\(\Lambda(2020) 7/2^+ \)

\[I(J^P) = 0(7^+) \]

Status: *

OMITTED FROM SUMMARY TABLE

In LITCHFIELD 71, need for the state rests solely on a possibly inconsistent polarization measurement at 1.784 GeV/c. HEMINGWAY 75 does not require this state. GOPAL 77 does not need it in either \(N\bar{K} \) or \(\Sigma\pi \). With new \(K^- n \) angular distributions included, DECLAIS 77 sees it. However, this and other new data are included in GOPAL 80 and the state is not required. BACCARI 77 weakly supports it.

\(\Lambda(2020) \) POLE POSITION

<table>
<thead>
<tr>
<th>REAL PART</th>
<th>VALUE</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>We do not use the following data for averages, fits, limits, etc.</td>
<td>1757</td>
<td>1 KAMANO 15 DPW Multichannel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 From the preferred solution A in KAMANO 15. Solution B reports \(M = 2041^{+80}_{-82} \) MeV.

<table>
<thead>
<tr>
<th>IMAGINARY PART</th>
<th>VALUE</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>We do not use the following data for averages, fits, limits, etc.</td>
<td>146</td>
<td>1 KAMANO 15 DPW Multichannel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 From the preferred solution A in KAMANO 15. Solution B reports \(M = 238^{+114}_{-34} \) MeV.

\(\Lambda(2020) \) POLE RESIDUES

The normalized residue is the residue divided by \(\Gamma_{pole}/2 \).

Normalized residue in \(N\bar{K} \rightarrow \Lambda(2020) \rightarrow N\bar{K} \)

<table>
<thead>
<tr>
<th>MODULUS</th>
<th>PHASE (°)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>We do not use the following data for averages, fits, limits, etc.</td>
<td>0.000145</td>
<td>1 KAMANO 15 DPW Multichannel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 From the preferred solution A in KAMANO 15.

Normalized residue in \(N\bar{K} \rightarrow \Lambda(2020) \rightarrow \Sigma\pi \)

<table>
<thead>
<tr>
<th>MODULUS</th>
<th>PHASE (°)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>We do not use the following data for averages, fits, limits, etc.</td>
<td>0.0112</td>
<td>1 KAMANO 15 DPW Multichannel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 From the preferred solution A in KAMANO 15.

Normalized residue in \(N\bar{K} \rightarrow \Lambda(2020) \rightarrow \Lambda\eta \)

<table>
<thead>
<tr>
<th>MODULUS</th>
<th>PHASE (°)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>We do not use the following data for averages, fits, limits, etc.</td>
<td>0.000786</td>
<td>1 KAMANO 15 DPW Multichannel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 From the preferred solution A in KAMANO 15.
Normalized residue in \(N \bar{K} \to \Lambda(2020) \to \Sigma(1385)\pi, F\)-wave

<table>
<thead>
<tr>
<th>MODULUS</th>
<th>PHASE (°)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00451</td>
<td>-82</td>
<td>(^1) KAMANO 15</td>
<td>DPWA Multichannel</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) From the preferred solution A in KAMANO 15.

Normalized residue in \(N \bar{K} \to \Lambda(2020) \to \Sigma(1385)\pi, H\)-wave

<table>
<thead>
<tr>
<th>MODULUS</th>
<th>PHASE (°)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000298</td>
<td>-128</td>
<td>(^1) KAMANO 15</td>
<td>DPWA Multichannel</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) From the preferred solution A in KAMANO 15.

\(\Lambda(2020) \) MASS

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\approx 2020) OUR ESTIMATE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2043±22</td>
<td>ZHANG 13A</td>
<td>DPWA Multichannel</td>
<td></td>
</tr>
<tr>
<td>2140</td>
<td>BACCARI 77</td>
<td>DPWA (K^- p \to \Lambda \omega)</td>
<td></td>
</tr>
<tr>
<td>2117</td>
<td>DECLAI 77</td>
<td>DPWA (\bar{K}N \to \bar{K}N)</td>
<td></td>
</tr>
<tr>
<td>2100±30</td>
<td>LITCHFIELD 71</td>
<td>DPWA (K^- p \to \bar{K}N)</td>
<td></td>
</tr>
<tr>
<td>2020±20</td>
<td>BARBARO-... 70</td>
<td>DPWA (K^- p \to \Sigma \pi)</td>
<td></td>
</tr>
</tbody>
</table>

\(\Lambda(2020) \) WIDTH

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>200±75</td>
<td>ZHANG 13A</td>
<td>DPWA Multichannel</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>BACCARI 77</td>
<td>DPWA (K^- p \to \Lambda \omega)</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>DECLAI 77</td>
<td>DPWA (\bar{K}N \to \bar{K}N)</td>
<td></td>
</tr>
<tr>
<td>120±30</td>
<td>LITCHFIELD 71</td>
<td>DPWA (K^- p \to \bar{K}N)</td>
<td></td>
</tr>
<tr>
<td>160±30</td>
<td>BARBARO-... 70</td>
<td>DPWA (K^- p \to \Sigma \pi)</td>
<td></td>
</tr>
</tbody>
</table>

\(\Lambda(2020) \) DECAY MODES

<table>
<thead>
<tr>
<th>Mode</th>
<th>Fraction ((\Gamma_i/\Gamma))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma_1)</td>
<td>(N \bar{K})</td>
</tr>
<tr>
<td>(\Gamma_2)</td>
<td>(\Sigma \pi)</td>
</tr>
<tr>
<td>(\Gamma_3)</td>
<td>(\Lambda \eta)</td>
</tr>
<tr>
<td>(\Gamma_4)</td>
<td>(\Sigma(1385)\pi, F)-wave</td>
</tr>
<tr>
<td>(\Gamma_5)</td>
<td>(\Sigma(1385)\pi, H)-wave</td>
</tr>
<tr>
<td>(\Gamma_6)</td>
<td>(N \bar{K}^*) (892), (S=1/2, F)-wave</td>
</tr>
<tr>
<td>(\Gamma_7)</td>
<td>(N \bar{K}^*) (892), (S=3/2, F)-wave</td>
</tr>
<tr>
<td>(\Gamma_8)</td>
<td>(N \bar{K}^*) (892), (S=3/2, H)-wave</td>
</tr>
<tr>
<td>(\Gamma_9)</td>
<td>(\Lambda \omega)</td>
</tr>
<tr>
<td>(\Gamma_{10})</td>
<td>(N \bar{K}^*) (892), (S=1/2)</td>
</tr>
</tbody>
</table>
Λ(2020) BRANCHING RATIOS

See “Sign conventions for resonance couplings” in the Note on Λ and Σ Resonances.

\[\frac{\Gamma(NK)}{\Gamma_{\text{total}}} \]
\[\frac{\Gamma_{1}}{\Gamma} \]

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.028 ± 0.005</td>
<td>ZHANG 13A</td>
<td>DPWA Multichannel</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>DECLAIS 77</td>
<td>DPWA KN → KN</td>
<td></td>
</tr>
<tr>
<td>0.05 ± 0.02</td>
<td>LITCHFIELD 71</td>
<td>DPWA K-p → KN</td>
<td></td>
</tr>
</tbody>
</table>

• • • We do not use the following data for averages, fits, limits, etc. • • •

1 From the preferred solution A in KAMANO 15.

\[\frac{\Gamma(\Sigma \pi)}{\Gamma_{\text{total}}} \]
\[\frac{\Gamma_{2}}{\Gamma} \]

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.891</td>
<td>KAMANO 15</td>
<td>DPWA Multichannel</td>
<td></td>
</tr>
</tbody>
</table>

1 From the preferred solution A in KAMANO 15.

\[\frac{\Gamma(\Lambda \eta)}{\Gamma_{\text{total}}} \]
\[\frac{\Gamma_{3}}{\Gamma} \]

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.002</td>
<td>KAMANO 15</td>
<td>DPWA Multichannel</td>
<td></td>
</tr>
</tbody>
</table>

1 From the preferred solution A in KAMANO 15.

\[\frac{\Gamma(\Sigma(1385) \pi, F-wave)}{\Gamma_{\text{total}}} \]
\[\frac{\Gamma_{4}}{\Gamma} \]

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.105</td>
<td>KAMANO 15</td>
<td>DPWA Multichannel</td>
<td></td>
</tr>
</tbody>
</table>

1 From the preferred solution A in KAMANO 15.

\[\frac{\Gamma(\Sigma(1385) \pi, H-wave)}{\Gamma_{\text{total}}} \]
\[\frac{\Gamma_{5}}{\Gamma} \]

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>not seen</td>
<td>KAMANO 15</td>
<td>DPWA Multichannel</td>
<td></td>
</tr>
</tbody>
</table>

1 From the preferred solution A in KAMANO 15.

\[\frac{\Gamma(NK^*(892), S=1/2, F-wave)}{\Gamma_{\text{total}}} \]
\[\frac{\Gamma_{6}}{\Gamma} \]

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>not seen</td>
<td>KAMANO 15</td>
<td>DPWA Multichannel</td>
<td></td>
</tr>
</tbody>
</table>

1 From the preferred solution A in KAMANO 15.
\[\Gamma(N^\ast R(892), S=3/2, F\text{-wave})/\Gamma_{\text{total}} \]

\[\frac{\Gamma_7}{\Gamma} \]

VALUE	**DOCUMENT ID**	**TECN**	**COMMENT**
\[0.001 \] | 1 KAMANO 15 | DPWA Multichannel | 1 From the preferred solution A in KAMANO 15.

\[\Gamma(N^\ast R^\ast(892), S=3/2, H\text{-wave})/\Gamma_{\text{total}} \]

\[\frac{\Gamma_8}{\Gamma} \]

VALUE	**DOCUMENT ID**	**TECN**	**COMMENT**
\[\text{not seen} \] | 1 KAMANO 15 | DPWA Multichannel | 1 From the preferred solution A in KAMANO 15.

\[\Gamma(N^\ast R^\ast(892), S=1/2)/\Gamma_{\text{total}} \]

\[\frac{\Gamma_{10}}{\Gamma} \]

VALUE	**DOCUMENT ID**	**TECN**	**COMMENT**
\[0.30 \pm 0.09 \] | ZHANG 13A | DPWA Multichannel |

\[(\Gamma_i \Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } N^\ast R \rightarrow \Lambda(2020) \rightarrow \Sigma \pi \]

\[(\Gamma_1 \Gamma_2)^{1/2}/\Gamma \]

VALUE	**DOCUMENT ID**	**TECN**	**COMMENT**
\[+0.02 \pm 0.01 \] | ZHANG 13A | DPWA Multichannel |
\[-0.15 \pm 0.02 \] | BARBARO-... 70 | DPWA K^- p \rightarrow \Sigma \pi |

\[(\Gamma_i \Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } N^\ast R \rightarrow \Lambda(2020) \rightarrow \Lambda \omega \]

\[(\Gamma_1 \Gamma_9)^{1/2}/\Gamma \]

VALUE	**DOCUMENT ID**	**TECN**	**COMMENT**
\[<0.05 \] | BACCARI 77 | DPWA K^- p \rightarrow \Lambda \omega |

\[\Lambda(2020) \text{ REFERENCES} \]

KAMANO	15	PR C92 025205	H. Kamano et al.	(ANL, OSAK)
ZHANG	13A	PR C88 035205	H. Zhang et al.	(KSU)
GOPAL	80	Toronto Conf. 159	G.P. Gopal	(RHEL)
BACCARI	77	NC 41A 96	B. Baccari et al.	(SACL, CDEF) IJP
DECLAI	77	CERN 77-16	Y. Declais et al.	(CAEN, CERN) IJP
GOPAL	77	NP B119 362	G.P. Gopal et al.	(LOIC, RHEL)
HEMINGWAY	75	NP B91 12	R.J. Hemingway et al.	(CERN, HEIDH, MPIM) IJP
LITCHFIELD	71	NP B30 125	P.J. Litchfield et al.	(RHEL, CDEF, SACL) IJP
BARBARO-...	70	Duke Conf. 173	A. Barbaro-Galtieri	(LRL) IJP

Hyperon Resonances, 1970

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update