\(\chi_{b_0}(1P) \)

\[J^G(J^{PC}) = 0^+ (0^+ +) \]

Observed in radiative decay of the \(\Upsilon(2S) \), therefore \(C = + \). Branching ratio requires E1 transition, M1 is strongly disfavored, therefore \(P = + \).

\(\chi_{b_0}(1P) \) MASS

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>9859.44±0.42±0.31 OUR EVALUATION</td>
<td>From average (\gamma) energy below, using (\Upsilon(2S)) mass = 10023.26 ± 0.31 MeV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(m_{\chi_{b_1}(1P)} - m_{\chi_{b_0}(1P)} \)

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.49±0.93</td>
<td>LEES 14M BABR</td>
<td>(\Upsilon(2S) \rightarrow \gamma \gamma \mu^+ \mu^-)</td>
<td></td>
</tr>
</tbody>
</table>

\(\gamma \) ENERGY IN \(\Upsilon(2S) \) DECAY

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>162.5 ± 0.4 OUR AVERAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162.56±0.19±0.42</td>
<td>ARTUSO 05 CLEO</td>
<td>(\Upsilon(2S) \rightarrow \gamma X)</td>
<td></td>
</tr>
<tr>
<td>162.0 ± 0.8 ± 1.2</td>
<td>EDWARDS 99 CLEO2</td>
<td>(\Upsilon(2S) \rightarrow \gamma \chi(1P))</td>
<td></td>
</tr>
<tr>
<td>162.1 ± 0.5 ± 1.4</td>
<td>ALBRECHT 85e ARG</td>
<td>(\Upsilon(2S) \rightarrow \text{conv.}\gamma X)</td>
<td></td>
</tr>
<tr>
<td>163.8 ± 1.6 ± 2.7</td>
<td>NERNST 85 CBAL</td>
<td>(\Upsilon(2S) \rightarrow \gamma X)</td>
<td></td>
</tr>
<tr>
<td>158.0 ± 7 ± 1</td>
<td>HAAS 84 CLEO</td>
<td>(\Upsilon(2S) \rightarrow \text{conv.}\gamma X)</td>
<td></td>
</tr>
<tr>
<td>• • •</td>
<td></td>
<td></td>
<td>We do not use the following data for averages, fits, limits, etc. • • •</td>
</tr>
<tr>
<td>149.4 ± 0.7 ± 5.0</td>
<td>KLOPFEN... 83 CUSB</td>
<td>(\Upsilon(2S) \rightarrow \gamma X)</td>
<td></td>
</tr>
</tbody>
</table>

\(\chi_{b_0}(1P) \) DECAY MODES

<table>
<thead>
<tr>
<th>Mode</th>
<th>Fraction ((\Gamma_i/\Gamma))</th>
<th>Confidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma_1)</td>
<td>(\gamma \Upsilon(1S))</td>
<td>(1.94±0.27) %</td>
</tr>
<tr>
<td>(\Gamma_2)</td>
<td>(D^0 X)</td>
<td>< 10.4 % 90%</td>
</tr>
<tr>
<td>(\Gamma_3)</td>
<td>(\pi^+ \pi^- K^+ K^- \pi^0)</td>
<td>< 1.6 (\times 10^{-4}) 90%</td>
</tr>
<tr>
<td>(\Gamma_4)</td>
<td>(2\pi^+ \pi^- K^- K_S^0)</td>
<td>< 5 (\times 10^{-5}) 90%</td>
</tr>
<tr>
<td>(\Gamma_5)</td>
<td>(2\pi^+ \pi^- K^- K_S^0 2\pi^0)</td>
<td>< 5 (\times 10^{-4}) 90%</td>
</tr>
<tr>
<td>(\Gamma_6)</td>
<td>(2\pi^+ 2\pi^- 2\pi^0)</td>
<td>< 2.1 (\times 10^{-4}) 90%</td>
</tr>
<tr>
<td>(\Gamma_7)</td>
<td>(2\pi^+ 2\pi^- K^+ K^-)</td>
<td>(1.1 ± 0.6) (\times 10^{-4}) 90%</td>
</tr>
<tr>
<td>(\Gamma_8)</td>
<td>(2\pi^+ 2\pi^- K^+ K^- \pi^0)</td>
<td>< 2.7 (\times 10^{-4}) 90%</td>
</tr>
<tr>
<td>(\Gamma_9)</td>
<td>(2\pi^+ 2\pi^- K^+ K^- 2\pi^0)</td>
<td>< 5 (\times 10^{-4}) 90%</td>
</tr>
<tr>
<td>(\Gamma_{10})</td>
<td>(3\pi^+ 2\pi^- K^- K_S^0 \pi^0)</td>
<td>< 1.6 (\times 10^{-4}) 90%</td>
</tr>
<tr>
<td>(\Gamma_{11})</td>
<td>(3\pi^+ 3\pi^-)</td>
<td>< 8 (\times 10^{-5}) 90%</td>
</tr>
<tr>
<td>(\Gamma_{12})</td>
<td>(3\pi^+ 3\pi^- 2\pi^0)</td>
<td>< 6 (\times 10^{-4}) 90%</td>
</tr>
</tbody>
</table>
\(\chi_{b0}(1P) \) BRANCHING RATIOS

<table>
<thead>
<tr>
<th>(\Gamma(\gamma \psi(1S))/\Gamma_{\text{total}})</th>
<th>(\Gamma_1/\Gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE (%)</td>
<td>**CL% **</td>
</tr>
<tr>
<td>1.94(\pm0.27) OUR AVERAGE</td>
<td>1.2 LEES 14M BABR</td>
</tr>
<tr>
<td>2.07(\pm0.24)</td>
<td>2.07 (\pm0.24) LEES 14M BABR</td>
</tr>
<tr>
<td>1.76(\pm0.18)</td>
<td>1.76 (\pm0.18) LEES 14M BABR</td>
</tr>
</tbody>
</table>

1. LEES 14M quotes \(\Gamma(\chi_{b0}(1P) \rightarrow \gamma \gamma(1S))/\Gamma_{\text{total}} \times \Gamma(\gamma \psi(1S) \rightarrow \gamma \chi_{b0}(1P))/\Gamma_{\text{total}} \)
\((7.75 \pm 0.91) \times 10^{-4}\) combining the results from samples of \(\gamma \psi(1S) \rightarrow \gamma \gamma \mu^+ \mu^- \) with and without converted photons. Assumes \(B(\gamma(1S) \rightarrow \mu^+ \mu^-) = (2.48 \pm 0.05)\% \).

2. LEES 14M reports \([\Gamma(\chi_{b0}(1P) \rightarrow \gamma \gamma(1S))/\Gamma_{\text{total}}] \times [B(\gamma \psi(1S) \rightarrow \gamma \chi_{b0}(1P))] = (7.75 \pm 0.91) \times 10^{-4}\)
which we divide by our best value \(B(\gamma \psi(1S) \rightarrow \gamma \chi_{b0}(1P)) = (3.8 \pm 0.4) \times 10^{-2}\). Our first error is their experiment’s error and our second error is the systematic error from using our best value.

3. Assuming \(B(\gamma(1S) \rightarrow \ell^+ \ell^-) = (2.48 \pm 0.05)\% \).

4. KRONICER 11 reports \([\Gamma(\chi_{b0}(1P) \rightarrow \gamma \gamma(1S))/\Gamma_{\text{total}}] \times [B(\gamma \psi(1S) \rightarrow \gamma \chi_{b0}(1P))] = (6.59 \pm 0.96 \pm 0.60) \times 10^{-4}\)
which we divide by our best value \(B(\gamma \psi(1S) \rightarrow \gamma \chi_{b0}(1P)) = (3.8 \pm 0.4) \times 10^{-2}\). Our first error is their experiment’s error and our second error is the systematic error from using our best value.

5. LEES 11j quotes a central value of \(\Gamma(\chi_{b0}(1P) \rightarrow \gamma \gamma(1S))/\Gamma_{\text{total}} \times \Gamma(\gamma \psi(1S) \rightarrow \gamma \chi_{b0}(1P))/\Gamma_{\text{total}} = (8.3 \pm 5.6^{+3.7}_{-2.6}) \times 10^{-4}\).

\(\Gamma(D^0 X)/\Gamma_{\text{total}} \)

<table>
<thead>
<tr>
<th>VALUE</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td><10.4(\times10^{-2})</td>
<td>90</td>
<td>6.7 BRIERE</td>
<td>CLEO</td>
<td>(T(2S) \rightarrow \gamma D^0 X)</td>
</tr>
</tbody>
</table>

6. For \(p_{D^0} > 2.5 \text{ GeV/c} \).

7. The authors also present their result as \((5.6 \pm 3.6 \pm 0.5) \times 10^{-2}\).

\(\Gamma(\pi^+ \pi^- K^+ K^- \pi^0)/\Gamma_{\text{total}} \)

<table>
<thead>
<tr>
<th>VALUE (units (10^{-4}))</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td><1.6</td>
<td>90</td>
<td>8 ASNER 08A</td>
<td>CLEO</td>
<td>(T(2S) \rightarrow \gamma \pi^+ \pi^- K^+ K^- \pi^0)</td>
</tr>
</tbody>
</table>

8. ASNER 08A reports \(\Gamma(\chi_{b0}(1P) \rightarrow \pi^+ \pi^- K^+ K^- \pi^0)/\Gamma_{\text{total}} \times [B(\gamma \psi(1S) \rightarrow \gamma \chi_{b0}(1P))] < 6 \times 10^{-6}\)
which we divide by our best value \(B(\gamma \psi(1S) \rightarrow \gamma \chi_{b0}(1P)) = 3.8 \times 10^{-2}\).
\(\Gamma(2\pi^+ - K^- K^0_S) / \Gamma_{\text{total}} \)

<table>
<thead>
<tr>
<th>VALUE (units 10^{-6})</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.5</td>
<td>90</td>
<td>9 ASNER 08A CLEO</td>
<td>(\gamma(2S) \rightarrow \gamma2\pi^+ - K^- K^0_S)</td>
<td></td>
</tr>
</tbody>
</table>

9 ASNER 08A reports \[\Gamma(\chi_{b0}(1P) \rightarrow 2\pi^+ - K^- K^0_S) / \Gamma_{\text{total}} \] \times [B(\gamma(2S) \rightarrow \gamma\chi_{b0}(1P))]

\(< 2 \times 10^{-6} \) which we divide by our best value \(B(\gamma(2S) \rightarrow \gamma\chi_{b0}(1P)) = 3.8 \times 10^{-2} \).

\(\Gamma(2\pi^+ - K^- K^0_S 2\pi^0) / \Gamma_{\text{total}} \)

<table>
<thead>
<tr>
<th>VALUE (units 10^{-6})</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td><5</td>
<td>90</td>
<td>10 ASNER 08A CLEO</td>
<td>(\gamma(2S) \rightarrow \gamma2\pi^+ - K^- 2\pi^0)</td>
<td></td>
</tr>
</tbody>
</table>

10 ASNER 08A reports \[\Gamma(\chi_{b0}(1P) \rightarrow 2\pi^+ - K^- K^0_S 2\pi^0) / \Gamma_{\text{total}} \] \times [B(\gamma(2S) \rightarrow \gamma\chi_{b0}(1P))]

\(< 18 \times 10^{-6} \) which we divide by our best value \(B(\gamma(2S) \rightarrow \gamma\chi_{b0}(1P)) = 3.8 \times 10^{-2} \).

\(\Gamma(2\pi^+ - 2\pi^0) / \Gamma_{\text{total}} \)

<table>
<thead>
<tr>
<th>VALUE (units 10^{-6})</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td><2.1</td>
<td>90</td>
<td>11 ASNER 08A CLEO</td>
<td>(\gamma(2S) \rightarrow \gamma2\pi^+ - 2\pi^0)</td>
<td></td>
</tr>
</tbody>
</table>

11 ASNER 08A reports \[\Gamma(\chi_{b0}(1P) \rightarrow 2\pi^+ - 2\pi^0) / \Gamma_{\text{total}} \] \times [B(\gamma(2S) \rightarrow \gamma\chi_{b0}(1P))]

\(< 8 \times 10^{-6} \) which we divide by our best value \(B(\gamma(2S) \rightarrow \gamma\chi_{b0}(1P)) = 3.8 \times 10^{-2} \).

\(\Gamma(2\pi^+ - 2\pi^0 K^+ K^-) / \Gamma_{\text{total}} \)

<table>
<thead>
<tr>
<th>VALUE (units 10^{-4})</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 \pm 0.6 \pm 0.1</td>
<td>7</td>
<td>12 ASNER 08A CLEO</td>
<td>(\gamma(2S) \rightarrow \gamma2\pi^+ - 2\pi^0 K^+ K^-)</td>
<td></td>
</tr>
</tbody>
</table>

12 ASNER 08A reports \[\Gamma(\chi_{b0}(1P) \rightarrow 2\pi^+ - 2\pi^0 K^+ K^-) / \Gamma_{\text{total}} \] \times [B(\gamma(2S) \rightarrow \gamma\chi_{b0}(1P))]

\((4 \pm 2 \pm 1) \times 10^{-6} \) which we divide by our best value \(B(\gamma(2S) \rightarrow \gamma\chi_{b0}(1P)) = (3.8 \pm 0.4) \times 10^{-2} \). Our first error is their experiment’s error and our second error is the systematic error from using our best value.

\(\Gamma(2\pi^+ - 2\pi^0 K^+ K^- \pi^0) / \Gamma_{\text{total}} \)

<table>
<thead>
<tr>
<th>VALUE (units 10^{-6})</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td><2.7</td>
<td>90</td>
<td>13 ASNER 08A CLEO</td>
<td>(\gamma(2S) \rightarrow \gamma2\pi^+ - 2\pi^0 K^+ K^- \pi^0)</td>
<td></td>
</tr>
</tbody>
</table>

13 ASNER 08A reports \[\Gamma(\chi_{b0}(1P) \rightarrow 2\pi^+ - 2\pi^0 K^+ K^- \pi^0) / \Gamma_{\text{total}} \] \times [B(\gamma(2S) \rightarrow \gamma\chi_{b0}(1P))]

\(< 10 \times 10^{-6} \) which we divide by our best value \(B(\gamma(2S) \rightarrow \gamma\chi_{b0}(1P)) = 3.8 \times 10^{-2} \).

\(\Gamma(2\pi^+ - 2\pi^0 K^+ K^- 2\pi^0) / \Gamma_{\text{total}} \)

<table>
<thead>
<tr>
<th>VALUE (units 10^{-6})</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td><5</td>
<td>90</td>
<td>14 ASNER 08A CLEO</td>
<td>(\gamma(2S) \rightarrow \gamma2\pi^+ - 2\pi^0 K^+ K^- 2\pi^0)</td>
<td></td>
</tr>
</tbody>
</table>

14 ASNER 08A reports \[\Gamma(\chi_{b0}(1P) \rightarrow 2\pi^+ - 2\pi^0 K^+ K^- 2\pi^0) / \Gamma_{\text{total}} \] \times [B(\gamma(2S) \rightarrow \gamma\chi_{b0}(1P))]

\(< 20 \times 10^{-6} \) which we divide by our best value \(B(\gamma(2S) \rightarrow \gamma\chi_{b0}(1P)) = 3.8 \times 10^{-2} \).
\begin{align*}
\Gamma(3\pi^+ + 2\pi^- - K^- K_S^0 \pi^0)/\Gamma_{\text{total}} & \quad \Gamma_{10}/\Gamma \\
\text{VALUE (units } 10^{-4}) & \quad \text{CL\%} & \quad \text{DOCUMENT ID} & \quad \text{TECN} & \quad \text{COMMENT} \\
<1.6 & \quad 90 & \quad 15 & \text{ASNER} & \text{08A} & \text{CLEO} & \gamma(2S) \rightarrow \gamma 3\pi^+ + 2\pi^- - K^- K_S^0 \pi^0 \\
15 & \text{ASNER 08A reports } [\Gamma(\chi_{b0}(1P) \rightarrow 3\pi^+ + 2\pi^- - K^- K_S^0 \pi^0)/\Gamma_{\text{total}}] \times [B(\gamma(2S) \rightarrow \gamma \chi_{b0}(1P))] < 6 \times 10^{-6} \text{ which we divide by our best value } B(\gamma(2S) \rightarrow \gamma \chi_{b0}(1P)) = 3.8 \times 10^{-2}.
\end{align*}

\begin{align*}
\Gamma(3\pi^+ + 3\pi^-)/\Gamma_{\text{total}} & \quad \Gamma_{11}/\Gamma \\
\text{VALUE (units } 10^{-4}) & \quad \text{CL\%} & \quad \text{DOCUMENT ID} & \quad \text{TECN} & \quad \text{COMMENT} \\
<0.8 & \quad 90 & \quad 16 & \text{ASNER} & \text{08A} & \text{CLEO} & \gamma(2S) \rightarrow \gamma 3\pi^+ + 3\pi^- \\
16 & \text{ASNER 08A reports } [\Gamma(\chi_{b0}(1P) \rightarrow 3\pi^+ + 3\pi^-)/\Gamma_{\text{total}}] \times [B(\gamma(2S) \rightarrow \gamma \chi_{b0}(1P))] < 3 \times 10^{-6} \text{ which we divide by our best value } B(\gamma(2S) \rightarrow \gamma \chi_{b0}(1P)) = 3.8 \times 10^{-2}.
\end{align*}

\begin{align*}
\Gamma(3\pi^+ + 3\pi^- - 2\pi^0)/\Gamma_{\text{total}} & \quad \Gamma_{12}/\Gamma \\
\text{VALUE (units } 10^{-4}) & \quad \text{CL\%} & \quad \text{DOCUMENT ID} & \quad \text{TECN} & \quad \text{COMMENT} \\
<6 & \quad 90 & \quad 17 & \text{ASNER} & \text{08A} & \text{CLEO} & \gamma(2S) \rightarrow \gamma 3\pi^+ + 3\pi^- - 2\pi^0 \\
17 & \text{ASNER 08A reports } [\Gamma(\chi_{b0}(1P) \rightarrow 3\pi^+ + 3\pi^- - 2\pi^0)/\Gamma_{\text{total}}] \times [B(\gamma(2S) \rightarrow \gamma \chi_{b0}(1P))] < 22 \times 10^{-6} \text{ which we divide by our best value } B(\gamma(2S) \rightarrow \gamma \chi_{b0}(1P)) = 3.8 \times 10^{-2}.
\end{align*}

\begin{align*}
\Gamma(3\pi^+ + 3\pi^- - K^+ K^-)/\Gamma_{\text{total}} & \quad \Gamma_{13}/\Gamma \\
\text{VALUE (units } 10^{-4}) & \quad \text{CL\%} & \quad \text{DOCUMENT ID} & \quad \text{TECN} & \quad \text{COMMENT} \\
2.4 \pm 1.2 \pm 0.2 & \quad 9 & \quad 18 & \text{ASNER} & \text{08A} & \text{CLEO} & \gamma(2S) \rightarrow \gamma 3\pi^+ + 3\pi^- - K^+ K^- \\
18 & \text{ASNER 08A reports } [\Gamma(\chi_{b0}(1P) \rightarrow 3\pi^+ + 3\pi^- - K^+ K^-)/\Gamma_{\text{total}}] \times [B(\gamma(2S) \rightarrow \gamma \chi_{b0}(1P))] \sim (9 \pm 4 \pm 2) \times 10^{-6} \text{ which we divide by our best value } B(\gamma(2S) \rightarrow \gamma \chi_{b0}(1P)) = (3.8 \pm 0.4) \times 10^{-2}. \text{ Our first error is their experiment’s error and our second error is the systematic error from using our best value.}
\end{align*}

\begin{align*}
\Gamma(3\pi^+ + 3\pi^- - K^+ K^- - \pi^0)/\Gamma_{\text{total}} & \quad \Gamma_{14}/\Gamma \\
\text{VALUE (units } 10^{-4}) & \quad \text{CL\%} & \quad \text{DOCUMENT ID} & \quad \text{TECN} & \quad \text{COMMENT} \\
<10 & \quad 90 & \quad 19 & \text{ASNER} & \text{08A} & \text{CLEO} & \gamma(2S) \rightarrow \gamma 3\pi^+ + 3\pi^- - K^+ K^- - \pi^0 \\
19 & \text{ASNER 08A reports } [\Gamma(\chi_{b0}(1P) \rightarrow 3\pi^+ + 3\pi^- - K^+ K^- - \pi^0)/\Gamma_{\text{total}}] \times [B(\gamma(2S) \rightarrow \gamma \chi_{b0}(1P))] \sim 37 \times 10^{-6} \text{ which we divide by our best value } B(\gamma(2S) \rightarrow \gamma \chi_{b0}(1P)) = 3.8 \times 10^{-2}.
\end{align*}

\begin{align*}
\Gamma(4\pi^+ + 4\pi^-)/\Gamma_{\text{total}} & \quad \Gamma_{15}/\Gamma \\
\text{VALUE (units } 10^{-4}) & \quad \text{CL\%} & \quad \text{DOCUMENT ID} & \quad \text{TECN} & \quad \text{COMMENT} \\
<0.8 & \quad 90 & \quad 20 & \text{ASNER} & \text{08A} & \text{CLEO} & \gamma(2S) \rightarrow \gamma 4\pi^+ + 4\pi^- \\
20 & \text{ASNER 08A reports } [\Gamma(\chi_{b0}(1P) \rightarrow 4\pi^+ + 4\pi^-)/\Gamma_{\text{total}}] \times [B(\gamma(2S) \rightarrow \gamma \chi_{b0}(1P))] < 3 \times 10^{-6} \text{ which we divide by our best value } B(\gamma(2S) \rightarrow \gamma \chi_{b0}(1P)) = 3.8 \times 10^{-2}.
\end{align*}

\begin{align*}
\Gamma(4\pi^+ + 4\pi^- - 2\pi^0)/\Gamma_{\text{total}} & \quad \Gamma_{16}/\Gamma \\
\text{VALUE (units } 10^{-4}) & \quad \text{CL\%} & \quad \text{DOCUMENT ID} & \quad \text{TECN} & \quad \text{COMMENT} \\
<21 & \quad 90 & \quad 21 & \text{ASNER} & \text{08A} & \text{CLEO} & \gamma(2S) \rightarrow \gamma 4\pi^+ + 4\pi^- - 2\pi^0 \\
21 & \text{ASNER 08A reports } [\Gamma(\chi_{b0}(1P) \rightarrow 4\pi^+ + 4\pi^- - 2\pi^0)/\Gamma_{\text{total}}] \times [B(\gamma(2S) \rightarrow \gamma \chi_{b0}(1P))] < 77 \times 10^{-6} \text{ which we divide by our best value } B(\gamma(2S) \rightarrow \gamma \chi_{b0}(1P)) = 3.8 \times 10^{-2}.
\end{align*}
\(\Gamma(J/\psi J/\psi) / \Gamma_{\text{total}} \)

<table>
<thead>
<tr>
<th>VALUE (units 10^{-5})</th>
<th>CL(%)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td><7</td>
<td>90</td>
<td>22 SHEN 12</td>
<td>BELL</td>
<td>(\gamma \psi X)</td>
</tr>
</tbody>
</table>

22 SHEN 12 reports \(< 7.1 \times 10^{-5} \) from a measurement of \[\Gamma(\chi_{b0}(1P) \rightarrow J/\psi J/\psi) / \Gamma_{\text{total}} \] \times \text{[B(\(\Upsilon(2S) \rightarrow \gamma \chi_{b0}(1P) \)] assuming \text{B(\(\Upsilon(2S) \rightarrow \gamma \chi_{b0}(1P) \]) = (3.8 \pm 0.4) \times 10^{-2}.} \]

\(\Gamma(J/\psi \psi(2S)) / \Gamma_{\text{total}} \)

<table>
<thead>
<tr>
<th>VALUE (units 10^{-5})</th>
<th>CL(%)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td><12</td>
<td>90</td>
<td>23 SHEN 12</td>
<td>BELL</td>
<td>(\gamma \psi X)</td>
</tr>
</tbody>
</table>

23 SHEN 12 reports \(< 12 \times 10^{-5} \) from a measurement of \[\Gamma(\chi_{b0}(1P) \rightarrow J/\psi \psi(2S)) / \Gamma_{\text{total}} \] \times \text{[B(\(\Upsilon(2S) \rightarrow \gamma \chi_{b0}(1P) \)] assuming \text{B(\(\Upsilon(2S) \rightarrow \gamma \chi_{b0}(1P) \]) = (3.8 \pm 0.4) \times 10^{-2}.} \]

\(\Gamma(\psi(2S) \psi(2S)) / \Gamma_{\text{total}} \)

<table>
<thead>
<tr>
<th>VALUE (units 10^{-5})</th>
<th>CL(%)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td><3.1</td>
<td>90</td>
<td>24 SHEN 12</td>
<td>BELL</td>
<td>(\gamma \psi X)</td>
</tr>
</tbody>
</table>

24 SHEN 12 reports \(< 3.1 \times 10^{-5} \) from a measurement of \[\Gamma(\chi_{b0}(1P) \rightarrow \psi(2S) \psi(2S)) / \Gamma_{\text{total}} \] \times \text{[B(\(\Upsilon(2S) \rightarrow \gamma \chi_{b0}(1P) \)] assuming \text{B(\(\Upsilon(2S) \rightarrow \gamma \chi_{b0}(1P) \]) = (3.8 \pm 0.4) \times 10^{-2}.} \]

\(\chi_{b0}(1P) \) CROSS-PARTICLE BRANCHING RATIOS

\(\Gamma(\chi_{b0}(1P) \rightarrow \gamma \Upsilon(1S)) / \Gamma_{\text{total}} \times \Gamma(\Upsilon(2S) \rightarrow \gamma \chi_{b0}(1P)) / \Gamma_{\text{total}} \)

\(\Gamma_{17}/\Gamma \)

\(\Gamma_{18}/\Gamma \)

\(\Gamma_{19}/\Gamma \)

\(\chi_{b0}(1P) \) CROSS-PARTICLE BRANCHING RATIOS

\(B(\chi_{b0}(1P) \rightarrow \gamma \Upsilon(1S)) \times B(\Upsilon(2S) \rightarrow \gamma \chi_{b0}(1P)) \times B(\Upsilon(1S) \rightarrow \ell^+ \ell^-) \)

<table>
<thead>
<tr>
<th>VALUE (units 10^{-5})</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.67 \pm 0.28 OUR AVERAGE</td>
<td></td>
<td>26 LEES 14M BABR</td>
<td>(\Upsilon(2S) \rightarrow \gamma \gamma \mu^+ \mu^-)</td>
<td></td>
</tr>
</tbody>
</table>

From a sample of \(\Upsilon(2S) \rightarrow \gamma \gamma \mu^+ \mu^- \) with one converted photon.

\([B(\chi_{b0}(1P) \rightarrow \gamma \Upsilon(1S)) \times B(\Upsilon(2S) \rightarrow \gamma \chi_{b0}(1P))] / [B(\chi_{b1}(1P) \rightarrow \gamma \Upsilon(1S)) \times B(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P))] \)

<table>
<thead>
<tr>
<th>VALUE (%)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.28 \pm 0.37</td>
<td>27 LEES 14M BABR</td>
<td>(\Upsilon(2S) \rightarrow \gamma \gamma \mu^+ \mu^-)</td>
<td></td>
</tr>
</tbody>
</table>

From a sample of \(\Upsilon(2S) \rightarrow \gamma \gamma \mu^+ \mu^- \) without converted photons.

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update
$\chi_{b0}(1P)$ REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Authors</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEES 14M</td>
<td>14M</td>
<td>PRL</td>
<td>D90</td>
<td>112010</td>
<td>J.P. Lees et al.</td>
<td>(BABAR Collab.)</td>
</tr>
<tr>
<td>SHEN 12</td>
<td>12</td>
<td>PR</td>
<td>D85</td>
<td>071102</td>
<td>C.P. Shen et al.</td>
<td>(BELLE Collab.)</td>
</tr>
<tr>
<td>KORNICER 11</td>
<td>11</td>
<td>PR</td>
<td>D83</td>
<td>054003</td>
<td>M. Kornicer et al.</td>
<td>(CLEO Collab.)</td>
</tr>
<tr>
<td>LEES 11J</td>
<td>11J</td>
<td>PR</td>
<td>D84</td>
<td>072002</td>
<td>J.P. Lees et al.</td>
<td>(BABAR Collab.)</td>
</tr>
<tr>
<td>ASNER 08A</td>
<td>08A</td>
<td>PR</td>
<td>D78</td>
<td>091103</td>
<td>D.M. Asner et al.</td>
<td>(CLEO Collab.)</td>
</tr>
<tr>
<td>BRIERE 08</td>
<td>08</td>
<td>PR</td>
<td>D78</td>
<td>092007</td>
<td>R.A. Briere et al.</td>
<td>(CLEO Collab.)</td>
</tr>
<tr>
<td>ARTUSO 05</td>
<td>05</td>
<td>PRL</td>
<td>94</td>
<td>032001</td>
<td>M. Artuso et al.</td>
<td>(CLEO Collab.)</td>
</tr>
<tr>
<td>EDWARDS 99</td>
<td>99</td>
<td>PR</td>
<td>D59</td>
<td>032003</td>
<td>K.W. Edwards et al.</td>
<td>(CLEO Collab.)</td>
</tr>
<tr>
<td>WALK 86</td>
<td>86</td>
<td>PR</td>
<td>D34</td>
<td>2611</td>
<td>W.S. Walk et al.</td>
<td>(Crystal Ball Collab.)</td>
</tr>
<tr>
<td>ALBRECHT 85E</td>
<td>85E</td>
<td>PL</td>
<td>160B</td>
<td>331</td>
<td>H. Albrecht et al.</td>
<td>(ARGUS Collab.)</td>
</tr>
<tr>
<td>NERNST 85</td>
<td>85</td>
<td>PRL</td>
<td>54</td>
<td>2195</td>
<td>R. Nernst et al.</td>
<td>(Crystal Ball Collab.)</td>
</tr>
<tr>
<td>HAAS 84</td>
<td>84</td>
<td>PRL</td>
<td>52</td>
<td>799</td>
<td>J. Haas et al.</td>
<td>(CLEO Collab.)</td>
</tr>
<tr>
<td>KLOPFEN... 83</td>
<td>83</td>
<td>PRL</td>
<td>51</td>
<td>160</td>
<td>C. Klopfenstein et al.</td>
<td>(CUSB Collab.)</td>
</tr>
<tr>
<td>PAUSS 83</td>
<td>83</td>
<td>PL</td>
<td>130B</td>
<td>439</td>
<td>F. Pauss et al.</td>
<td>(MPIM, COLU, CORN, LSU+)</td>
</tr>
</tbody>
</table>