$\Upsilon(11020)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Υ (11020) MASS

 VALUE (MeV)
 DOCUMENT ID
 TECN
 COMMENT

 10987.5 $^+$ $^+$ 6.4 $^+$ 9.1 $^-$ 2.5 $^-$ 2.3 $^-$ 2.7 (1S, 2S, 3S) $π^+π^-$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $11003.0\pm~1.1^{+0.9}_{-1.0}$ 2,3 SANTEL 4 AUBERT 4 AUBERT 4 BELL 6 2 4 AUBERT 4 BESSON 4 SOURCE 6 2 4 AUBERT 4 BESSON 4 SOURCE 4 6 6 7

au(11020) WIDTH

VALUE (MeV) DOCUMENT ID TECN COMMENT

61 $+ 9 + 2 \\ -19 - 20$ 5 SANTEL

16 BELL $e^+e^- \rightarrow \Upsilon(1S, 2S, 3S)\pi^+\pi^-$

• • We do not use the following data for averages, fits, limits, etc. • •

⁵ From a simultaneous fit to the $\Upsilon({\rm nS})\pi^+\pi^-$, $n{=}1$, 2, 3 cross sections at 25 energy points within $\sqrt{s}=10.6{-}11.05$ GeV to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with fourteen resonance parameters (a mass, width, and three amplitudes for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, a single universal relative phase, and three decoherence coefficients, one for each n). Continuum contributions were measured (and therefore fixed) to be zero.

Created: 10/1/2016 20:05

¹ From a simultaneous fit to the $\Upsilon({\rm nS})\pi^+\pi^-$, $n=1,\,2,\,3$ cross sections at 25 energy points within $\sqrt{s}=10.6$ –11.05 GeV to a pair of interfering Breit-Wigner amplitudes modified by phase space factors, with fourteen resonance parameters (a mass, width, and three amplitudes for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, a single universal relative phase, and three decoherence coefficients, one for each n). Continuum contributions were measured (and therefore fixed) to be zero.

² From a fit to the total hadronic cross sections measured at 60 energy points within \sqrt{s} = 10.82–11.05 GeV to a pair of interfering Breit-Wigner amplitudes and two floating continuum amplitudes with $1/\sqrt{s}$ dependence, one coherent with the resonances and one incoherent, with six resonance parameters (a mass, width, and an amplitude for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, one relative phase, and one decoherence coefficient).

³ Not including uncertain and potentially large systematic errors due to assumed continuum amplitude $1/\sqrt{s}$ dependence and related interference contributions.

⁴ In a model where a flat non-resonant $b\overline{b}$ -continuum is incoherently added to a second flat component interfering with two Breit-Wigner resonances. Systematic uncertainties not estimated.

Υ (11020) DECAY MODES

Mode		Fraction (Γ_i/Γ)		
Γ ₁	e^+e^-	$(2.1^{+1.1}_{-0.6}) \times 10^{-6}$		

au(11020) PARTIAL WIDTHS

$\Gamma(e^+e^-)$					Γ_1
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
0.130 ± 0.030 OUR AVERAGE					
$0.095 \pm 0.03 \pm 0.035$	BESSON	85	CLEO	$e^+e^- ightarrow $ hadrons	
0.156 ± 0.040	LOVELOCK	85	CUSB	$e^+e^- ightarrow hadrons$	

au(11020) REFERENCES

SANTEL	16	PR D93 011101	D. Santel et al.	(BELLE Collab.)
AUBERT	09E	PRL 102 012001	B. Aubert et al.	(BABAR Collab.)
BESSON	85	PRL 54 381	D. Besson et al.	(CLEO Collab.)
LOVELOCK	85	PRL 54 377	D.M.J. Lovelock et al.	(CUSB Collab.)

Created: 10/1/2016 20:05

⁶ From a fit to the total hadronic cross sections measured at 60 energy points within \sqrt{s} = 10.82–11.05 GeV to a pair of interfering Breit-Wigner amplitudes and two floating continuum amplitudes with $1/\sqrt{s}$ dependence, one coherent with the resonances and one incoherent, with six resonance parameters (a mass, width, and an amplitude for each of $\Upsilon(10860)$ and $\Upsilon(11020)$, one relative phase, and one decoherence coefficient).

⁷ Not including uncertain and potentially large systematic errors due to assumed continuum amplitude $1/\sqrt{s}$ dependence and related interference contributions.

⁸ In a model where a flat non-resonant $b\overline{b}$ -continuum is incoherently added to a second flat component interfering with two Breit-Wigner resonances. Systematic uncertainties not estimated.