $\Lambda_c(2595)^+-\Lambda_c^+$ mass difference. At our value of the mass difference, the ratio is about 4.
- [b] A test that the isospin is indeed 0, so that the particle is indeed a Λ_c^+ .

$\Lambda_c(2595)^+$ BRANCHING RATIOS

$\Gamma(\Sigma_c(2455)^{++}\pi^-)$	$/\Gamma(\Lambda_c^+\pi^-)$	$^{+}\pi^{-})$			Γ_2/Γ_1
VALUE		DOCUMENT ID		TECN	COMMENT
0.36±0.10 OUR AVER 0.37±0.12±0.13	AGE	ALBRECHT	97	ARG	$e^+e^-pprox~$ 10 GeV
$0.36\!\pm\!0.09\!\pm\!0.09$		EDWARDS	95	CLE2	$e^+e^-pprox~10.5~{ m GeV}$
$\Gamma(\Sigma_c(2455)^0\pi^+)/\Gamma_{\frac{VALUE}{0.37\pm0.10}}$ OUR AVER.		τ ⁻) <u>DOCUMENT ID</u>		<u>TECN</u>	Γ ₃ /Γ ₁
$0.29 \pm 0.10 \pm 0.11$	AGL	ALBRECHT	97	ARG	${ m e^+e^-}pprox~10~{ m GeV}$
$0.42 \pm 0.09 \pm 0.09$		EDWARDS			$e^+e^- \approx 10.5 \text{ GeV}$
• •	<u>CL%</u>	DOCUMENT ID		TECN	
$0.66^{+0.13}_{-0.16}\pm0.07$		ALBRECHT	97	ARG	e^+e^-pprox 10 GeV
>0.51	90	³ FRABETTI	96	E687	$\gamma\mathrm{Be},\overline{E}_{\gamma}pprox$ 220 GeV
³ The results of FRABETTI 96 are consistent with this ratio being 100%.					
$\Gamma(\Lambda_c^+\pi^0)/\Gamma(\Lambda_c^+\pi^+)$ $\Lambda_c^+\pi^0$ decay is for	,	y isospin conserva	tion if	this sta	Γ_5/Γ_1 te is in fact a $Λ_C$.
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<3.53	90	EDWARDS	95	CLE2	$e^+e^-pprox~10.5~{ m GeV}$

Page 2

Created: 10/1/2016 20:05

HTTP://PDG.LBL.GOV

$\Gamma(\Lambda_c^+ \gamma)/\Gamma(\Lambda_c^+ \pi^+ \pi^-)$	-)				Γ_6/Γ_1
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.98	90	EDWARDS	95	CLE2	$e^+e^-pprox~10.5~{ m GeV}$

$\Lambda_c(2595)^+$ REFERENCES

AALTONEN	11H	PR D84 012003	T. Aaltonen <i>et al.</i>	(CDF Collab.)
BLECHMAN	03	PR D67 074033	A.E. Blechman et al.	(JHU, FLOR)
ALBRECHT	97	PL B402 207	H. Albrecht et al.	(ARGUS Collab.)
FRABETTI	96	PL B365 461	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
EDWARDS	95	PRL 74 3331	K.W. Edwards et al.	(CLEO Collab.)

Created: 10/1/2016 20:05