

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

See the note in the Listing for the $\Xi_c^{\prime+}$, above.

$\equiv_c^{\prime 0}$ MASS

The mass is obtained from the mass-difference measurement that follows.

VALUE (MeV) DOCUMENT ID

2578.8±0.5 OUR FIT Error includes scale factor of 1.2.

$= \frac{c^0}{c} - = \frac{c^0}{c}$ MASS DIFFERENCE

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

108.0±0.4 OUR FIT Error includes scale factor of 1.2.

108.3\pm0.1\pm0.4 11.5k YELTON 16 BELL e^+e^- , γ regions

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $107.0\pm 1.4\pm 2.5$

8 JESSOP

99 CLE2 $e^+e^-\approx \Upsilon(4S)$

$\equiv_c^{\prime 0}$ DECAY MODES

The $\Xi_c^{\prime0}$ - Ξ_c^0 mass difference is too small for any strong decay to occur.

Mode Fraction (Γ_i/Γ)

 $\Gamma_1 = \Xi_c^0 \gamma$

seen

$= \frac{\pi}{c}$ REFERENCES

YELTON 16 PR D94 052011 JESSOP 99 PRL 82 492 J. Yelton *et al.* C.P. Jessop *et al.*

(BELLE Collab.) (CLEO Collab.)

Created: 5/30/2017 17:23