$B_{J}(5840)^{0}$

$$I(J^P) = \frac{1}{2}(?^?)$$
 Status: **

I, J, P need confirmation.

OMITTED FROM SUMMARY TABLE

Quantum numbers shown are quark-model predictions.

$B_1(5840)^0$ MASS

OUR FIT uses m_{B^+} and $m_{B_J(5840)^0} - m_{B^+}$ to determine $m_{B_J(5840)^0}$.

VALUE (MeV)

 $584 \pm 5 \pm 7$

DOCUMENT ID

5863 ± 9 OUR FIT

$m_{B_1(5840)^0}$	-	m_{B^+}
-------------------	---	-----------

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
584± 9 OUR FIT				
584± 5±7	12k	¹ AAIJ	15AB LHCB	<i>pp</i> at 7, 8 TeV
• • • We do not use th	e following	data for averages	s, fits, limits, e	etc. • • •
		^		

² AAIJ $610 \pm 22 \pm 7$ 12k 15AB LHCB pp at 7, 8 TeV 1 AAIJ 15AB reports $[m_{B^{0}_{I}}-m_{B^{+}}]-m_{\pi^{-}}=$ 444 \pm 5 \pm 7 MeV which we adjust by

the π^- mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P=(-1)^{J}$ and uses two relativistic Breit-Wigner functions in the fit for mass difference.

² AAIJ 15AB reports $[m_{B_0^0}^0 - m_{B^+}] - m_{\pi^-} = 471 \pm 22 \pm 7$ MeV which we adjust by

the π^- mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P = (-1)^J$ and uses three relativistic Breit-Wigner functions in the fit for mass difference.

$m_{B_1(5840)^0} - m_{B^{*+}}$

DOCUMENT ID TECN COMMENT **EVTS**

• • • We do not use the following data for averages, fits, limits, etc. • • •

which we adjust by the π^- mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P=-(-1)^J$, $(m_{R^{*+}}-m_{R^+})=45.01\pm$ 0.30 ± 0.23 MeV, and uses three relativistic Breit-Wigner functions in the fit for mass difference.

$B_{1}(5840)^{0}$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
$127 \pm 17 \pm 34$	12k	⁴ AAIJ	15AB LHCB	<i>pp</i> at 7, 8 TeV
 • • We do not use the following data for averages, fits, limits, etc. 				
$107 \pm 20 \pm 34$	12k		15AB LHCB	pp at 7, 8 TeV
$119 \pm 17 \pm 34$	12k	⁶ AAIJ	15AB LHCB	<i>pp</i> at 7, 8 TeV

HTTP://PDG.LBL.GOV

Page 1

Created: 5/30/2017 17:22

$B_J(5840)^0$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$B^{*+}\pi^{-}$	seen
Γ ₂	$B^{+}\pi^{-}$	possibly seen

B_J(5840)⁰ BRANCHING RATIOS

$$\Gamma(B^{*+}\pi^{-})/\Gamma_{ ext{total}}$$
 $VALUE$

Seen

 $EVTS$
 $DOCUMENT ID$
 $TECN$
 $COMMENT$

Seen

 $12k$
 $AAIJ$
 $15AB$
 $EVTS$
 PP at 7, 8 TeV

$$\Gamma(B^{+}\pi^{-})/\Gamma_{ ext{total}}$$
 $VALUE$

Possibly seen

 $TECN$
 $TECN$

B_J(5840)⁰ REFERENCES

AAIJ 15AB JHEP 1504 024 R. Aaij et al.

(LHCb Collab.)

Created: 5/30/2017 17:22

⁴ Assuming $P = (-1)^J$ and using two relativistic Breit-Wigner functions in the fit for mass difference.

Solution I and using three relativistic Breit-Wigner functions in the fit for mass difference

⁶ Assuming $P = -(-1)^J$ and using three relativistic Breit-Wigner functions in the fit for mass difference.