$B_{J}(5840)^{0}$ $$I(J^P) = \frac{1}{2}(?^?)$$ Status: ** I, J, P need confirmation. #### OMITTED FROM SUMMARY TABLE Quantum numbers shown are quark-model predictions. #### $B_1(5840)^0$ MASS OUR FIT uses m_{B^+} and $m_{B_J(5840)^0} - m_{B^+}$ to determine $m_{B_J(5840)^0}$. VALUE (MeV) $584 \pm 5 \pm 7$ DOCUMENT ID #### 5863 ± 9 OUR FIT | $m_{B_1(5840)^0}$ | - | m_{B^+} | |-------------------|---|-----------| |-------------------|---|-----------| | VALUE (MeV) | EVTS | DOCUMENT ID | TECN | COMMENT | |------------------------|-------------|-------------------|--------------------|-----------------------| | 584± 9 OUR FIT | | | | | | 584± 5±7 | 12k | ¹ AAIJ | 15AB LHCB | <i>pp</i> at 7, 8 TeV | | • • • We do not use th | e following | data for averages | s, fits, limits, e | etc. • • • | | | | ^ | | | ² AAIJ $610 \pm 22 \pm 7$ 12k 15AB LHCB pp at 7, 8 TeV 1 AAIJ 15AB reports $[m_{B^{0}_{I}}-m_{B^{+}}]-m_{\pi^{-}}=$ 444 \pm 5 \pm 7 MeV which we adjust by the π^- mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P=(-1)^{J}$ and uses two relativistic Breit-Wigner functions in the fit for mass difference. ² AAIJ 15AB reports $[m_{B_0^0}^0 - m_{B^+}] - m_{\pi^-} = 471 \pm 22 \pm 7$ MeV which we adjust by the π^- mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P = (-1)^J$ and uses three relativistic Breit-Wigner functions in the fit for mass difference. ## $m_{B_1(5840)^0} - m_{B^{*+}}$ DOCUMENT ID TECN COMMENT **EVTS** • • • We do not use the following data for averages, fits, limits, etc. • • • which we adjust by the π^- mass. The masses inside the square brackets were measured for each candidate event. The result assumes $P=-(-1)^J$, $(m_{R^{*+}}-m_{R^+})=45.01\pm$ 0.30 ± 0.23 MeV, and uses three relativistic Breit-Wigner functions in the fit for mass difference. ## $B_{1}(5840)^{0}$ WIDTH | VALUE (MeV) | EVTS | DOCUMENT ID | TECN | COMMENT | |---|-------------|-------------------|-----------|-----------------------| | $127 \pm 17 \pm 34$ | 12k | ⁴ AAIJ | 15AB LHCB | <i>pp</i> at 7, 8 TeV | | • • We do not use the following data for averages, fits, limits, etc. | | | | | | $107 \pm 20 \pm 34$ | 12k | | 15AB LHCB | pp at 7, 8 TeV | | $119 \pm 17 \pm 34$ | 12k | ⁶ AAIJ | 15AB LHCB | <i>pp</i> at 7, 8 TeV | HTTP://PDG.LBL.GOV Page 1 Created: 5/30/2017 17:22 ## $B_J(5840)^0$ DECAY MODES | | Mode | Fraction (Γ_i/Γ) | |----------------|-----------------|------------------------------| | Γ ₁ | $B^{*+}\pi^{-}$ | seen | | Γ ₂ | $B^{+}\pi^{-}$ | possibly seen | ## B_J(5840)⁰ BRANCHING RATIOS $$\Gamma(B^{*+}\pi^{-})/\Gamma_{ ext{total}}$$ $VALUE$ Seen $EVTS$ $DOCUMENT ID$ $TECN$ $COMMENT$ Seen $12k$ $AAIJ$ $15AB$ $EVTS$ PP at 7, 8 TeV $$\Gamma(B^{+}\pi^{-})/\Gamma_{ ext{total}}$$ $VALUE$ Possibly seen $TECN$ # B_J(5840)⁰ REFERENCES AAIJ 15AB JHEP 1504 024 R. Aaij et al. (LHCb Collab.) Created: 5/30/2017 17:22 ⁴ Assuming $P = (-1)^J$ and using two relativistic Breit-Wigner functions in the fit for mass difference. Solution I and using three relativistic Breit-Wigner functions in the fit for mass difference ⁶ Assuming $P = -(-1)^J$ and using three relativistic Breit-Wigner functions in the fit for mass difference.