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In order to make optimal use of the experimental data

to determine the τ branching fractions, their uncertainties,

and their correlations, we perform a global minimum χ2 fit

using the measured values, their uncertainties, their statistical

correlations, their dependencies on external parameters and

common systematics, and the relations that hold between the

branching fractions, including a unitarity constraint on the

sum of all the exclusive τ decay branching fractions. Starting

with this edition, we use a new fit procedure, which has been

elaborated by the Tau Physics Group within the Heavy Flavour

Averaging Group (HFAG) [1].

In the following, we use “branching fraction” to refer to

the partial decay fraction of a particle like the τ into a specific

decay mode, and “branching ratio” to refer to quantities derived

from the branching fractions [2], like for instance a ratio of

two branching fractions, or a ratio of two linear combinations

of branching fractions.

The constrained fit to τ branching fractions.

The τ Listings contains 242 τ decay modes, out of which 61

are Lepton Family number, Lepton number, or Baryon number

violating modes. The fit computes the branching fractions of 112

decay modes. Although no new τ branching fraction and ratio

measurements have been released since the 2015 edition, the fit

in this edition includes more experimental measurements (169,

up from 143 in 2015) and determines in the fit several additional

τ branching fractions and ratios, relying on a larger and

updated set of constraints that relate the branching fractions

and ratios between themselves. The measurements are treated

as follows [1].

Many published measurements depend on external param-

eters such as the τ pair production cross-section in e+e−

annihilations at the Υ(4S) peak. We compute the size and

sign of these dependencies and update the measurements and

CITATION: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

October 1, 2016 19:58



– 2–

their uncertainties to the current values of the external param-

eters. Accordingly, the measurements and their uncertainties

are updated to account for updated values of external pa-

rameters. The dependencies on common systematic effects are

also determined in size and sign, and all the common system-

atic dependencies of different measurements are used together

with the published statistical and systematic uncertainties and

correlations in order to compute a single all-inclusive vari-

ance and covariance matrix of the experimental measurements.

All the measurements, their uncertainties, and their correla-

tions were taken from the respective published papers. Their

values and the constraints used in the fit are reported in

the τ Listings section that follows this review. If only a few

measurements are correlated, the correlation coefficients are

listed in the footnote for each measurement (see for exam-

ple Γ(particle− ≥ 0 neutrals ≥ 0 K0ντ (“1-prong”))/Γtotal). If

a large number of measurements are correlated, then the full

correlation matrix is listed in the footnote to the measurement

that first appears in the τ Listings. Footnotes to the other

measurements refer to the first measurement. For example, the

large correlation matrices for the branching fraction or ratio

measurements contained in Refs. [3,4] are listed in Footnotes to

the Γ(e−νeντ )/Γtotal and Γ(h−ντ )/Γtotal measurements respec-

tively. The constraints between the τ branching fractions and

ratios include coefficients that correspond to physical quantities,

like for instance the branching fractions of the η and ω mesons.

All quantities are taken from the 2015 edition of the Review of

Particle Physics. Their uncertainties are neglected in the fit.

Compared to the 2015 edition, the fit now includes several

additional modes, mainly related to the most recent BaBar

papers on high multiplicity modes [5] and K0
SK0

S modes [6] and

the Belle paper on neutral kaon modes [7]:

B(τ → π−π0K0
SK0

Sντ )

B(τ → K−K−K+ντ )

B(τ → K−π0ηντ )

B(τ → π−K̄0ηντ ) ;

Also, the following components of τ -decay modes are now

included [5,8,9]:
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Figure 1: Pulls of individual measurements
against the respective fitted quantity. No scale
factor is used.

B(τ → π−2π0ηντ (η → π+π−π0) (ex. K0))

B(τ → 2π−π+ηντ (η → π+π−π0) (ex. K0))

B(τ → 2π−π+ηντ (η → γγ) (ex. K0))

B(τ → π−2π0ωντ (ex. K0))

B(τ → 2π−π+ωντ (ex. K0))

B(τ → π−f1ντ (f1 → 2π−2π+)) .

B(τ → K−φντ ) .

We obtain the branching fraction of τ → a−1 (→ π−γ)ντ

using the ALEPH estimate for B(a−1 → π−γ) [3], which uses the

measurement of Γ(a−1 → π−γ) [10]. In the fit, we assume that

B(τ− → a−1 ντ ) is equal to B(τ → π−π−π+ντ (ex. K0, ω)) +

B(τ → π−2π0ντ (ex. K0)).

In some cases, constraints describe approximate relations

that nevertheless hold within the present experimental pre-

cision. For instance, the constraint B(τ → K−K−K+ντ ) =

B(τ → K−φντ )×B(φ → K+K−) is justified within the current

experimental evidence.

In the fit, scale factors are applied to the published un-

certainties of measurements only if significant inconsistency

between different measurements remain after accounting for

all relevant uncertainties and correlations. After examining the

data and the fit pulls, it has been decided to apply just one scale
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Figure 2: Probability of individual measure-
ment pulls against the respective fitted quantity.
No scale factor is used.

factor of 5.4 on the measurements of B(τ → K−K−K+ντ ). The

scale factor has been computed and applied according to the

standard PDG procedure. Without the scale factor applied, the

χ2 probability of the fit is about 2%. On a per-measurement

basis, the pull distribution in figure 1 indicates that just a few

measurements have more than 3σ pulls. (The uncertainties to

obtain the pulls are computed using the measurements variance

matrix and the variance matrix of the result, accounting for the

fact that the variance matrix of the result is obtained from the

measurement variance with the fit.) The pull probability distri-

bution in figure 2 is reasonably flat. With many measurements

some entries on the tails of the normal distribution must be

expected. There are 169 pulls, one per measurement. They are

partially correlated, and the effective number of independent

pulls is equal to the number of degrees of freedom of the fit,

124. Only the τ → K−K−K+ντ decay mode has a pull that

is inconsistent at the level of more than 3σ even if considered

as the largest pull in a set of 124. This confirms the choice of

adopting just that one scale factor.

After scaling the error the 2016 constrained fit has a χ2 of

134.9 for 124 degrees of freedom, corresponding to a χ2 proba-

bility of 24%. We use 169 measurements and 84 constraints on
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the branching fractions and ratios to determine 129 quantities,

consisting of 112 branching fractions and 17 branching ratios.

A total of 85 quantities have at least one measurement in the

fit. The constraints include the unitarity constraint on the sum

of all the exclusive τ decay modes, Ball = 1. If the unitarity

constraint is released, the fit result for Ball is consistent with

unitarity with 1 − Ball = (0.07 ± 0.10)%.

For the convenience of summarizing the fit results, we list in

the following the values and uncertainties for a set of 46 “basis”

decay modes, from which all remaining branching fractions and

ratios can be obtained using the constraints. Unlike in previous

editions, the basis decay modes are not intended to sum up

to 1. The new unitarity constraint corresponds to a linear

combination of the basis modes weighted by the coefficients

listed in the following. The corresponding correlation matrix is

listed in the τ Listings.

decay mode fit result (%) coefficient

µ−ν̄µντ 17.3936 ± 0.0384 1.0000

e−ν̄eντ 17.8174 ± 0.0399 1.0000

π−ντ 10.8165 ± 0.0512 1.0000

K−ντ 0.6964 ± 0.0096 1.0000

π−π0ντ 25.4940 ± 0.0893 1.0000

K−π0ντ 0.4329 ± 0.0148 1.0000

π−2π0ντ (ex. K0) 9.2595 ± 0.0964 1.0021

K−2π0ντ (ex. K0) 0.0648 ± 0.0218 1.0000

π−3π0ντ (ex. K0) 1.0428 ± 0.0707 1.0000

K−3π0ντ (ex. K0, η) 0.0478 ± 0.0212 1.0000

h−4π0ντ (ex. K0, η) 0.1119 ± 0.0391 1.0000

π−K̄0ντ 0.8395 ± 0.0140 1.0000

K−K0ντ 0.1479 ± 0.0053 1.0000

π−K̄0π0ντ 0.3821 ± 0.0129 1.0000

K−π0K0ντ 0.1503 ± 0.0071 1.0000

π−K̄0π0π0ντ (ex. K0) 0.0263 ± 0.0226 1.0000

π−K0
SK0

Sντ 0.0233 ± 0.0007 2.0000

π−K0
SK0

Lντ 0.1080 ± 0.0241 1.0000

π−π0K0
SK0

Sντ 0.0018 ± 0.0002 2.0000

π−π0K0
SK0

Lντ 0.0325 ± 0.0119 1.0000
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K̄0h−h−h+ντ 0.0247 ± 0.0199 1.0000

π−π−π+ντ (ex. K0, ω) 8.9870 ± 0.0514 1.0021

π−π−π+π0ντ (ex. K0, ω) 2.7404 ± 0.0710 1.0000

h−h−h+2π0ντ (ex. K0, ω, η) 0.0980 ± 0.0356 1.0000

π−K−K+ντ 0.1435 ± 0.0027 1.0000

π−K−K+π0ντ 0.0061 ± 0.0018 1.0000

π−π0ηντ 0.1389 ± 0.0072 1.0000

K−ηντ 0.0155 ± 0.0008 1.0000

K−π0ηντ 0.0048 ± 0.0012 1.0000

π−K̄0ηντ 0.0094 ± 0.0015 1.0000

π−π+π−ηντ (ex. K0) 0.0219 ± 0.0013 1.0000

K−ωντ 0.0410 ± 0.0092 1.0000

h−π0ωντ 0.4085 ± 0.0419 1.0000

K−φντ 0.0044 ± 0.0016 0.8310

π−ωντ 1.9494 ± 0.0645 1.0000

K−π−π+ντ (ex. K0, ω) 0.2927 ± 0.0068 1.0000

K−π−π+π0ντ (ex. K0, ω, η) 0.0394 ± 0.0142 1.0000

π−2π0ωντ (ex. K0) 0.0071 ± 0.0016 1.0000

2π−π+3π0ντ (ex. K0, η, ω, f1) 0.0014 ± 0.0027 1.0000

3π−2π+ντ (ex. K0, ω, f1) 0.0769 ± 0.0030 1.0000

K−2π−2π+ντ (ex. K0) 0.0001 ± 0.0001 1.0000

2π−π+ωντ (ex. K0) 0.0084 ± 0.0006 1.0000

3π−2π+π0ντ (ex. K0, η, ω, f1) 0.0038 ± 0.0009 1.0000

K−2π−2π+π0ντ (ex. K0) 0.0001 ± 0.0001 1.0000

π−f1ντ (f1 → 2π−2π+) 0.0052 ± 0.0004 1.0000

π−2π0ηντ 0.0194 ± 0.0038 1.0000

Applying the fit procedure on the PDG 2015 inputs, the

fit results differ from the 2015 fit by at most 20% of their

uncertainty, for fitted quantities that have measurements with

asymmetric errors, and by at most 5% of their uncertainty for

the other quantities. The differences originate from the differ-

ent treatment of asymmetric errors. The present fit procedure

symmetrizes the errors as σ2
symm = (σ2

+ +σ2
−
)/2, while the PDG

2015 fit did model the asymmetric error distributions in the fit.

Comparing the results of the previous edition with the current

fit, there are differences up to 2.3 times the fitted quantity
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uncertainty (2.3σ) for quantities that have no measurement in-

cluded in the fit and are derived through the constraints. Those

differences arise mainly from three changes: the unitarity con-

straint has been updated to accomodate several additional decay

modes, the definitions of the respective quantities have been

updated to use the additional decay modes, and the parameters

of all constraints (typically, K, η, ω branching fractions) have

been updated to the values reported in the last published PDG

edition. For quantities that have measurements in the fit, the

fitted values changed at most by 1.1σ, reflecting the inclusion of

several additional measurements, especially on high-multiplicity

decay modes. The uncertainties on the fit results are generally

smaller than in 2015 because only one error scale factor is used

and some additional measurements have been used.

In defining the fit constraints and in selecting the modes

that sum up to one we made some assumptions and choices. We

assume that some channels, like τ− → π−K+π− ≥ 0π0ντ and

τ− → π+K−K− ≥ 0π0ντ , have negligible branching fractions

as expected from the Standard Model, even if the experimental

limits for these branching fractions are not very stringent. The

95% confidence level upper limits are B(τ− → π−K+π− ≥

0π0ντ ) < 0.25% and B(τ− → π+K−K− ≥ 0π0ντ ) < 0.09%,

values not so different from measured branching fractions for

allowed 3-prong modes containing charged kaons. For decays

to final states containing one neutral kaon we assume that

the branching fraction with the K0
L are the same as the

corresponding one with a K0
S. On decays with two neutral

kaons we assume that the branching fractions with K0
LK0

L are

the same as the ones with K0
SK0

S.

BaBar and Belle measure on average lower branching

fractions and ratios.

We compare the BaBar and Belle measurements with the

results of a fit where all their measurements have been excluded.

We find that that BaBar and Belle tend to measure lower τ

branching fractions and ratios than the other experiments.

Figure 3 shows histograms of the 27 normalized differences

between the B-factory measurements and the respective non-

B-factory fit results. The normalization is the uncertainty on
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the difference. The average normalized difference between the

two sets of measurements is -0.8σ (-0.8σ for the 16 Belle

measurements and -0.9σ for the 11 BaBar measurements).
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Figure 3: Distribution of the normalized dif-
ference between the 27 B-factory measurements
and non-B-factory measurements. The list in-
cludes 16 measurements of branching fractions
and ratios published by the Belle collaboration
and 11 by the BaBar collaboration that are
used in the fit and for which non-B-factory
measurements exist.

Overconsistency of Leptonic Branching Fraction Mea-

surements.

As observed in the previous editions of this review, measure-

ments of the leptonic branching fractions are more consistent

with each other than expected from the quoted errors on the

individual measurements. The χ2 is 0.34 for Be and 0.08 for

Bµ. Assuming normal errors, the probability of a smaller χ2 is

1.3% for Be and 0.08% for Bµ.
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Technical implementation of the fit.

The fit computes a set of quantities denoted with qi by min-

imizing a χ2 while respecting a series of equality constraints on

the qi. The χ2 is computed using the measurements mi and their

covariance matrix Eij as χ2 = (mi − Aikqk)
tE−1

ij (mj − Ajlql)

where the model matrix Aij is used to get the vector of the

predicted measurements m′

i from the vector of the fit param-

eters qj as m′

i = Aijqj . In this particular implementation the

measurements are grouped by the quantity that they measure,

and all quantities with at least one measurement correspond

to a fit parameter. Therefore, the matrix Aij has one row per

measurement mi and one column per fitted quantity qj , with

unity coefficients for the rows and column that identify a mea-

surement mi of the quantity qj , respectively. The constraints

are equations involving the fit parameters. The fit does not

impose limitations on the functional form of the constraints. In

summary, the fit requires:

min(mi − Aikqk)
tE−1

ij (mj − Ajlql), (1a)

subjected to fr(qs) − cr = 0, (1b)

where the left term of Eq. (1b) defines the constraint expressions.

Using the method of Lagrange multipliers, a set of equations

is obtained by taking the derivatives with respect to the fitted

quantities qk and the Lagrange multipliers λr of the sum of the

χ2 and the constraint expressions multiplied by the Lagrange

multipliers λr, one for each constraint:

min
[

(Aikqk−mi)
tE−1

ij (Ajlql−mj) + 2λr(fr(qs) − cr)
]

(2a)

(∂/∂qk, ∂/∂λr)[expression above] = 0 (2b)

Eq. (2b) defines a set of equations for the vector of the unknowns

(qk, λr), some of which may be non-linear, in case of non-linear

constraints. An iterative minimization procedure approximates

at each step the non-linear constraint expressions by their first

order Taylor expansion around the current values of the fitted

quantities, q̄s:

fr(qs) − cr = fr(q̄s) +
∂fr(qs)

∂qs

∣

∣

∣

∣

q̄s

(qs − q̄s) − cr, (3a)
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which can be written as

Brsqs − c′r, (3b)

where c′r are the resulting constant known terms, independent

of qs at first order. After linearization, the differentiation by qk

and λr is trivial and leads to a set of linear equations

At
kiE

−1
ij Ajlql + Bt

krλr = At
kiE

−1
ij mj (4a)

Brsqs = c′r, (4b)

which can be expressed as:

Fijuj = vi (5)

where uj = (qk, λr) and vi is the vector of the known constant

terms running over the index k and then r in the right terms of

Eq. (4a) and Eq. (4b), respectively. Solving the equation set in

Eq. (5) by matrix inversion gives the the fitted quantities and

their variance and covariance matrix, using the measurements

and their variance and covariance matrix. The fit procedure

starts by computing the linear approximation of the non-linear

constraint expressions around the quantities seed values. With

an iterative procedure, the unknowns are updated at each step

by solving the equations and the equations are then linearized

around the updated values, until the variation of the fitted

unknowns is reduced below a numerically small threshold.
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