$B_{J}(5970)^{+}$

$$I(J^P) = \frac{1}{2}(?^?)$$
 Status: **

I, J, P need confirmation.

Quantum numbers shown are quark-model predictions.

$B_{1}(5970)^{+}$ MASS

OUR FIT uses m_{B_0} and $m_{B_1(5970)^+} - m_{B_0}$ to determine $m_{B_1(5970)^+}$.

VALUE (MeV)

DOCUMENT ID

5964±5 OUR FIT

$m_{B_1(5970)^+} - m_{B^0}$

VALUE (MeV) DOCUMENT ID TECN COMMENT 685 ±5 OUR FIT 685 ±5 OUR AVERAGE ¹ AAIJ $685.3 \pm 4.1 \pm 2.5$ 2K 15AB LHCB pp at 7, 8 TeV ² AALTONEN 681 ± 5 ± 12 1.4k 14ı CDF $p\overline{p}$ at 1.96 TeV • • • We do not use the following data for averages, fits, limits, etc. • • • 3 AALI 2K 15AB LHCB pp at 7, 8 TeV $686.8 \pm 4.5 \pm 2.5$ 1 AAIJ 15AB reports $[m_{B_+^+}^+ - m_{B^0}^-] - m_{\pi^+}^- = 545.8 \pm 4.1 \pm 2.5$ MeV which we adjust by the π^+ mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P = (-1)^J$ and uses two relativistic Breit-Wigner functions in the fit for mass difference. ² AALTONEN 14I reports $m_{B_I(5970)^+} - m_{B^0} - m_{\pi^+} = 541 \pm 5 \pm 12$ MeV which we adjusted by the π^+ mass. 3 AAIJ 15AB reports $[m_{B^+_i}^+ - m_{B^0}^-] - m_{\pi^+}^- = 547 \pm 5 \pm 3$ MeV which we adjust by the π^+ mass. The masses inside the square brackets were measured for each candidate

$m_{B_1(5970)^+} - m_{B^{*0}}$

event. The result assumes $P = (-1)^J$ and uses three relativistic Breit-Wigner functions

VALUE (MeV) **EVTS** DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $686.0 \pm 4.0 \pm 2.5$

in the fit for mass difference.

⁴ AAIJ

15AB LHCB pp at 7, 8 TeV

Created: 5/30/2017 17:22

⁴ AAIJ 15AB reports $[m_{B_+^+} - m_{B^0}] - (m_{B^{*+}} - m_{B^+}) - m_{\pi^+} = 547 \pm 4 \pm 3$ MeV which we adjust by the π^+ mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P=-(-1)^J$, $(m_{R^{*0}}-m_{R^0})=(m_{R^{*+}}-m_{R^0})$ $m_{R^+}) = 45.01 \pm 0.30 \pm 0.23$ MeV, and uses three relativistic Breit-Wigner functions in the fit for mass difference.

$B_{J}(5970)^{+}$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID	TECN COMMENT	
62±20 OUR AVERAGE				
$63 \pm 15 \pm 17$	2K	⁵ AAIJ	15AB LHCB pp at 7, 8 TeV	
$60^{+30}_{-20}\pm40$	1.4k	AALTONEN	14I CDF $p\overline{p}$ at 1.96 TeV	
• • • We do not use the following data for averages, fits, limits, etc. • •				
$61 \pm 14 \pm 17$	2K	⁶ AAIJ	15AB LHCB pp at 7, 8 TeV	
$61 \pm 15 \pm 17$	2K	⁷ AAIJ	15AB LHCB pp at 7, 8 TeV	
⁵ Assuming $P = (-1)^J$ and using two relativistic Breit-Wigner functions in the fit for mass				

$B_J(5970)^+$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$B^{0}\pi^{+}$	possibly seen
Γ ₂	$B^{*0}\pi^{+}$	seen

B_J(5970)⁺ BRANCHING RATIOS

$\Gamma(B^0\pi^+)/\Gamma_{total}$					Γ_1/Γ
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
possibly seen	2K	⁸ AAIJ	15AB LHCB	<i>pp</i> at 7, 8 TeV	
possibly seen	1.4k	AALTONEN	14ı CDF	$p\overline{p}$ at 1.96 TeV	
8 A $B\pi$ decay is forbi	dden fron	n a $P=-(-1)^{ extit{\it J}}$ p	arent, wherea	s $B^*\pi$ is allowed.	

$\Gamma(B^{*0}\pi^+)/\Gamma_{ ext{total}}$					Γ_2/Γ
VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT	
seen	2k	AAIJ	15AB LHCB	<i>pp</i> at 7, 8 TeV	
seen	1.4k	AALTONEN	14ı CDF	$p\overline{p}$ at 1.96 TeV	

B_J(5970)⁺ REFERENCES

AAIJ	15AB JHEP 1504 024	R. Aaij <i>et al.</i>	(LHCb Collab.)
AALTONEN	14I PR D90 012013	T. Aaltonen <i>et al.</i>	(CDF Collab.)

Created: 5/30/2017 17:22

⁶ Assuming $P=(-1)^J$ and using three relativistic Breit-Wigner functions in the fit for

mass difference. Assuming $P = -(-1)^J$ and using three relativistic Breit-Wigner functions in the fit for mass difference.