

J = 1

A REVIEW GOES HERE - Check our WWW List of Reviews

Z MASS

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). The fit is performed using the Z mass and width, the Z hadronic pole cross section, the ratios of hadronic to leptonic partial widths, and the Z pole forward-backward lepton asymmetries. This set is believed to be most free of correlations.

The Z-boson mass listed here corresponds to the mass parameter in a Breit-Wigner distribution with mass dependent width. The value is 34 MeV greater than the real part of the position of the pole (in the energy-squared plane) in the Z-boson propagator. Also the LEP experiments have generally assumed a fixed value of the $\gamma-Z$ interferences term based on the standard model. Keeping this term as free parameter leads to a somewhat larger error on the fitted Z mass. See ACCIARRI 00Q and ABBIENDI 04G for a detailed investigation of both these issues.

<i>VALUE</i> (GeV)	EVTS	DOCUMENT ID	TECN	COMMENT
91.1876±0.0021 OUR F	IT			
$91.1852\!\pm\!0.0030$	4.57M	¹ ABBIENDI C	01A OPAL	E ^{ee} _{cm} = 88–94 GeV
$91.1863\!\pm\!0.0028$	4.08M	² ABREU 0	OOF DLPH	E ^{ee} _{cm} = 88–94 GeV
$91.1898\!\pm\!0.0031$	3.96M	³ ACCIARRI C	00c L3	E ^{ee} _{cm} = 88–94 GeV
91.1885 ± 0.0031	4.57M	⁴ BARATE 0	OOC ALEP	E ^{ee} _{cm} = 88–94 GeV
• • • We do not use the	following	data for averages, fits	s, limits, etc.	. • • •
$91.1872\!\pm\!0.0033$		⁵ ABBIENDI C	04G OPAL	E ^{ee} _{cm} = LEP1 + 130–209 GeV
$91.272 \pm 0.032 \pm 0.033$		⁶ ACHARD 0	04C L3	$E_{\rm cm}^{ee} = 183-209 \text{ GeV}$
$91.1875\!\pm\!0.0039$	3.97M	⁷ ACCIARRI 0	00Q L3	$E_{cm}^{ee} = LEP1 +$
91.151 ±0.008		⁸ MIYABAYASHI 9	95 TOPZ	130–189 GeV <i>E</i> _{cm} = 57.8 GeV
$91.74 \pm 0.28 \pm 0.93$	156	⁹ ALITTI 9	92B UA2	$E_{cm}^{p\overline{p}} = 630 \; GeV$
90.9 ± 0.3 ± 0.2	188	¹⁰ ABE 8	89c CDF	$E_{cm}^{ar{p}} = 1.8 \; TeV$
91.14 ± 0.12	480	¹¹ ABRAMS 8	89в MRK2	E ^{ee} _{cm} = 89–93 GeV
93.1 ± 1.0 ± 3.0	24	¹² ALBAJAR 8	39 UA1	$E_{cm}^{p\overline{p}} = 546,630 \; GeV$

¹ ABBIENDI 01A error includes approximately 2.3 MeV due to statistics and 1.8 MeV due to LEP energy uncertainty.

² The error includes 1.6 MeV due to LEP energy uncertainty.

³The error includes 1.8 MeV due to LEP energy uncertainty.

⁴BARATE 00C error includes approximately 2.4 MeV due to statistics, 0.2 MeV due to experimental systematics, and 1.7 MeV due to LEP energy uncertainty.

 $^{^5}$ ABBIENDI 04G obtain this result using the S-matrix formalism for a combined fit to their cross section and asymmetry data at the Z peak and their data at 130–209 GeV. The authors have corrected the measurement for the 34 MeV shift with respect to the Breit-Wigner fits.

- ⁶ ACHARD 04C select $e^+e^- \rightarrow Z\gamma$ events with hard initial–state radiation. Z decays to $q\overline{q}$ and muon pairs are considered. The fit results obtained in the two samples are found consistent to each other and combined considering the uncertainty due to ISR modelling as fully correlated.
- 7 ACCIARRI 00Q interpret the s-dependence of the cross sections and lepton forward-backward asymmetries in the framework of the S-matrix formalism. They fit to their cross section and asymmetry data at high energies, using the results of S-matrix fits to Z-peak data (ACCIARRI 00C) as constraints. The 130–189 GeV data constrains the γ/Z interference term. The authors have corrected the measurement for the 34.1 MeV shift with respect to the Breit-Wigner fits. The error contains a contribution of ± 2.3 MeV due to the uncertainty on the γZ interference.
- ⁸ MIYABAYASHI 95 combine their low energy total hadronic cross-section measurement with the ACTON 93D data and perform a fit using an S-matrix formalism. As expected, this result is below the mass values obtained with the standard Breit-Wigner parametrization.
- ⁹ Enters fit through W/Z mass ratio given in the W Particle Listings. The ALITTI 92B systematic error (± 0.93) has two contributions: one (± 0.92) cancels in m_W/m_Z and one (± 0.12) is noncancelling. These were added in quadrature.
- ¹⁰ First error of ABE 89 is combination of statistical and systematic contributions; second is mass scale uncertainty.
- 11 ABRAMS 89B uncertainty includes 35 MeV due to the absolute energy measurement.
- 12 ALBAJAR 89 result is from a total sample of 33 $Z \rightarrow e^+e^-$ events.

Z WIDTH

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06).

VALUE	(GeV)		EVTS	DOCUMENT ID		TECN	COMMENT		
2.495	2.4952±0.0023 OUR FIT								
2.494	8 ± 0.004	1	4.57M	$^{ m 1}$ ABBIENDI	01A	OPAL	E ^{ee} _{cm} = 88–94 GeV		
2.487	6 ± 0.004	1	4.08M	² ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV		
2.502	4 ± 0.004	2	3.96M	³ ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV		
2.495	1 ± 0.004	3	4.57M	⁴ BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV		
• • •	We do i	not use tl	he followir	ng data for averages	s, fits,	limits, e	etc. • • •		
2.494	3 ± 0.004	1		⁵ ABBIENDI	04G	OPAL	$E_{\rm cm}^{\rm ee} = {\sf LEP1} +$		
2.502	5±0.004	1	3.97M	⁶ ACCIARRI	00Q	L3	130–209 GeV Eee LEP1 +		
2.50	± 0.21	± 0.06		⁷ ABREU	96 R	DLPH	130–189 GeV <i>E</i> ^{ee} _{cm} = 91.2 GeV		
3.8	±0.8	± 1.0	188	ABE	89C	CDF	$E_{cm}^{p\overline{p}} = 1.8 \; TeV$		
2.42	$^{+0.45}_{-0.35}$		480	⁸ ABRAMS	89 B	MRK2	<i>E</i> ^{ee} _{cm} = 89−93 GeV		
2.7	$^{+1.2}_{-1.0}$	± 1.3	24	⁹ ALBAJAR	89	UA1	$E_{\rm cm}^{p\overline{p}}=$ 546,630 GeV		
2.7	±2.0	± 1.0	25	¹⁰ ANSARI	87	UA2	$E_{cm}^{p\overline{p}} = 546,630 \; GeV$		

Z DECAY MODES

	Mode	Fraction (Γ_i/Γ)					Scale factor/ Confidence level	
Γ ₁	$e^{+}e^{-}$		(3 363	±0.004	.)%			
Γ ₂	$\mu^+\mu^-$		`	± 0.007	,			
Γ ₃	τ^+ τ^-		`	± 0.008	,			
Γ ₄	$\ell^+\ell^-$	[a]	`	8 ± 0.002	,			
Γ ₅	$\ell^+\ell^-\ell^+\ell^-$	[b]	(3.5	± 0.4	,	0-6	S=1.7	
Γ ₆	invisible	[~]	(20.00) %	•		
Γ ₇	hadrons		`	± 0.06) %			
Γ ₈	$(u\overline{u}+c\overline{c})/2$		(11.6) %			
Γ ₉	$(d\overline{d} + s\overline{s} + b\overline{b})/3$		(15.6) %			
Γ ₁₀	$c\overline{c}$		(12.03	±0.21) %			
Γ ₁₁	$b\overline{b}$		(15.12) %			
	ь <u>Б</u> ь <u>Б</u>		(3.6) × 1	0^{-4}		
Γ ₁₃	ggg		< 1.1		<i>%</i>		CL=95%	
Γ ₁₄	$\pi^0 \gamma$		< 2.01		\times 10	0-5	CL=95%	
Γ ₁₅	$\eta\gamma^{'}$		< 5.1			0^{-5}	CL=95%	
Γ ₁₆	$\omega\gamma$		< 6.5			0^{-4}	CL=95%	
	$\eta'(958)\gamma$		< 4.2		\times 10	0^{-5}	CL=95%	
Γ ₁₈			< 8.3			$^{-6}$	CL=95%	
Γ ₁₉	$\gamma \gamma$		< 1.46		× 10	0-5	CL=95%	

¹ ABBIENDI 01A error includes approximately 3.6 MeV due to statistics, 1 MeV due to event selection systematics, and 1.3 MeV due to LEP energy uncertainty.

²The error includes 1.2 MeV due to LEP energy uncertainty.

³The error includes 1.3 MeV due to LEP energy uncertainty.

⁴BARATE 00C error includes approximately 3.8 MeV due to statistics, 0.9 MeV due to experimental systematics, and 1.3 MeV due to LEP energy uncertainty.

 $^{^5}$ ABBIENDI 04G obtain this result using the S-matrix formalism for a combined fit to their cross section and asymmetry data at the Z peak and their data at 130–209 GeV. The authors have corrected the measurement for the 1 MeV shift with respect to the Breit-Wigner fits.

 $^{^6}$ ACCIARRI 00Q interpret the s-dependence of the cross sections and lepton forward-backward asymmetries in the framework of the S-matrix formalism. They fit to their cross section and asymmetry data at high energies, using the results of S-matrix fits to Z-peak data (ACCIARRI 00C) as constraints. The 130–189 GeV data constrains the γ/Z interference term. The authors have corrected the measurement for the 0.9 MeV shift with respect to the Breit-Wigner fits.

⁷ ABREU 96R obtain this value from a study of the interference between initial and final state radiation in the process $e^+e^- \rightarrow Z \rightarrow \mu^+\mu^-$.

⁸ ABRAMS 89B uncertainty includes 50 MeV due to the miniSAM background subtraction error.

⁹ALBAJAR 89 result is from a total sample of 33 $Z \rightarrow e^+e^-$ events.

 $^{^{10}}$ Quoted values of ANSARI 87 are from direct fit. Ratio of Z and W production gives either $\Gamma(Z)<(1.09\pm0.07)\times\Gamma(W),$ CL =90% or $\Gamma(Z)=(0.82^{+0.19}_{-0.14}\pm0.06)\times\Gamma(W).$ Assuming Standard-Model value $\Gamma(W)=2.65$ GeV then gives $\Gamma(Z)<2.89\pm0.19$ or $=2.17^{+0.50}_{-0.37}\pm0.16.$

Γ ₂₀	$\pi^0\pi^0$		< 1.52		$\times10^{-5}$	CL=95%
Γ ₂₁	$\gamma \gamma \gamma$		< 2.2		$\times10^{-6}$	CL=95%
Γ_{22}	$\pi^{\pm}\mathcal{W}^{\mp}$		[c] < 7		$\times10^{-5}$	CL=95%
Γ ₂₃	$ ho^\pm W^\mp$		[c] < 8.3		$\times 10^{-5}$	CL=95%
Γ_{24}	$J/\psi(1S)$ X		(3.51	$+0.23 \\ -0.25$	$) \times 10^{-3}$	S=1.1
Γ_{25}	$J/\psi(1S)\gamma$		< 2.6		$\times 10^{-6}$	CL=95%
	$\psi(2\hat{S})X$		(1.60	±0.29	$) \times 10^{-3}$	
	$\chi_{c1}(1P)X$		(2.9		$) \times 10^{-3}$	
	$\chi_{c2}(1P)X$		< 3.2		× 10 ⁻³	CL=90%
	$\Upsilon(1S) \times + \Upsilon(2S) \times$		(1.0	± 0.5	$) \times 10^{-4}$	
29	$+\Upsilon(3S)$ X		,		, , , ,	
L ³⁰	$\Upsilon(1S)X$		< 3.4		$\times10^{-6}$	CL=95%
Γ ₃₁	$\Upsilon(2S)X$		< 6.5		$\times 10^{-6}$	
Γ ₃₂			< 5.4		× 10 ⁻⁶	CL=95%
Γ ₂₂	(D^0/\overline{D}^0) X		(20.7	± 2.0		
. ээ Гэд	$D^{\pm}X$		•	± 1.7	•	
Γ ₂₅	$D^*(2010)^{\pm}X$			± 1.3		
. 33 Г ₂₆	$D_{s1}(2536)^{\pm}X$		(3.6		$) \times 10^{-3}$	
. 30 Г ₂₇	$D_{sJ}(2573)^{\pm} X$		(5.8		$) \times 10^{-3}$	
. э <i>г</i> Гэо	$D^{*'}(2629)^{\pm}X$		searched f) / 10	
	BX		Scarenca 1	OI .		
	B*X					
70	B^+X		[d] (6.08	+0.13) %	
Γ ₄₂	^		[d] (1.59			
	$B_c^+ X$		searched f		, , ,	
	i				\ 0/	
Γ ₄₄	Ĺ		(1.54	± 0.33) %	
	$\equiv_{c}^{0} X$		seen			
	$\Xi_b X$		seen			
	b-baryon X		[d] (1.38		,	
	anomalous $\gamma+$ hadrons		[e] < 3.2			
	$e^+e^-\gamma$		[e] < 5.2		\times 10 ⁻⁴	CL=95%
	$\mu^+\mu^-\gamma$		[e] < 5.6		$\times 10^{-4}$	CL=95%
	$\tau^+\tau^-\gamma$		[e] < 7.3		$\times 10^{-4}$	CL=95%
	$\ell^+\ell^-\gamma\gamma$		[f] < 6.8		$\times 10^{-6}$	CL=95%
	$q\overline{q}\gamma\gamma$		[f] < 5.5		\times 10 ⁻⁶	CL=95%
	$ u \overline{\nu} \gamma \gamma $		[f] < 3.1		$\times 10^{-6}$	CL=95%
	$e^{\pm} \mu^{\mp}$	LF 	[c] < 7.5		$\times 10^{-7}$	CL=95%
Γ ₅₆		LF	[c] < 9.8		$\times 10^{-6}$	CL=95%
Γ ₅₇	$\mu^{\pm} \tau^{\mp}$	LF	[c] < 1.2		$\times 10^{-5}$	CL=95%
Γ ₅₈		L,B	< 1.8		$\times 10^{-6}$	CL=95%
Γ ₅₉	$p\mu$	L,B	< 1.8		$\times 10^{-6}$	CL=95%

- [a] ℓ indicates each type of lepton $(e, \mu, \text{ and } \tau)$, not sum over them.
- [b] Here ℓ indicates e or μ .
- [c] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [d] This value is updated using the product of (i) the $Z \rightarrow b\overline{b}$ fraction from this listing and (ii) the b-hadron fraction in an unbiased sample of weakly decaying b-hadrons produced in Z-decays provided by the Heavy Flavor Averaging Group (HFLAV, http://www.slac.stanford.edu/xorg/hflav/osc/PDG_2009/#FRACZ).
- [e] See the Particle Listings below for the γ energy range used in this measurement.
- [f] For $m_{\gamma\gamma}=(60\pm5)$ GeV.

Z PARTIAL WIDTHS

 $\Gamma(e^+e^-)$ For the LEP experiments, this parameter is not directly used in the overall fit but is

derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
83.91 ± 0.12 OUR FIT					
83.66 ± 0.20	137.0K	ABBIENDI	01A	OPAL	<i>E</i> ^{ee} _{cm} = 88–94 GeV
83.54 ± 0.27	117.8k	ABREU	00F	DLPH	<i>E</i> ^{ee} _{cm} = 88–94 GeV
84.16 ± 0.22	124.4k	ACCIARRI	00 C	L3	<i>E</i> ^{ee} _{cm} = 88–94 GeV
83.88 ± 0.19		BARATE	00 C	ALEP	<i>E</i> ^{ee} cm = 88−94 GeV
$82.89 \pm 1.20 \pm 0.89$		$^{ m 1}$ ABE	95J	SLD	$E_{cm}^{ee} = 91.31 \text{ GeV}$

 $^{^1}$ ABE 95J obtain this measurement from Bhabha events in a restricted fiducial region to improve systematics. They use the values 91.187 and 2.489 GeV for the Z mass and total decay width to extract this partial width.

 $\Gamma(\mu^+\mu^-)$ This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
83.99±0.18 OUR FIT					
84.03 ± 0.30	182.8K	ABBIENDI	01A	OPAL	E ^{ee} _{cm} = 88–94 GeV
84.48 ± 0.40	157.6k	ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV
83.95 ± 0.44	113.4k	ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
84.02 ± 0.28		BARATE	00 C	ALEP	$E_{\rm cm}^{\it ee} = 88 - 94 \; {\rm GeV}$

 $\Gamma(au^+ au^-)$

This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
84.08 ± 0.22 OUR FIT					
83.94 ± 0.41	151.5K	ABBIENDI	01 A	OPAL	E ^{ee} _{cm} = 88–94 GeV
83.71 ± 0.58	104.0k	ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV
84.23 ± 0.58	103.0k	ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
84.38 ± 0.31		BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV

 $\Gamma(\ell^+\ell^-)$

In our fit $\Gamma(\ell^+\ell^-)$ is defined as the partial Z width for the decay into a pair of massless charged leptons. This parameter is not directly used in the 5-parameter fit assuming lepton universality but is derived using the fit results. See the note "The Z boson" and ref. LEP-SLC 06.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
83.984±0.086 OUR F	IT				
83.82 ± 0.15	471.3K	ABBIENDI	01A	OPAL	E ^{ee} _{cm} = 88–94 GeV
83.85 ± 0.17	379.4k	ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV
84.14 ± 0.17	340.8k	ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
84.02 ± 0.15	500k	BARATE	00C	ALEP	E ^{ee} _{cm} = 88–94 GeV

 $\Gamma(\text{invisible})$

We use only direct measurements of the invisible partial width using the single photon channel to obtain the average value quoted below. OUR FIT value is obtained as a difference between the total and the observed partial widths assuming lepton universality.

<i>VALUE</i> (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
499.0± 1.5 OUR FIT					
503 \pm 16 OUR AVER	AGE Erro	or includes scale f	actor	of 1.2.	
$498\pm12\pm12$	1791	ACCIARRI	98G	L3	E ^{ee} _{cm} = 88–94 GeV
$539 \pm 26 \pm 17$	410	AKERS	95 C	OPAL	E ^{ee} _{cm} = 88–94 GeV
450 ± 34 ± 34	258	BUSKULIC	93L	ALEP	E ^{ee} _{cm} = 88–94 GeV
540 ± 80 ± 40	52	ADEVA	92	L3	E ^{ee} _{cm} = 88–94 GeV
• • • We do not use th	e following	data for averages	s, fits,	limits, e	etc. • • •
498.1± 2.6		¹ ABBIENDI	01A	OPAL	E ^{ee} _{cm} = 88–94 GeV
498.1± 3.2		¹ ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV
499.1± 2.9		¹ ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
499.1± 2.5		¹ BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV

¹ This is an indirect determination of Γ (invisible) from a fit to the visible Z decay modes.

 Γ (hadrons) Γ_7

This parameter is not directly used in the 5-parameter fit assuming lepton universality, but is derived using the fit results. See the note "The Z boson" and ref. LEP-SLC 06.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1744.4±2.0 OUR FIT					
1745.4 ± 3.5	4.10M	ABBIENDI	01 A	OPAL	E ^{ee} _{cm} = 88–94 GeV
$1738.1 \!\pm\! 4.0$	3.70M	ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV
1751.1 ± 3.8	3.54M	ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
1744.0 ± 3.4	4.07M	BARATE	00 C	ALEP	Eee = 88–94 GeV

Z BRANCHING RATIOS

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06).

$\Gamma(\text{hadrons})/\Gamma(e^+e^-)$ Γ_7/Γ_1 TECN **COMMENT** 20.804 ± 0.050 OUR FIT 01A OPAL $E_{cm}^{ee} = 88-94 \text{ GeV}$ ¹ ABBIENDI 20.902 ± 0.084 137.0K 00F DLPH $E_{cm}^{ee} = 88-94 \text{ GeV}$ 20.88 ± 0.12 117.8k **ABREU** $E_{cm}^{ee} = 88-94 \text{ GeV}$ 20.816 ± 0.089 124.4k **ACCIARRI** 00C L3 ² BARATE 00C ALEP $E_{cm}^{ee} = 88-94 \text{ GeV}$ 20.677 ± 0.075

• • We do not use the following data for averages, fits, limits, etc.

27.0
$$^{+11.7}_{-8.8}$$
 12 3 ABRAMS 89D MRK2 $E^{ee}_{\mathrm{cm}} =$ 89–93 GeV

$\Gamma(\text{hadrons})/\Gamma(\mu^+\mu^-)$

 Γ_7/Γ_2

Created: 5/30/2017 17:22

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06).

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
20.785±0.033 OUR FIT					
$20.811 \!\pm\! 0.058$	182.8K	¹ ABBIENDI	01 A	OPAL	E ^{ee} _{cm} = 88–94 GeV
20.65 ± 0.08	157.6k	ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV
$20.861\!\pm\!0.097$	113.4k	ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
20.799 ± 0.056		² BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV
ullet $ullet$ We do not use the f	ollowing da	ata for averages, fi	ts, lim	its, etc.	• • •
$18.9 {}^{+7.1}_{-5.3}$	13	³ ABRAMS	89 D	MRK2	Eee = 89–93 GeV

¹ ABBIENDI 01A error includes approximately 0.067 due to statistics, 0.040 due to event selection systematics, 0.027 due to the theoretical uncertainty in *t*-channel prediction, and 0.014 due to LEP energy uncertainty.

² BARATE 00C error includes approximately 0.062 due to statistics, 0.033 due to experimental systematics, and 0.026 due to the theoretical uncertainty in *t*-channel prediction.

³ ABRAMS 89D have included both statistical and systematic uncertainties in their quoted

$\Gamma(\text{hadrons})/\Gamma(\tau^+\tau^-)$

 Γ_7/Γ_3

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06).

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
20.764 \pm 0.045 OUR FIT					
$20.832 \!\pm\! 0.091$	151.5K	¹ ABBIENDI	01 A	OPAL	$E_{cm}^{ee} = 88 – 94 \; GeV$
20.84 ± 0.13	104.0k	ABREU	00F	DLPH	$E_{cm}^{\mathit{ee}} = 88 – 94 \; GeV$
20.792 ± 0.133	103.0k	ACCIARRI	00 C	L3	$E_{cm}^{\mathit{ee}} = 88 – 94 \; GeV$
20.707 ± 0.062		² BARATE	00 C	ALEP	$E_{cm}^{\mathit{ee}} = 88 – 94 \; GeV$
• • • We do not use the f	ollowing da	ata for averages, fi	ts, lim	its, etc.	• • •
$15.2 {}^{+4.8}_{-3.9}$	21	³ ABRAMS	89 D	MRK2	<i>E</i> ^{ee} _{cm} = 89−93 GeV

 $^{^{1}}$ ABBIENDI 01A error includes approximately 0.055 due to statistics and 0.071 due to event selection systematics.

$\Gamma(\text{hadrons})/\Gamma(\ell^+\ell^-)$

 Γ_7/Γ_4

 ℓ indicates each type of lepton (e, μ , and τ), not sum over them.

Our fit result is obtained requiring lepton universality.

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT			
20.767 ± 0.025 OUR	FIT							
20.823 ± 0.044	471.3K	¹ ABBIENDI	01A	OPAL	E ^{ee} _{cm} = 88–94 GeV			
20.730 ± 0.060	379.4k	ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV			
20.810 ± 0.060	340.8k	ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV			
20.725 ± 0.039	500k	² BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV			
 • • We do not use the following data for averages, fits, limits, etc. • • 								
$18.9 {+3.6} \\ -3.2$	46	ABRAMS	89 B	MRK2	E ^{ee} _{cm} = 89–93 GeV			

 $^{^{}m 1}$ ABBIENDI 01A error includes approximately 0.034 due to statistics and 0.027 due to event selection systematics.

$\Gamma(\text{hadrons})/\Gamma_{\text{total}}$

 Γ_7/Γ

Created: 5/30/2017 17:22

This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06. DOCUMENT ID

69.911±0.056 OUR FIT

 $^{^{}m 1}$ ABBIENDI 01A error includes approximately 0.050 due to statistics and 0.027 due to event selection systematics.

²BARATE 00C error includes approximately 0.053 due to statistics and 0.021 due to experimental systematics.

³ ABRAMS 89D have included both statistical and systematic uncertainties in their quoted

 $^{^2}$ BARATE 00C error includes approximately 0.054 due to statistics and 0.033 due to experimental systematics.

³ ABRAMS 89D have included both statistical and systematic uncertainties in their quoted errors.

²BARATE 00C error includes approximately 0.033 due to statistics, 0.020 due to experimental systematics, and 0.005 due to the theoretical uncertainty in t-channel prediction.

 $\Gamma(e^+e^-)/\Gamma_{\text{total}}$

This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.

VALUE

DOCUMENT ID

3.3632±0.0042 OUR FIT

 $\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ Γ_2/Γ

This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06. DOCUMENT ID VALUE (%)

3.3662 ± 0.0066 OUR FIT

 $\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-)$ Γ_2/Γ_1

DOCUMENT ID

This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.

 1.0009 ± 0.0028 OUR FIT

 $\Gamma(\tau^+\tau^-)/\Gamma_{\text{total}}$ Γ_3/Γ

This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.

DOCUMENT ID

3.3696±0.0083 OUR FIT

 $\Gamma(\tau^+\tau^-)/\Gamma(e^+e^-)$ Γ_3/Γ_1

This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The $\it Z$ boson" and ref. LEP-SLC 06.

DOCUMENT ID

1.0019 ± 0.0032 OUR FIT

 $\Gamma(\ell^+\ell^-)/\Gamma_{total}$ Γ_4/Γ

 ℓ indicates each type of lepton $(e, \mu, \text{ and } \tau)$, not sum over them.

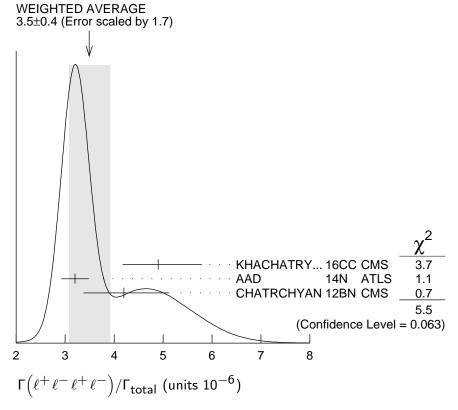
Our fit result assumes lepton universality.

This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.

VALUE (%) DOCUMENT ID

3.3658 ± 0.0023 OUR FIT

 $\Gamma(\ell^+\ell^-\ell^+\ell^-)/\Gamma_{\text{total}}$ Here ℓ indicates either e or μ . Γ_5/Γ


VALUE (units 10⁻⁶) TECN COMMENT **EVTS 3.5** \pm **0.4 OUR AVERAGE** Error includes scale factor of 1.7. See the ideogram below.

 $4.9 \ \, ^{+ \, 0.8 }_{- \, 0.7 } \ \, ^{+ \, 0.4 }_{- \, 0.2 }$ ¹ KHACHATRY...16CC CMS $E_{cm}^{pp} = 13 \text{ TeV}$

14N ATLS $E_{cm}^{pp} = 7.8 \text{ TeV}$ $3.20 \pm 0.25 \pm 0.13$ 172

 $4.2 \begin{array}{c} +0.9 \\ -0.8 \end{array} \pm 0.2$ CHATRCHYAN 12BN CMS $E_{cm}^{pp} = 7 \text{ TeV}$ 28

 $^{^1}$ KHACHATRYAN 16CC reports $(4.9^{+0.8}_{-0.7} + 0.2 + 0.1_{-0.1}) \times 10^{-6}$ value, where the uncertainties are statistical, systematic, theory, and due to luminosity. We have combined uncertainties in quadrature.

 $\Gamma(\text{invisible})/\Gamma_{\text{total}}$

 Γ_6/Γ

See the data, the note, and the fit result for the partial width, Γ_6 , above.

VALUE (%)

DOCUMENT ID

20.000 ± 0.055 OUR FIT

$\Gamma((u\overline{u}+c\overline{c})/2)/\Gamma(\text{hadrons})$

 Γ_8/Γ_7

Created: 5/30/2017 17:22

This quantity is the branching ratio of $Z \to$ "up-type" quarks to $Z \to$ hadrons. Except ACKERSTAFF 97T the values of $Z \to$ "up-type" and $Z \to$ "down-type" branchings are extracted from measurements of $\Gamma(\text{hadrons})$, and $\Gamma(Z \to \gamma + \text{jets})$ where γ is a high-energy (>5 or 7 GeV) isolated photon. As the experiments use different procedures and slightly different values of M_Z , $\Gamma(\text{hadrons})$ and α_S in their extraction procedures, our average has to be taken with caution.

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
0.166±0.009 OUR AVERAGE				
$0.172^{igoplus 0.011}_{-0.010}$	¹ ABBIENDI	04E	OPAL	$E_{cm}^{ee} = 91.2 \; GeV$
$0.160\pm0.019\pm0.019$	² ACKERSTAFF	97T	OPAL	E ^{ee} _{cm} = 88–94 GeV
$0.137 ^{igoplus 0.038}_{-0.054}$	³ ABREU	95x	DLPH	<i>E</i> ^{ee} _{cm} = 88−94 GeV
$0.137\!\pm\!0.033$	⁴ ADRIANI	93	L3	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$

 $^{^1}$ ABBIENDI 04E select photons with energy > 7 GeV and use $\Gamma({\rm hadrons})=1744.4\pm2.0$ MeV and $\alpha_{\rm S}=0.1172\pm0.002$ to obtain $\Gamma_u=300^{+19}_{-18}$ MeV.

² ACKERSTAFF 97T measure $\Gamma_{u\overline{u}}/(\Gamma_{d\overline{d}}+\Gamma_{u\overline{u}}+\Gamma_{s\overline{s}})=0.258\pm0.031\pm0.032$. To obtain this branching ratio authors use $R_c+R_b=0.380\pm0.010$. This measurement is fully negatively correlated with the measurement of $\Gamma_{d\overline{d},s\overline{s}}/(\Gamma_{d\overline{d}}+\Gamma_{u\overline{u}}+\Gamma_{s\overline{s}})$ given in the next data block.

- ³ ABREU 95X use $M_Z = 91.187 \pm 0.009$ GeV, Γ(hadrons) = 1725 ± 12 MeV and $\alpha_s = 0.123 \pm 0.005$. To obtain this branching ratio we divide their value of $C_{2/3} = 0.91^{+0.25}_{-0.36}$ by their value of $(3C_{1/3} + 2C_{2/3}) = 6.66 \pm 0.05$.
- ⁴ ADRIANI 93 use $M_Z = 91.181 \pm 0.022$ GeV, Γ(hadrons) = 1742 ± 19 MeV and $\alpha_s = 0.125 \pm 0.009$. To obtain this branching ratio we divide their value of $C_{2/3} = 0.92 \pm 0.22$ by their value of $(3C_{1/3} + 2C_{2/3}) = 6.720 \pm 0.076$.

$\Gamma((d\overline{d}+s\overline{s}+b\overline{b})/3)/\Gamma(hadrons)$

 Γ_9/Γ_7

This quantity is the branching ratio of $Z \to$ "down-type" quarks to $Z \to$ hadrons. Except ACKERSTAFF 97T the values of $Z \to$ "up-type" and $Z \to$ "down-type" branchings are extracted from measurements of $\Gamma(\text{hadrons})$, and $\Gamma(Z \to \gamma + \text{jets})$ where γ is a high-energy (>5 or 7 GeV) isolated photon. As the experiments use different procedures and slightly different values of M_Z , $\Gamma(\text{hadrons})$ and α_S in their extraction procedures, our average has to be taken with caution.

VALUE	DOCUMENT ID		TECN	COMMENT
0.223 ± 0.006 OUR AVERAGE				
0.218 ± 0.007	$^{ m 1}$ ABBIENDI	04E	OPAL	$E_{cm}^{ee} = 91.2 \; GeV$
$0.230 \pm 0.010 \pm 0.010$	² ACKERSTAFF	97T	OPAL	<i>E</i> ^{ee} _{cm} = 88−94 GeV
$0.243^{igoplus 0.036}_{-0.026}$	³ ABREU	95x	DLPH	E ^{ee} _{cm} = 88–94 GeV
0.243 ± 0.022	⁴ ADRIANI	93	L3	$E_{ m cm}^{\it ee}=$ 91.2 GeV

- 1 ABBIENDI 04E select photons with energy > 7 GeV and use $\Gamma({\rm hadrons})=1744.4\pm2.0$ MeV and $\alpha_{\rm S}=0.1172\pm0.002$ to obtain $\Gamma_{d}=381\pm12$ MeV.
- ² ACKERSTAFF 97T measure $\Gamma_{d\overline{d},s\overline{s}}/(\Gamma_{d\overline{d}}+\Gamma_{u\overline{u}}+\Gamma_{s\overline{s}})=0.371\pm0.016\pm0.016$. To obtain this branching ratio authors use $R_c+R_b=0.380\pm0.010$. This measurement is fully negatively correlated with the measurement of $\Gamma_{u\overline{u}}/(\Gamma_{d\overline{d}}+\Gamma_{u\overline{u}}+\Gamma_{s\overline{s}})$ presented in the previous data block.
- ³ ABREU 95X use $M_Z=91.187\pm0.009$ GeV, Γ(hadrons) = 1725 ± 12 MeV and $\alpha_S=0.123\pm0.005$. To obtain this branching ratio we divide their value of $C_{1/3}=1.62^{+0.24}_{-0.17}$ by their value of $(3C_{1/3}+2C_{2/3})=6.66\pm0.05$.
- ⁴ ADRIANI 93 use $M_Z=91.181\pm0.022$ GeV, Γ(hadrons) = 1742 ± 19 MeV and $\alpha_s=0.125\pm0.009$. To obtain this branching ratio we divide their value of $C_{1/3}=1.63\pm0.15$ by their value of $(3C_{1/3}+2C_{2/3})=6.720\pm0.076$.

$R_c = \Gamma(c\overline{c})/\Gamma(\text{hadrons})$

 Γ_{10}/Γ_{7}

Created: 5/30/2017 17:22

OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06.

The Standard Model predicts $R_c=0.1723$ for $m_t=174.3$ GeV and $M_H=150$ GeV.

VALUE	DOCUMENT ID		TECN	COMMENT
0.1721 ± 0.0030 OUR FIT				
$0.1744 \pm 0.0031 \pm 0.0021$	$^{ m 1}$ ABE	05F	SLD	<i>E</i> ^{ee} _{cm} =91.28 GeV
$0.1665 \pm 0.0051 \pm 0.0081$	² ABREU	00	DLPH	E ^{ee} _{cm} = 88–94 GeV
0.1698 ± 0.0069	³ BARATE	00 B	ALEP	E ^{ee} _{cm} = 88–94 GeV
$0.180\ \pm0.011\ \pm0.013$	⁴ ACKERSTAFF	98E	OPAL	E ^{ee} _{cm} = 88–94 GeV
$0.167\ \pm0.011\ \pm0.012$	⁵ ALEXANDER	96 R	OPAL	E ^{ee} _{cm} = 88–94 GeV
• • • We do not use the fo	ollowing data for a	verag	es, fits, I	imits, etc. • • •
$0.1623\!\pm\!0.0085\!\pm\!0.0209$	⁶ ABREU	95 D	DLPH	Eee = 88-94 GeV

- 1 ABE 05F use hadronic Z decays collected during 1996–98 to obtain an enriched sample of $c\overline{c}$ events using a double tag method. The single c–tag is obtained with a neural network trained to perform flavor discrimination using as input several signatures (corrected secondary vertex mass, vertex decay length, multiplicity and total momentum of the hemisphere). A multitag approach is used, defining 4 regions of the output value of the neural network and R_c is extracted from a simultaneous fit to the count rates of the 4 different tags. The quoted systematic error includes an uncertainty of ± 0.0006 due to the uncertainty on R_b .
- 2 ABREU 00 obtain this result properly combining the measurement from the D^{*+} production rate ($R_c = 0.1610 \pm 0.0104 \pm 0.0077 \pm 0.0043$ (BR)) with that from the overall charm counting ($R_c = 0.1692 \pm 0.0047 \pm 0.0063 \pm 0.0074$ (BR)) in $c\,\overline{c}$ events. The systematic error includes an uncertainty of ± 0.0054 due to the uncertainty on the charmed hadron branching fractions.
- 3 BARATE 00B use exclusive decay modes to independently determine the quantities $R_c\times {\rm f}(c\to {\rm X}),\,{\rm X}{=}D^0,\,D^+,\,D_s^+,\,{\rm and}\,\Lambda_c.$ Estimating $R_c\times {\rm f}(c\to \Xi_c/\Omega_c){=}$ 0.0034, they simply sum over all the charm decays to obtain $R_c{=}$ 0.1738 \pm 0.0047 \pm 0.0088 \pm 0.0075(BR). This is combined with all previous ALEPH measurements (BARATE 98T and BUSKULIC 94G, $R_c{=}$ 0.1681 \pm 0.0054 \pm 0.0062) to obtain the quoted value.
- ⁴ ACKERSTAFF 98E use an inclusive/exclusive double tag. In one jet $D^{*\pm}$ mesons are exclusively reconstructed in several decay channels and in the opposite jet a slow pion (opposite charge inclusive $D^{*\pm}$) tag is used. The b content of this sample is measured by the simultaneous detection of a lepton in one jet and an inclusively reconstructed $D^{*\pm}$ meson in the opposite jet. The systematic error includes an uncertainty of ± 0.006 due to the external branching ratios.
- ⁵ ALEXANDER 96R obtain this value via direct charm counting, summing the partial contributions from D^0 , D^+ , D_s^+ , and Λ_c^+ , and assuming that strange-charmed baryons account for the 15% of the Λ_c^+ production. An uncertainty of ± 0.005 due to the uncertainties in the charm hadron branching ratios is included in the overall systematics.
- ⁶ ABREU 95D perform a maximum likelihood fit to the combined p and p_T distributions of single and dilepton samples. The second error includes an uncertainty of ± 0.0124 due to models and branching ratios.

$R_b = \Gamma(b\overline{b})/\Gamma(\text{hadrons})$

 Γ_{11}/Γ_{7}

Created: 5/30/2017 17:22

OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06.

The Standard Model predicts R_b =0.21581 for m_t =174.3 GeV and M_H =150 GeV.

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
0.21629±0.00066 OUR FIT				
$0.21594 \pm 0.00094 \pm 0.00075$	$^{ m 1}$ ABE	05F	SLD	E ^{ee} _{cm} =91.28 GeV
$0.2174\ \pm0.0015\ \pm0.0028$	² ACCIARRI	00	L3	E ^{ee} _{cm} = 89–93 GeV
$0.2178 \pm 0.0011 \pm 0.0013$	³ ABBIENDI	99 B	OPAL	E ^{ee} _{cm} = 88–94 GeV
$0.21634 \pm 0.00067 \pm 0.00060$	⁴ ABREU	99 B	DLPH	E ^{ee} _{cm} = 88–94 GeV
$0.2159 \pm 0.0009 \pm 0.0011$	⁵ BARATE	97F	ALEP	E ^{ee} _{cm} = 88–94 GeV
• • • We do not use the following	ng data for averag	es, fit	s, limits,	etc. • • •
$0.2145\ \pm0.0089\ \pm0.0067$	⁶ ABREU	95 D	DLPH	<i>E</i> ^{ee} _{cm} = 88−94 GeV
$0.219 \pm 0.006 \pm 0.005$	⁷ BUSKULIC	94 G	ALEP	<i>E</i> ^{ee} _{cm} = 88−94 GeV
$0.251 \pm 0.049 \pm 0.030$	⁸ JACOBSEN	91	MRK2	$E_{ m cm}^{ m ee}=$ 91 GeV

- 1 ABE 05F use hadronic Z decays collected during 1996–98 to obtain an enriched sample of $b\,\overline{b}$ events using a double tag method. The single b–tag is obtained with a neural network trained to perform flavor discrimination using as input several signatures (corrected secondary vertex mass, vertex decay length, multiplicity and total momentum of the hemisphere; the key tag is obtained requiring the secondary vertex corrected mass to be above the D–meson mass). ABE 05F obtain R_b =0.21604 \pm 0.00098 \pm 0.00074 where the systematic error includes an uncertainty of \pm 0.00012 due to the uncertainty on R_c . The value reported here is obtained properly combining with ABE 98D. The quoted systematic error includes an uncertainty of \pm 0.00012 due to the uncertainty on R_c .
- ² ACCIARRI 00 obtain this result using a double-tagging technique, with a high p_T lepton tag and an impact parameter tag in opposite hemispheres.
- ³ ABBIENDI 99B tag $Z \rightarrow b\overline{b}$ decays using leptons and/or separated decay vertices. The b-tagging efficiency is measured directly from the data using a double-tagging technique.
- ⁴ ABREU 99B obtain this result combining in a multivariate analysis several tagging methods (impact parameter and secondary vertex reconstruction, complemented by event shape variables). For R_{c} different from its Standard Model value of 0.172, R_{b} varies as $-0.024 \times (R_{c}-0.172)$.
- ⁵ BARATE 97F combine the lifetime-mass hemisphere tag (BARATE 97E) with event shape information and lepton tag to identify $Z \rightarrow b\overline{b}$ candidates. They further use c- and $u\,d\,s$ -selection tags to identify the background. For R_C different from its Standard Model value of 0.172, R_D varies as $-0.019 \times (R_C 0.172)$.
- ⁶ ABREU 95D perform a maximum likelihood fit to the combined p and p_T distributions of single and dilepton samples. The second error includes an uncertainty of ± 0.0023 due to models and branching ratios.
- ⁷ BUSKULIC 94G perform a simultaneous fit to the p and p_T spectra of both single and dilepton events.
- ⁸ JACOBSEN 91 tagged $b\overline{b}$ events by requiring coincidence of \geq 3 tracks with significant impact parameters using vertex detector. Systematic error includes lifetime and decay uncertainties (± 0.014).

$\Gamma(b\overline{b}b\overline{b})/\Gamma(\text{hadrons})$

 Γ_{12}/Γ_7

VALUE (units 10^{-4})	DOCUMENT ID		TECN	COMMENT
5.2±1.9 OUR AVERAGE				
$3.6 \pm 1.7 \pm 2.7$	$^{ m 1}$ abbiendi	01 G	OPAL	E ^{ee} _{cm} = 88–94 GeV
$6.0 \pm 1.9 \pm 1.4$	² ABREU	99 U	DLPH	E ^{ee} _{cm} = 88–94 GeV

- ¹ ABBIENDI 01G use a sample of four-jet events from hadronic Z decays. To enhance the $b \, \overline{b} \, b \, \overline{b}$ signal, at least three of the four jets are required to have a significantly detached secondary vertex.
- ²ABREU 99U force hadronic Z decays into 3 jets to use all the available phase space and require a b tag for every jet. This decay mode includes primary and secondary 4b production, e.g, from gluon splitting to $b\overline{b}$.

$\Gamma(ggg)/\Gamma(hadrons)$

 Γ_{13}/Γ_{7}

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$<1.6 \times 10^{-2}$	95	¹ ABREU	96s	DLPH	$E_{cm}^{ee} = 88-94 \text{ GeV}$

 $^{^1}$ This branching ratio is slightly dependent on the jet-finder algorithm. The value we quote is obtained using the JADE algorithm, while using the DURHAM algorithm ABREU 96S obtain an upper limit of $1.5\times 10^{-2}\,$.

$\Gamma(\pi^0\gamma)/\Gamma_{ m total}$					Γ ₁₄ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$< 2.01 \times 10^{-5}$	95	AALTONEN	14E	CDF	$E_{cm}^{ar{p}} = 1.96 \; TeV$
$< 5.2 \times 10^{-5}$	95	¹ ACCIARRI	95 G	L3	E ^{ee} _{cm} = 88–94 GeV
$< 5.5 \times 10^{-5}$	95	ABREU	94 B	DLPH	E ^{ee} _{cm} = 88–94 GeV
$< 2.1 \times 10^{-4}$	95	DECAMP	92	ALEP	E ^{ee} _{cm} = 88–94 GeV
$< 1.4 \times 10^{-4}$	95	AKRAWY	91F	OPAL	E ^{ee} _{cm} = 88–94 GeV

 $^{^1}$ This limit is for both decay modes $Z
ightarrow ~\pi^0 \gamma/\gamma \gamma$ which are indistinguishable in ACCIA-

$\Gamma(\eta\gamma)/\Gamma_{total}$						Γ ₁₅ /Γ
VALUE		CL%	DOCUMENT ID		TECN	COMMENT
$< 7.6 \times 10^{-5}$		95	ACCIARRI	95 G	L3	<i>E</i> ^{ee} _{cm} = 88−94 GeV
$< 8.0 \times 10^{-5}$		95	ABREU	94 B	DLPH	E ^{ee} _{cm} = 88–94 GeV
$< 5.1 \times 10^{-5}$		95	DECAMP	92	ALEP	E ^{ee} _{cm} = 88–94 GeV
$< 2.0 \times 10^{-4}$		95	AKRAWY	91F	OPAL	E ^{ee} _{cm} = 88–94 GeV
$\Gamma(\omega\gamma)/\Gamma_{total}$						Γ ₁₆ /Γ
VALUE		CL%	DOCUMENT ID		TECN	COMMENT
$<6.5 \times 10^{-4}$		95	ABREU	94 B	DLPH	E ^{ee} _{cm} = 88–94 GeV
$\Gamma(\eta'(958)\gamma)/\Gamma_0$	total					Γ ₁₇ /Γ
VALUE		CL%	DOCUMENT ID		TECN	COMMENT
$<4.2\times10^{-5}$		95	DECAMP	92	ALEP	E ^{ee} _{cm} = 88–94 GeV
$\Gamma(\phi\gamma)/\Gamma_{total}$						Γ ₁₈ /Γ
VALUE	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
$< 8.3 \times 10^{-6}$	95	1065	¹ AABOUD	16K	ATLS	$E_{cm}^{pp} = 13 \; TeV$

 $^{^1}$ AABOUD 16K search for the $Z\to\phi\gamma$ decay mode where the ϕ is identified through its decay into K^+K^- . In the data corresponding to a total luminosity of 2.7 fb $^{-1}$, 1065 events are selected and their $K^+K^-\gamma$ invariant mass spectrum is analyzed.

 $\Gamma(\gamma\gamma)/\Gamma_{ ext{total}}$ This decay would violate the Landau-Yang theorem. Γ_{19}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
	CL/U				_
$<1.46 \times 10^{-5}$	95	AALTONEN	14E	CDF	$E_{cm}^{oldsymbol{pp}}=1.96\;TeV$
$< 5.2 \times 10^{-5}$	95	¹ ACCIARRI	95 G	L3	<i>E</i> ^{ee} _{cm} = 88−94 GeV
$< 5.5 \times 10^{-5}$	95	ABREU	94 B	DLPH	E ^{ee} _{cm} = 88–94 GeV
$< 1.4 \times 10^{-4}$	95	AKRAWY	91F	OPAL	$E_{\rm cm}^{\rm ee} = 88 - 94 {\rm GeV}$

 $^{^1}$ This limit is for both decay modes $Z
ightarrow ~\pi^0 \gamma/\gamma \gamma$ which are indistinguishable in ACCIA-

$\Gamma(\pi^0\pi^0)/\Gamma_{ m total}$				Γ ₂₀ /Γ
VALUE	CL%	DOCUMENT ID	TECN	COMMENT
$< 1.52 \times 10^{-5}$	95	AALTONEN 1	4E CDF	$E_{ m cm}^{{ar p}}=1.96~{ m TeV}$

$\Gamma(\gamma\gamma\gamma)/\Gamma_{total}$					Γ ₂₁ /Γ		
VALUE	CL%	DOCUMENT ID		TECN	COMMENT		
$< 2.2 \times 10^{-6}$	95	AAD	16L	ATLS	$E_{cm}^{pp} = 8 \; TeV$		
• • • We do not use the	ne followin	g data for averages	s, fits,	limits, e	etc. • • •		
$< 1.0 \times 10^{-5}$	95	¹ ACCIARRI	95 C	L3	E ^{ee} _{cm} = 88–94 GeV		
$< 1.7 \times 10^{-5}$	95	¹ ABREU	94 B	DLPH	<i>E</i> ^{ee} _{cm} = 88−94 GeV		
$< 6.6 \times 10^{-5}$	95	AKRAWY	91F	OPAL	E ^{ee} _{cm} = 88–94 GeV		
$^{ m 1}$ Limit derived in the context of composite Z model.							
$\Gamma(\pi^{\pm}W^{\mp})/\Gamma_{\text{total}}$ The value is for the sum of the charge states indicated.							
VALUE	CI %	DOCUMENT ID		TECN	COMMENT		

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$< 7 \times 10^{-5}$	95	DECAMP	92	ALEP	E _{cm} = 88–94 GeV

 $\Gamma(\rho^{\pm}W^{\mp})/\Gamma_{\rm total}$

 Γ_{23}/Γ

The value is for the sum of the charge states indicated.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 8.3 \times 10^{-5}$	95	DECAMP	92	ALEP	E ^{ee} _{cm} = 88–94 GeV

$\Gamma(J/\psi(1S)X)/\Gamma_{\text{total}}$

 Γ_{24}/Γ

VALUE (units 10⁻³) EVTS DOCUMENT ID TECN COMMENT

 $3.51^{+0.23}_{-0.25}$ OUR AVERAGE Error includes scale factor of 1.1.

$3.21 \pm 0.21 {+0.19 \atop -0.28}$	553	¹ ACCIARRI	99F	L3	<i>E</i> ^{ee} _{cm} = 88−94 GeV
$3.9 \pm 0.2 \pm 0.3$	511	² ALEXANDER	96 B	OPAL	E ^{ee} _{cm} = 88–94 GeV
$3.73\pm0.39\pm0.36$	153	³ ABREU	94 P	DLPH	$E_{cm}^{ee} = 88-94 \text{ GeV}$

 $^{^1}$ ACCIARRI 99F combine $\mu^+\,\mu^-$ and $e^+\,e^-\,J/\psi(1S)$ decay channels. The branching ratio for prompt $J/\psi(1S)$ production is measured to be $(2.1\pm0.6\pm0.4^{+0.4}_{-0.2}(\text{theor.}))\times10^{-4}.$

$\Gamma(J/\psi(1S)\gamma)/\Gamma_{\mathsf{total}}$

 Γ_{25}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
<2.6 × 10 ⁻⁶	95	¹ AAD	151	ATLS	$E_{cm}^{pp} = 8 \; TeV$

 $^{^1}$ AAD 15I use events with the highest p_T muon in the pair required to have $p_T>20$ GeV, the dimuon mass required to be within 0.2 GeV of the $J/\psi(1S)$ mass and it's transverse momentum required to be > 36 GeV. The photon is also required to have it's $p_T>$ 36 GeV.

$\Gamma(\psi(2S)X)/\Gamma_{\text{total}}$

 Γ_{26}/Γ

$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
1.60±0.29 OUR AVER	AGE				
$1.6 \pm 0.5 \pm 0.3$	39	¹ ACCIARRI	97J	L3	E ^{ee} _{cm} = 88–94 GeV
$1.6 \pm 0.3 \pm 0.2$	46.9	² ALEXANDER	96 B	OPAL	E ^{ee} _{cm} = 88–94 GeV
$1.60\!\pm\!0.73\!\pm\!0.33$	5.4	³ ABREU	94 P	DLPH	E ^{ee} _{cm} = 88–94 GeV

HTTP://PDG.LBL.GOV

Page 15

² ALEXANDER 96B identify $J/\psi(1S)$ from the decays into lepton pairs. (4.8 \pm 2.4)% of this branching ratio is due to prompt $J/\psi(1S)$ production (ALEXANDER 96N).

³ Combining $\mu^+\mu^-$ and e^+e^- channels and taking into account the common systematic errors. $(7.7^{+6.3}_{-5.4})\%$ of this branching ratio is due to prompt $J/\psi(1S)$ production.

$\Gamma(\chi_{c1}(1P)X)/\Gamma_{total}$

 Γ_{27}/Γ

$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
2.9±0.7 OUR AVERAG	E				
$2.7\!\pm\!0.6\!\pm\!0.5$	33	¹ ACCIARRI	97J	L3	E ^{ee} _{cm} = 88–94 GeV
$5.0\!\pm\!2.1_{-0.9}^{+1.5}$	6.4	² ABREU	94 P	DLPH	E ^{ee} _{cm} = 88–94 GeV

¹ ACCIARRI 97J measure this branching ratio via the decay channel $\chi_{c1} \rightarrow J/\psi + \gamma$, with $J/\psi \rightarrow \ell^+\ell^-$ ($\ell=\mu$, e). The $M(\ell^+\ell^-\gamma)-M(\ell^+\ell^-)$ mass difference spectrum is fitted with two gaussian shapes for χ_{c1} and χ_{c2} .

$\Gamma(\chi_{c2}(1P)X)/\Gamma_{total}$

 Γ_{28}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 3.2 \times 10^{-3}$	90	¹ ACCIARRI	97J	L3	Eee = 88–94 GeV

¹ ACCIARRI 97J derive this limit via the decay channel $\chi_{c2} \rightarrow J/\psi + \gamma$, with $J/\psi \rightarrow \ell^+\ell^-$ ($\ell=\mu$, e). The $M(\ell^+\ell^-\gamma)-M(\ell^+\ell^-)$ mass difference spectrum is fitted with two gaussian shapes for χ_{c1} and χ_{c2} .

$\Gamma(\Upsilon(1S) X + \Upsilon(2S) X + \Upsilon(3S) X) / \Gamma_{total}$

 $\Gamma_{29}/\Gamma = (\Gamma_{30} + \Gamma_{31} + \Gamma_{32})/\Gamma$

Created: 5/30/2017 17:22

VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
1.0±0.4±0.22	6.4	¹ ALEXANDER 9	6F OPAL	E ^{ee} _{cm} = 88–94 GeV

¹ ALEXANDER 96F identify the Υ (which refers to any of the three lowest bound states) through its decay into e^+e^- and $\mu^+\mu^-$. The systematic error includes an uncertainty of ± 0.2 due to the production mechanism.

$\Gamma(\Upsilon(1S)X)/\Gamma_{\text{total}}$

 Γ_{30}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID)	TECN	COMMENT
$< 3.4 \times 10^{-6}$	95	¹ AAD	151	ATLS	$E_{cm}^{pp} = 8 \; TeV$
• • • We do not use the	ne followir	ng data for averag	es, fits,	limits,	etc. • • •
$< 4.4 \times 10^{-5}$	95	² ACCIARRI	99F	L3	Eee = 88-94 GeV

 $^{^{1}}$ AAD 15I use events with the highest p_{T} muon in the pair required to have $p_{T}>20$ GeV, the dimuon mass required to be in the range 8–12 GeV and it's transverse momentum required to be > 36 GeV. The photon is also required to have it's $p_{T}>$ 36 GeV.

¹ ACCIARRI 97J measure this branching ratio via the decay channel $\psi(2S) \rightarrow \ell^+\ell^-$ ($\ell = \mu, e$).

² ALEXANDER 96B measure this branching ratio via the decay channel $\psi(2S) \rightarrow J/\psi \, \pi^+ \, \pi^-$, with $J/\psi \rightarrow \ell^+ \ell^-$.

³ABREU 94P measure this branching ratio via decay channel $\psi(2S) \to J/\psi \pi^+ \pi^-$, with $J/\psi \to \mu^+ \mu^-$.

² This branching ratio is measured via the decay channel $\chi_{c1} \to J/\psi + \gamma$, with $J/\psi \to \mu^+\mu^-$.

² ACCIARRI 99F search for $\Upsilon(1S)$ through its decay into $\ell^+\ell^-$ ($\ell=e$ or μ).

 $\Gamma(\Upsilon(2S)X)/\Gamma_{\text{total}}$ VALUE

CL%

DOCUMENT ID

TECN

COMMENT

COMMENT

ATLS $E_{\text{cm}}^{pp} = 8 \text{ TeV}$ • • • We do not use the following data for averages, fits, limits, etc. • • •

$\Gamma(\Upsilon(3S)X)/\Gamma_{total}$

 Γ_{32}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 5.4 \times 10^{-6}$	95	¹ AAD	151	ATLS	$E_{cm}^{pp} = 8 \; TeV$
• • • We do not use the	e following	g data for averages	s, fits,	limits,	etc. • • •
$< 9.4 \times 10^{-5}$	95	² ACCIARRI	97 R	L3	E ^{ee} _{cm} = 88–94 GeV

 $^{^{1}}$ AAD 15I use events with the highest p_{T} muon in the pair required to have $p_{T} > 20$ GeV, the dimuon mass required to be in the range 8–12 GeV and it's transverse momentum required to be > 36 GeV. The photon is also required to have it's $p_{T} > 36$ GeV.

$\Gamma((D^0/\overline{D}^0)X)/\Gamma(\text{hadrons})$

 Γ_{33}/Γ_{7}

((/ / // (,					55 /
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
$0.296 \pm 0.019 \pm 0.021$	369	¹ ABREU	931	DLPH	Eee 88-94 GeV	/

¹ The (D^0/\overline{D}^0) states in ABREU 93I are detected by the $K\pi$ decay mode. This is a corrected result (see the erratum of ABREU 93I).

$\Gamma(D^{\pm}X)/\Gamma(\text{hadrons})$

 Γ_{34}/Γ_{7}

<u>VALUE</u>	EVTS	DOCUMENT ID		TECN	COMMENT
0.174±0.016±0.018	539	¹ ABREU	931	DLPH	E ^{ee} _{cm} = 88–94 GeV

¹ The D^{\pm} states in ABREU 93I are detected by the $K\pi\pi$ decay mode. This is a corrected result (see the erratum of ABREU 93I).

$\Gamma(D^*(2010)^{\pm}X)/\Gamma(hadrons)$

 Γ_{35}/Γ_{7}

Created: 5/30/2017 17:22

The value is for the sum of the charge states indicated.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.163±0.019 OUR AVE	RAGE	Error includes scale	e facto		
$0.155 \pm 0.010 \pm 0.013$	358	¹ ABREU	931	DLPH	E ^{ee} _{cm} = 88–94 GeV
0.21 ± 0.04	362	² DECAMP	91 J	ALEP	$E_{\rm cm}^{ee} = 88-94 \; {\rm GeV}$

 $^{^1}D^*(2010)^{\pm}$ in ABREU 93I are reconstructed from $D^0\pi^{\pm}$, with $D^0\to K^-\pi^+$. The new CLEO II measurement of B($D^{*\pm}\to D^0\pi^{\pm}$) = (68.1 \pm 1.6) % is used. This is a corrected result (see the erratum of ABREU 93I).

 $< 13.9 \times 10^{-5}$ 95 ² ACCIARRI 97R L3 $E_{\rm cm}^{ee} = 88-94 \; {\rm GeV}$

¹ AAD 15I use events with the highest p_T muon in the pair required to have $p_T > 20$ GeV, the dimuon mass required to be in the range 8–12 GeV and it's transverse momentum required to be > 36 GeV. The photon is also required to have it's $p_T > 36$ GeV.

² ACCIARRI 97R search for $\Upsilon(2S)$ through its decay into $\ell^+\ell^-$ ($\ell=e$ or μ).

² ACCIARRI 97R search for $\Upsilon(3S)$ through its decay into $\ell^+\ell^-$ ($\ell=e$ or μ).

² DECAMP 91J report B($D^*(2010)^+ \to D^0\pi^+$) B($D^0 \to K^-\pi^+$) $\Gamma(D^*(2010)^\pm X)$ / $\Gamma(\text{hadrons}) = (5.11 \pm 0.34) \times 10^{-3}$. They obtained the above number assuming B($D^0 \to K^-\pi^+$) = (3.62 \pm 0.34 \pm 0.44)% and B($D^*(2010)^+ \to D^0\pi^+$) = (55 \pm 4)%. We have rescaled their original result of 0.26 \pm 0.05 taking into account the new CLEO II branching ratio B($D^*(2010)^+ \to D^0\pi^+$) = (68.1 \pm 1.6)%.

$\Gamma(D_{s1}(2536)^{\pm}X)/\Gamma(hadrons)$

 Γ_{36}/Γ_{7}

 $D_{\rm s1}(2536)^{\pm}$ is an expected orbitally-excited state of the $D_{\rm s}$ meson.

VALUE (%)	EVTS	DOCUMENT ID	TECN	COMMENT	
$0.52\pm0.09\pm0.06$	92	¹ HEISTER	02B ALEP	$E_{cm}^{ee} = 88-94 \text{ GeV}$	

 $^{^1}$ HEISTER 02B reconstruct this meson in the decay modes $D_{s1}(2536)^\pm \to D^{*\pm} K^0$ and $D_{s1}(2536)^\pm \to D^{*0} K^\pm$. The quoted branching ratio assumes that the decay width of the $D_{s1}(2536)$ is saturated by the two measured decay modes.

$\Gamma(D_{sJ}(2573)^{\pm}X)/\Gamma(\text{hadrons})$

 Γ_{37}/Γ_{7}

 D_{sJ} (2573) $^{\pm}$ is an expected orbitally-excited state of the $D_{\rm S}$ meson.

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
$0.83 \pm 0.29 ^{igoplus 0.07}_{-0.13}$	64	¹ HEISTER	02в	ALEP	E ^{ee} _{cm} = 88–94 GeV

 $^{^1}$ HEISTER 02B reconstruct this meson in the decay mode $D_{s2}^*(2573)^\pm \to D^0 \, K^\pm$. The quoted branching ratio assumes that the detected decay mode represents 45% of the full decay width.

$\Gamma(D^{*\prime}(2629)^{\pm}X)/\Gamma(hadrons)$

 Γ_{38}/Γ_{7}

 $D^{*\prime}(2629)^{\pm}$ is a predicted radial excitation of the $D^{*}(2010)^{\pm}$ meson.

VALUE	DOCUMENT ID	TÈCN	<u>COMMENT</u>
searched for	¹ ABBIENDI 0:	1N OPAL	E ^{ee} _{cm} = 88–94 GeV

¹ ABBIENDI 01N searched for the decay mode $D^{*'}(2629)^{\pm} \rightarrow D^{*\pm}\pi^{+}\pi^{-}$ with $D^{*+} \rightarrow D^{0}\pi^{+}$, and $D^{0} \rightarrow K^{-}\pi^{+}$. They quote a 95% CL limit for $Z \rightarrow D^{*'}(2629)^{\pm} \times B(D^{*'}(2629)^{+} \rightarrow D^{*+}\pi^{+}\pi^{-}) < 3.1 \times 10^{-3}$.

$\Gamma(B^*X)/[\Gamma(BX)+\Gamma(B^*X)]$

 $\Gamma_{40}/(\Gamma_{39}+\Gamma_{40})$

Created: 5/30/2017 17:22

As the experiments assume different values of the *b*-baryon contribution, our average should be taken with caution.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.75 ±0.04 OUR AVE	RAGE				
$0.760 \pm 0.036 \pm 0.083$		¹ ACKERSTAFF	97M	OPAL	<i>E</i> ^{ee} _{cm} = 88−94 GeV
$0.771 \pm 0.026 \pm 0.070$		² BUSKULIC	96 D	ALEP	E ^{ee} _{cm} = 88–94 GeV
$0.72\ \pm0.03\ \pm0.06$		³ ABREU	95 R	DLPH	E ^{ee} _{cm} = 88–94 GeV
$0.76\ \pm0.08\ \pm0.06$	1378	⁴ ACCIARRI	95 B	L3	$E_{\rm cm}^{\it ee} = 88 - 94 \; {\rm GeV}$

 $^{^1}$ ACKERSTAFF 97M use an inclusive B reconstruction method and assume a (13.2 \pm 4.1)% $b\text{-}\mathrm{baryon}$ contribution. The value refers to a $b\text{-}\mathrm{flavored}$ meson mixture of B_u , B_d , and B_s .

² BUSKULIC 96D use an inclusive reconstruction of B hadrons and assume a (12.2 \pm 4.3)% b-baryon contribution. The value refers to a b-flavored mixture of B_u , B_d , and B_c .

³ ABREU 95R use an inclusive *B*-reconstruction method and assume a $(10\pm4)\%$ *b*-baryon contribution. The value refers to a *b*-flavored meson mixture of B_{u} , B_{d} , and B_{s} .

⁴ ACCIARRI 95B assume a 9.4% *b*-baryon contribution. The value refers to a *b*-flavored mixture of B_u , B_d , and B_s .

$\Gamma(B^+X)/\Gamma(hadrons)$

 Γ_{41}/Γ_{7}

"OUR EVALUATION" is obtained using our current values for f($\overline{b} \to B^+$) and R $_b = \Gamma(b\overline{b})/\Gamma(\text{hadrons})$. We calculate $\Gamma(B^+ \text{ X})/\Gamma(\text{hadrons}) = \text{R}_b \times \text{f}(\overline{b} \to B^+)$. The decay fraction f($\overline{b} \to B^+$) was provided by the Heavy Flavor Averaging Group (HFLAV, http://www.slac.stanford.edu/xorg/hflav/osc/PDG_2009/#FRACZ).

<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **0.0869±0.0019 OUR EVALUATION**

0.0869±0.0019 OUR EVALUA 0.0887±0.0030

 1 ABDALLAH 03к DLPH $E_{
m cm}^{ee}=88$ –94 GeV

$\Gamma(B_s^0 X)/\Gamma(hadrons)$

 Γ_{42}/Γ_{7}

"OUR EVALUATION" is obtained using our current values for $f(\overline{b} \to B_s^0)$ and $R_b = \Gamma(b\overline{b})/\Gamma(\text{hadrons})$. We calculate $\Gamma(B_s^0)/\Gamma(\text{hadrons}) = R_b \times f(\overline{b} \to B_s^0)$. The decay fraction $f(\overline{b} \to B_s^0)$ was provided by the Heavy Flavor Averaging Group (HFLAV, http://www.slac.stanford.edu/xorg/hflav/osc/PDG_2009/#FRACZ).

VALUE	DOCUMENT ID		TECN	COMMENT				
0.0227±0.0019 OUR EVALUATION								
seen	¹ ABREU	92M	DLPH	E ^{ee} _{cm} = 88–94 GeV				
seen	² ACTON	92N	OPAL	E ^{ee} _{cm} = 88–94 GeV				
seen	³ BUSKULIC	92E	ALEP	E ^{ee} _{cm} = 88–94 GeV				

- 1 ABREU 92M reported value is $\Gamma(B_s^0 \, {\rm X})*{\rm B}(B_s^0 \to D_s \, \mu \nu_\mu \, {\rm X}) *{\rm B}(D_s \to \phi \pi)/\Gamma({\rm hadrons})$ = (18 \pm 8) \times 10 $^{-5}$.
- ² ACTON 92N find evidence for B_s^0 production using D_s - ℓ correlations, with $D_s^+ \to \phi \pi^+$ and $K^*(892)K^+$. Assuming R_b from the Standard Model and averaging over the e and μ channels, authors measure the product branching fraction to be $f(\overline{b} \to B_s^0) \times B(B_s^0 \to D_s^- \ell^+ \nu_\ell X) \times B(D_s^- \to \phi \pi^-) = (3.9 \pm 1.1 \pm 0.8) \times 10^{-4}$.
- 3 BUSKULIC 92E find evidence for B_s^0 production using D_s - ℓ correlations, with $D_s^+ \to \phi \pi^+$ and $K^*(892)K^+$. Using B($D_s^+ \to \phi \pi^+$) = (2.7 \pm 0.7)% and summing up the e and μ channels, the weighted average product branching fraction is measured to be B($\overline{b} \to B_s^0$)×B($B_s^0 \to D_s^- \ell^+ \nu_\ell X$) = 0.040 \pm 0.011 $^{+0.010}_{-0.012}$.

$\Gamma(B_c^+X)/\Gamma(hadrons)$

 Γ_{43}/Γ_{7}

Created: 5/30/2017 17:22

VALUE	DOCUMENT ID		TECN	COMMENT
searched for	¹ ACKERSTAFF	980	OPAL	E ^{ee} _{cm} = 88–94 GeV
searched for	² ABREU	97E	DLPH	E ^{ee} _{cm} = 88–94 GeV
searched for	³ BARATE	97H	ALEP	E ^{ee} _{cm} = 88–94 GeV

 1 ACKERSTAFF 980 searched for the decay modes $B_C \to J/\psi \pi^+$, $J/\psi \, a_1^+$, and $J/\psi \, \ell^+ \, \nu_\ell$, with $J/\psi \to \ell^+ \, \ell^-$, $\ell = e, \mu$. The number of candidates (background) for the three decay modes is 2 (0.63 \pm 0.2), 0 (1.10 \pm 0.22), and 1 (0.82 \pm 0.19) respectively. Interpreting the 2 $B_C \to J/\psi \, \pi^+$ candidates as signal, they report $\Gamma(B_c^+ \, {\rm X}) \times {\rm B}(B_C \to J/\psi \, \pi^+)/\Gamma({\rm hadrons}) = (3.8^{+5.0}_{-2.4} \pm 0.5) \times 10^{-5}$. Interpreted as background, the 90% CL bounds are $\Gamma(B_C^+ \, {\rm X}) * {\rm B}(B_C \to J/\psi \, \pi^+)/\Gamma({\rm hadrons}) < 1.06 \times 10^{-4}$, $\Gamma(B_C^+ \, {\rm X}) * {\rm B}(B_C \to J/\psi \, \pi^+)/\Gamma({\rm hadrons}) < 1.06 \times 10^{-4}$, $\Gamma(B_C^+ \, {\rm X}) * {\rm B}(B_C \to J/\psi \, \pi^+)/\Gamma({\rm hadrons}) < 1.06 \times 10^{-4}$, $\Gamma(B_C^+ \, {\rm X}) * {\rm B}(B_C \to J/\psi \, \pi^+)/\Gamma({\rm hadrons}) < 1.06 \times 10^{-4}$, $\Gamma(B_C^+ \, {\rm X}) * {\rm B}(B_C \to J/\psi \, \pi^+)/\Gamma({\rm hadrons}) < 1.06 \times 10^{-4}$, $\Gamma(B_C^+ \, {\rm X}) * {\rm B}(B_C \to J/\psi \, \pi^+)/\Gamma({\rm hadrons}) < 1.06 \times 10^{-4}$, $\Gamma(B_C^+ \, {\rm X}) * {\rm B}(B_C \to J/\psi \, \pi^+)/\Gamma({\rm hadrons}) < 1.06 \times 10^{-4}$, $\Gamma(B_C^+ \, {\rm X}) * {\rm B}(B_C \to J/\psi \, \pi^+)/\Gamma({\rm hadrons}) < 1.06 \times 10^{-4}$, $\Gamma(B_C^+ \, {\rm X}) * {\rm B}(B_C \to J/\psi \, \pi^+)/\Gamma({\rm hadrons}) < 1.06 \times 10^{-4}$, $\Gamma(B_C^+ \, {\rm X}) * {\rm B}(B_C \to J/\psi \, \pi^+)/\Gamma({\rm hadrons}) < 1.06 \times 10^{-4}$, $\Gamma(B_C^+ \, {\rm X}) * {\rm B}(B_C \to J/\psi \, \pi^+)/\Gamma({\rm hadrons})$

¹ ABDALLAH 03K measure the production fraction of B^+ mesons in hadronic Z decays $f(B^+)=(40.99\pm0.82\pm1.11)\%$. The value quoted here is obtained multiplying this production fraction by our value of $R_b=\Gamma(\overline{b}\,b)/\Gamma(\text{hadrons})$.

 $J/\psi \, a_1^+)/\Gamma({\rm hadrons}) < 5.29 \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X})*{\rm B}(B_c \to J/\psi \, \ell^+ \nu_\ell)/\Gamma({\rm hadrons}) < 6.96 \times 10^{-5}.$ ² ABREU 97E searched for the decay modes $B_c \to J/\psi \, \pi^+, \ J/\psi \, \ell^+ \nu_\ell$, and $J/\psi \, (3\pi)^+, \ {\rm with} \ J/\psi \to \ell^+ \ell^-, \ \ell = e, \mu$. The number of candidates (background) for the three decay modes is 1 (1.7), 0 (0.3), and 1 (2.3) respectively. They report the following 90% CL limits: $\Gamma(B_c^+ \, {\rm X})*{\rm B}(B_c \to J/\psi \, \pi^+)/\Gamma({\rm hadrons}) < (1.05-0.84) \times 10^{-4}, \ \Gamma(B_c^+ \, {\rm X})*{\rm B}(B_c \to J/\psi \, \ell^+)/\Gamma({\rm hadrons}) < 1.75 \times 10^{-4}, \ {\rm where} \ {\rm the} \ {\rm ranges} \ {\rm are} \ {\rm due} \ {\rm to} \ {\rm the} \ {\rm predicted} \ B_c \ {\rm lifetime} \ (0.4-1.4) \ {\rm ps}.$ ³ BARATE 97H searched for the decay modes $B_c \to J/\psi \, \pi^+$ and $J/\psi \, \ell^+ \nu_\ell$ with $J/\psi \to \ell^+ \ell^-, \ \ell = e, \mu$. The number of candidates (background) for the two decay modes is 0 (0.44) and 2 (0.81) respectively. They report the following 90% CL

³ BARATE 97H searched for the decay modes $B_c \to J/\psi \pi^+$ and $J/\psi \ell^+ \nu_\ell$ with $J/\psi \to \ell^+ \ell^-$, $\ell = e,\mu$. The number of candidates (background) for the two decay modes is 0 (0.44) and 2 (0.81) respectively. They report the following 90% CL limits: $\Gamma(B_c^+ X)*B(B_c \to J/\psi \pi^+)/\Gamma(\text{hadrons}) < 3.6 \times 10^{-5}$ and $\Gamma(B_c^+ X)*B(B_c \to J/\psi \ell^+ \nu_\ell)/\Gamma(\text{hadrons}) < 5.2 \times 10^{-5}$.

TECN

COMMENT

$\frac{\Gamma(\Lambda_c^+ X)}{\Gamma(hadrons)}$

 Γ_{44}/Γ_{7}

0.022 ± 0.005 OUR AVERAGE			
$0.024 \pm 0.005 \pm 0.006$	¹ ALEXANDER	96R OPAL	$E_{cm}^{ee} = 88 – 94 \; GeV$
$0.021 \pm 0.003 \pm 0.005$	² BUSKULIC	96Y ALEP	$E_{\rm cm}^{ee} = 88-94 \; {\rm GeV}$

 1 ALEXANDER 96R measure R $_b \times {\rm f}(b \to \Lambda_c^+ X) \times {\rm B}(\Lambda_c^+ \to p \, K^- \, \pi^+) = (0.122 \pm 0.023 \pm 0.010)\%$ in hadronic Z decays; the value quoted here is obtained using our best value B($\Lambda_c^+ \to p \, K^- \, \pi^+$) = (5.0 \pm 1.3)%. The first error is the total experiment's error and the second error is the systematic error due to the branching fraction uncertainty.

² BUSKULIC 96Y obtain the production fraction of Λ_c^+ baryons in hadronic Z decays $f(b \to \Lambda_c^+ X) = 0.110 \pm 0.014 \pm 0.006$ using $B(\Lambda_c^+ \to p \, K^- \, \pi^+) = (4.4 \pm 0.6)\%$; we have rescaled using our best value $B(\Lambda_c^+ \to p \, K^- \, \pi^+) = (5.0 \pm 1.3)\%$ obtaining $f(b \to \Lambda_c^+ X) = 0.097 \pm 0.013 \pm 0.025$ where the first error is their total experiment's error and the second error is the systematic error due to the branching fraction uncertainty. The value quoted here is obtained multiplying this production fraction by our value of $R_b = \Gamma(b \, \overline{b})/\Gamma(\text{hadrons})$.

$\Gamma(\Xi_c^0 X)/\Gamma(hadrons)$

 Γ_{45}/Γ_{7}

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

seen 1 ABDALLAH 05C DLPH $E_{\mathsf{cm}}^{\mathsf{ee}} =$ 88–94 GeV

 1 ABDALLAH 05C searched for the charmed strange baryon Ξ_c^0 in the decay channel $\Xi_c^0\to \Xi^-\pi^+~(\Xi^-\to \Lambda\pi^-).$ The production rate is measured to be $f_{\Xi_c^0}\times {\rm B}(\Xi_c^0\to\Xi^-\pi^+)=(4.7\pm1.4\pm1.1)\times 10^{-4}$ per hadronic Z decay.

$\Gamma(\Xi_b X)/\Gamma(hadrons)$

Γ46/Γ7

Here Ξ_b is used as a notation for the strange b-baryon states Ξ_b^- and Ξ_b^0 .

VALUE	<u>DOCUMENT ID</u>		<u>TECN</u>	COMMENT
• • • We do not use the following	ng data for average	s, fits,	limits, e	etc. • • •
seen	$^{ m 1}$ ABDALLAH	05 C	DLPH	$E_{cm}^{\mathit{ee}} = 88 – 94 \; GeV$
seen		96T	ALEP	$E_{\mathrm{cm}}^{\mathrm{ee}} = 88-94 \; \mathrm{GeV}$
seen	³ ABREU	95∨	DLPH	$E_{cm}^{ee} = 88 – 94 \; GeV$

HTTP://PDG.LBL.GOV

Page 20

¹ ABDALLAH 05C searched for the beauty strange baryon Ξ_b in the inclusive semileptonic decay channel $\Xi_b \to \Xi^- \ell^- \overline{\nu}_\ell X$. Evidence for the Ξ_b production is seen from the observation of Ξ^{\mp} production accompanied by a lepton of the same sign. From the excess of "right-sign" pairs $\Xi^{\mp} \ell^{\mp}$ compared to "wrong-sign" pairs $\Xi^{\mp} \ell^{\pm}$ the production rate is measured to be $B(b \to \Xi_b) \times B(\Xi_b \to \Xi^- \ell^- X) = (3.0 \pm 1.0 \pm 0.3) \times 10^{-4}$ per lepton species, averaged over electrons and muons.

² BUSKULIC 96T investigate Ξ -lepton correlations and find a significant excess of "right-sign" pairs $\Xi^{\mp}\ell^{\mp}$ compared to "wrong–sign" pairs $\Xi^{\mp}\ell^{\pm}$. This excess is interpreted as evidence for Ξ_b semileptonic decay. The measured product branching ratio is B($b \to \Xi_b$) \times B($\Xi_b \to X_c X \ell^- \overline{\nu}_\ell$) \times B($X_c \to \Xi^- X'$) = (5.4 \pm 1.1 \pm 0.8) \times 10⁻⁴ per lepton species, averaged over electrons and muons, with X_c a charmed baryon.

³ ABREU 95V observe an excess of "right-sign" pairs $\Xi^{\mp}\ell^{\mp}$ compared to "wrong-sign" pairs $\Xi^{\mp}\ell^{\pm}$ in jets: this excess is interpreted as evidence for the beauty strange baryon Ξ_b production, with $\Xi_b \to \Xi^-\ell^-\overline{\nu}_\ell X$. They find that the probability for this signal to come from non b-baryon decays is less than 5×10^{-4} and that Λ_b decays can account for less than 10% of these events. The Ξ_b production rate is then measured to be $B(b\to\Xi_b)\times B(\Xi_b\to\Xi^-\ell^-X)=(5.9\pm2.1\pm1.0)\times 10^{-4}$ per lepton species, averaged over electrons and muons.

$\Gamma(b$ -baryon X)/ $\Gamma(hadrons)$

 Γ_{47}/Γ_{7}

"OUR EVALUATION" is obtained using our current values for f($b \rightarrow b$ -baryon) and R_b = $\Gamma(b\overline{b})/\Gamma(\text{hadrons})$. We calculate $\Gamma(b\text{-baryon X})/\Gamma(\text{hadrons}) = R_b \times f(b \rightarrow b\text{-baryon})$. The decay fraction f($b \rightarrow b\text{-baryon}$) was provided by the Heavy Flavor Averaging Group (HFLAV, http://www.slac.stanford.edu/xorg/hflav/osc/PDG_2009).

 VALUE
 DOCUMENT ID
 TECN
 COMMENT

 0.0197 ± 0.0032 OUR EVALUATION

 $0.0221 \pm 0.0015 \pm 0.0058$ 1 BARATE
 98V ALEP
 $E_{cm}^{ee} = 88-94$ GeV

¹ BARATE 98V use the overall number of identified protons in *b*-hadron decays to measure $f(b \rightarrow b\text{-baryon}) = 0.102 \pm 0.007 \pm 0.027$. They assume BR(*b*-baryon $\rightarrow pX$) = (58 ± 6)% and BR($B_s^0 \rightarrow pX$) = (8.0 ± 4.0)%. The value quoted here is obtained multiplying this production fraction by our value of R_b = $\Gamma(b\overline{b})/\Gamma(\text{hadrons})$.

$\Gamma(\text{anomalous } \gamma + \text{hadrons})/\Gamma_{\text{total}}$

 Γ_{48}/Γ

Created: 5/30/2017 17:22

Limits on additional sources of prompt photons beyond expectations for final-state bremsstrahlung.

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$< 3.2 \times 10^{-3}$	95	¹ AKRAWY	90J	OPAL	$E_{cm}^{ee} = 88-94 \text{ GeV}$

 $^{^1}$ AKRAWY 90J report $\Gamma(\gamma {\rm X}) < 8.2$ MeV at 95%CL. They assume a three-body $\gamma \, q \, \overline{q}$ distribution and use E(γ) > 10 GeV.

$$\Gamma(e^+e^-\gamma)/\Gamma_{\text{total}}$$
 $VALUE$
 $CL\%$
 $ODCUMENT ID$
 O

$$\Gamma(\mu^+\mu^-\gamma)/\Gamma_{\text{total}}$$

VALUE

 $CL\%$
 $CL\%$

¹ ACTON 91B looked for isolated photons with E>2% of beam energy (> 0.9 GeV).

¹ ACTON 91B looked for isolated photons with E>2% of beam energy (> 0.9 GeV).

$\Gamma(au^+ au^-\gamma)/\Gamma_{total}$						Γ ₅₁ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
<7.3 × 10 ⁻⁴	95	¹ ACTON	91 B	OPAL	Eee 91.2 GeV	

¹ ACTON 91B looked for isolated photons with E>2% of beam energy (> 0.9 GeV).

 Γ_{52}/Γ

 $\Gamma(\ell^+\ell^-\gamma\gamma)/\Gamma_{ ext{total}}$ The value is the sum over $\ell=e,\,\mu,\,\tau$.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 6.8 \times 10^{-6}$	95	$^{ m 1}$ ACTON	93E	OPAL	E ^{ee} _{cm} = 88–94 GeV
1 Ear m — 60 ±	F (a)/				

For $m_{\gamma\gamma}=$ 60 \pm 5 GeV.

 $\Gamma(q\overline{q}\gamma\gamma)/\Gamma_{\text{total}}$

 Γ_{53}/Γ

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$< 5.5 \times 10^{-6}$	95	¹ ACTON	93E	OPAL	Eee = 88–94 GeV
¹ For $m_{} = 60$	⊢ 5 GeV.				

 $\Gamma(\nu\overline{\nu}\gamma\gamma)/\Gamma_{\text{total}}$

 Γ_{54}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$<3.1 \times 10^{-6}$	95	¹ ACTON	93E	OPAL	E ^{ee} _{cm} = 88–94 GeV

 1 For $m_{\gamma\gamma}=$ 60 \pm 5 GeV.

 $\Gamma \big(e^{\pm} \, \mu^{\mp} \big) / \Gamma_{\rm total}$

 Γ_{55}/Γ

Test of lepton family number conservation. The value is for the sum of the charge states indicated.

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
$< 7.5 \times 10^{-7}$	95	AAD	14AU ATLS	$E_{cm}^{pp} = 8 \; TeV$
$< 2.5 \times 10^{-6}$	95	ABREU	97C DLPF	I <i>E</i> ee e 88–94 GeV
$< 1.7 \times 10^{-6}$	95	AKERS	95W OPAL	Eee 88–94 GeV
$< 0.6 \times 10^{-5}$	95	ADRIANI	93ı L3	E ^{ee} _{cm} = 88–94 GeV
$< 2.6 \times 10^{-5}$	95	DECAMP	92 ALEP	$E_{\rm cm}^{\it ee}=$ 88–94 GeV

 $\Gamma(e^{\pm}\mu^{\mp})/\Gamma(e^{+}e^{-})$

 Γ_{55}/Γ_{1}

Test of lepton family number conservation. The value is for the sum of the charge states indicated.

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	<u>COMMENT</u>
<0.07	90	ALBAJAR	89	UA1	$E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV

$\Gamma(e^{\pm}\tau^{\mp})/\Gamma_{\rm total}$

Test of lepton family number conservation. The value is for the sum of the charge states indicated.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 2.2 \times 10^{-5}$	95	ABREU	97 C	DLPH	E ^{ee} _{cm} = 88–94 GeV
$<9.8 \times 10^{-6}$	95	AKERS	95W	OPAL	E ^{ee} _{cm} = 88–94 GeV
$< 1.3 \times 10^{-5}$	95	ADRIANI	931	L3	<i>E</i> ^{ee} _{cm} = 88−94 GeV
$< 1.2 \times 10^{-4}$	95	DECAMP	92	ALEP	$E_{cm}^{ee} = 88-94 \text{ GeV}$

 $\Gamma(\mu^{\pm}\tau^{\mp})/\Gamma_{\mathsf{total}}$

Test of lepton family number conservation. The value is for the sum of the charge states indicated.

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$< 1.2 \times 10^{-5}$	95	ABREU	97C	DLPH	E ^{ee} _{cm} = 88–94 GeV
$< 1.7 \times 10^{-5}$	95	AKERS	95W	OPAL	E ^{ee} _{cm} = 88–94 GeV
$< 1.9 \times 10^{-5}$	95	ADRIANI	931	L3	E ^{ee} _{cm} = 88–94 GeV
$< 1.0 \times 10^{-4}$	95	DECAMP	92	ALEP	$E_{cm}^{ee} = 88-94 \text{ GeV}$

 $\Gamma(pe)/\Gamma_{\text{total}}$ Γ_{58}/Γ

Test of baryon number and lepton number conservations. Charge conjugate states are implied.

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$< 1.8 \times 10^{-6}$	95	¹ ABBIENDI	991	OPAL	$E_{cm}^{ee} = 88-94 \text{ GeV}$

¹ ABBIENDI 991 give the 95%CL limit on the partial width $\Gamma(Z^0 \to pe)$ < 4.6 KeV and we have transformed it into a branching ratio.

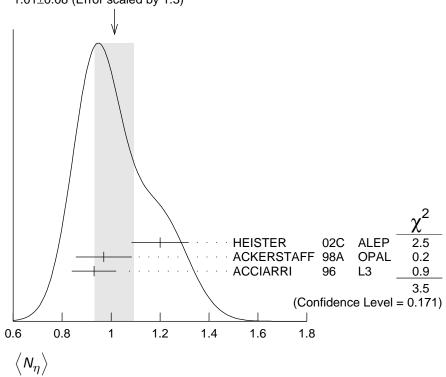
 $\Gamma(p\mu)/\Gamma_{\mathsf{total}}$ $\Gamma_{\mathsf{59}}/\Gamma$

Test of baryon number and lepton number conservations. Charge conjugate states are implied.

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$< 1.8 \times 10^{-6}$	95	¹ ABBIENDI	991	OPAL	E ^{ee} _{cm} = 88–94 GeV

 $^{^1}$ ABBIENDI 991 give the 95%CL limit on the partial width $\Gamma(Z^0\to p\mu)<$ 4.4 KeV and we have transformed it into a branching ratio.

AVERAGE PARTICLE MULTIPLICITIES IN HADRONIC Z DECAY


Summed over particle and antiparticle, when appropriate.

$\langle N_{\gamma} \rangle$				
VALUE	DOCUMENT ID		TECN	COMMENT
$20.97 \pm 0.02 \pm 1.15$	ACKERSTAFF	98A	OPAL	E ^{ee} _{cm} = 91.2 GeV
$\langle \textit{N}_{\pi^\pm} angle$				
VALUE	DOCUMENT ID		TECN	COMMENT
17.03 \pm 0.16 OUR AVERAGE				
17.007 ± 0.209	ABE	04 C	SLD	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$
$17.26 \pm 0.10 \pm 0.88$	ABREU	98L	DLPH	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$
17.04 ± 0.31	BARATE	98V	ALEP	$E_{cm}^{ee} = 91.2 \; GeV$
17.05 ± 0.43	AKERS	94 P	OPAL	$E_{\mathrm{cm}}^{\mathit{ee}} = 91.2 \; \mathrm{GeV}$
$\langle N_{\pi^0} \rangle$				
VALUE	DOCUMENT ID		TECN	COMMENT
9.76±0.26 OUR AVERAGE				
$9.55\pm0.06\pm0.75$	ACKERSTAFF	98A	OPAL	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$
$9.63\!\pm\!0.13\!\pm\!0.63$	BARATE	97J	ALEP	$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$
$9.90\pm0.02\pm0.33$	ACCIARRI	96	L3	$E_{\rm cm}^{\rm ee}=91.2~{\rm GeV}$
$9.2 \pm 0.2 \pm 1.0$	ADAM	96	DLPH	$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$

 $\langle N_{\eta} \rangle$

VALUEDOCUMENT IDTECNCOMMENT1.01 \pm 0.08 OUR AVERAGEError includes scale factor of 1.3. See the ideogram below. $1.20 \pm 0.04 \pm 0.11$ HEISTER02C ALEP $E_{\rm cm}^{ee} = 91.2 \text{ GeV}$ $0.97 \pm 0.03 \pm 0.11$ ACKERSTAFF 98A OPAL $E_{\rm cm}^{ee} = 91.2 \text{ GeV}$ $0.93 \pm 0.01 \pm 0.09$ ACCIARRI 96 L3 $E_{\rm cm}^{ee} = 91.2 \text{ GeV}$

$\langle N_{ ho^{\pm}} angle$

VALUE	DOCUMENT ID		TECN	COMMENT
2.57±0.15 OUR AVER	AGE			
$2.59\!\pm\!0.03\!\pm\!0.16$	$^{ m 1}$ BEDDALL	09		ALEPH archive, E_{cm}^{ee} = 91.2 GeV
$2.40\!\pm\!0.06\!\pm\!0.43$	ACKERSTAFF	98A	OPAL	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$

 $^{^1}$ BEDDALL 09 analyse 3.2 million hadronic Z decays as archived by ALEPH collaboration and report a value of 2.59 \pm 0.03 \pm 0.15 \pm 0.04. The first error is statistical, the second systematic, and the third arises from extrapolation to full phase space. We combine the systematic errors in quadrature.

$\langle N_{\rho^0} \rangle$

<u>VALUE</u>	DOCUMENT ID	TECN	COMMENT
1.24 ± 0.10 OUR AVERAGE	Error includes scale fa		
1.19 ± 0.10	ABREU	99J DLPH	$E_{cm}^{\mathit{ee}} = 91.2 \; GeV$
$1.45 \pm 0.06 \pm 0.20$	BUSKULIC	96н ALEP	$E_{cm}^{\mathit{ee}} = 91.2 \; GeV$

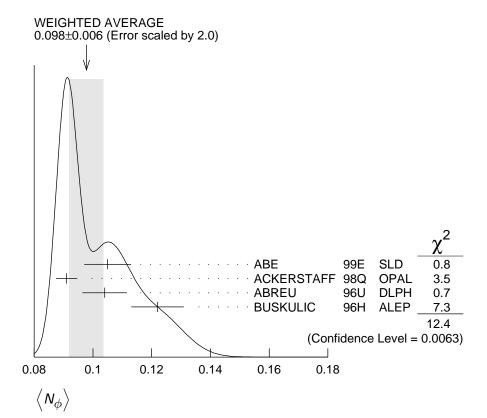
$\langle \textit{N}_{\omega} angle$						
VALUE	DOCUMENT ID	TECN	COMMENT			
1.02±0.06 OUR AVERAGE	LIEICTED 00	c ALED	F66 01 0 C V			
$1.00 \pm 0.03 \pm 0.06$			$E_{\rm cm}^{\rm ee} = 91.2 \text{ GeV}$			
$1.04 \pm 0.04 \pm 0.14$	ACKERSTAFF 98		CITI			
$1.17 \pm 0.09 \pm 0.15$	ACCIARRI 97	D L3	E _{cm} = 91.2 GeV			
$\langle N_{\eta'} \rangle$						
VALUE	DOCUMENT ID					
0.17 ± 0.05 OUR AVERAGE	Error includes scale fac					
$0.14 \pm 0.01 \pm 0.02$	ACKERSTAFF 98					
0.25 ± 0.04			$E_{cm}^{ee} = 91.2 \; GeV$			
• • • We do not use the follow	ring data for averages, fi	ts, limits,	etc. • • •			
$0.068\!\pm\!0.018\!\pm\!0.016$	² BUSKULIC 92	D ALEP	$E_{ m cm}^{\it ee} =$ 91.2 GeV			
1 ACCIARRI 97D obtain this value averaging over the two decay channels $\eta'\to\pi^+\pi^-\eta$ and $\eta'\to\rho^0\gamma.$ 2 BUSKULIC 92D obtain this value for x> 0.1.						
$\langle N_{f_0(980)} \rangle$						
VALUE	DOCUMENT ID	TECN	COMMENT			
0.147±0.011 OUR AVERAGE	ADDELL	. DI DII	566 01 0 C V			
0.164 ± 0.021			$E_{\rm cm}^{\rm ee}$ = 91.2 GeV			
$0.141 \pm 0.007 \pm 0.011$	ACKERSTAFF 98	Q OPAL	$E_{\rm cm}^{\rm ce} = 91.2 \text{ GeV}$			
$\langle N_{a_0(980)^{\pm}} \rangle$						
VALUE	DOCUMENT ID					
$0.27 \pm 0.04 \pm 0.10$	ACKERSTAFF 98	a OPAL	$E_{cm}^{\mathit{ee}} = 91.2 \; GeV$			
$\langle N_{m{\phi}} angle$						
VALUE	DOCUMENT ID					
0.098±0.006 OUR AVERAGE	Error includes scale fac	tor of 2.0.	See the ideogram below.			

ABE

BUSKULIC

 0.105 ± 0.008

 $0.091 \pm 0.002 \pm 0.003$ $0.104\pm0.003\pm0.007$


 $0.122\pm0.004\pm0.008$

 $E_{\mathrm{cm}}^{\mathit{ee}} = 91.2 \; \mathrm{GeV}$

99E SLD

ACKERSTAFF 98Q OPAL $E_{\text{cm}}^{ee} = 91.2 \text{ GeV}$ ABREU 96U DLPH $E_{\text{cm}}^{ee} = 91.2 \text{ GeV}$

96H ALEP E_{cm}^{ee} = 91.2 GeV

$\langle N_{f_2(1270)}$	>
\ 12(1210)	,

VALUE	DOCUMENT ID	TECN	COMMENT
0.169 ± 0.025 OUR AVERAGE	Error includes scale fa	actor of 1.4.	
0.214 ± 0.038	ABREU 9	99J DLPH	$E_{ m cm}^{ m ee}=91.2~{ m GeV}$
$0.155 \pm 0.011 \pm 0.018$	ACKERSTAFF 9	98Q OPAL	$E_{ m cm}^{ m ee}=91.2~{ m GeV}$
$\langle N_{f_1(1285)} angle$	DOCUMENT ID	<u>TECN</u>	<u>COMMENT</u>
0.165 ± 0.051	¹ ABDALLAH (ЭЗН DLPH	$E_{cm}^{ee} = 91.2 \; GeV$

 $^{^{1}}$ ABDALLAH 03H assume a $K\overline{K}\pi$ branching ratio of (9.0 \pm 0.4)%.

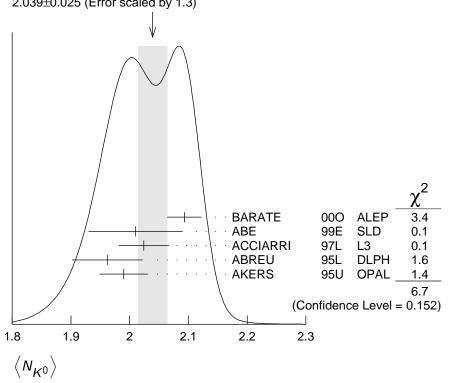
$\left< N_{f_1(1420)} \right>$

VALUEDOCUMENT IDTECNCOMMENT $\mathbf{0.056 \pm 0.012}$ 1 ABDALLAH03HDLPH $E_{cm}^{ee} = 91.2 \text{ GeV}$

$\langle N_{f_2'(1525)} \rangle$

VALUEDOCUMENT IDTECNCOMMENT 0.012 ± 0.006 ABREU99JDLPH $E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$

¹ ABDALLAH 03H assume a $K\overline{K}\pi$ branching ratio of 100%.


$\langle {\rm N}_{\rm K^{\pm}} \rangle$

VALUE	DOCUMENT ID		TECN	COMMENT
2.24 \pm 0.04 OUR AVERAGE				
2.203 ± 0.071	ABE	0 4C	SLD	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$
$2.21 \pm 0.05 \pm 0.05$	ABREU	98L	DLPH	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$
2.26 ± 0.12	BARATE	98V	ALEP	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$
2.42 ± 0.13	AKERS	94 P	OPAL	$E_{cm}^{\mathit{ee}} = 91.2 \; GeV$

$\langle \mathit{N_{K^0}} \rangle$

VALUE	DOCUMENT ID		TECN	COMMENT
2.039 ± 0.025 OUR AVERAGE	Error includes scale	factor	of 1.3.	See the ideogram below.
$2.093 \pm 0.004 \pm 0.029$	BARATE	000	ALEP	$E_{ m cm}^{\it ee} = 91.2 \; { m GeV}$
2.01 ± 0.08	ABE	99E	SLD	$E_{ m cm}^{\it ee} = 91.2 \; { m GeV}$
$2.024 \pm 0.006 \pm 0.042$	ACCIARRI	97L	L3	$E_{ m cm}^{\it ee} = 91.2 \; { m GeV}$
$1.962 \pm 0.022 \pm 0.056$	ABREU	95L	DLPH	$E_{ m cm}^{\it ee} = 91.2 \; { m GeV}$
$1.99 \pm 0.01 \pm 0.04$	AKERS	95 U	OPAL	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$

WEIGHTED AVERAGE 2.039±0.025 (Error scaled by 1.3)

$\langle N_{K^*(892)^\pm} angle$

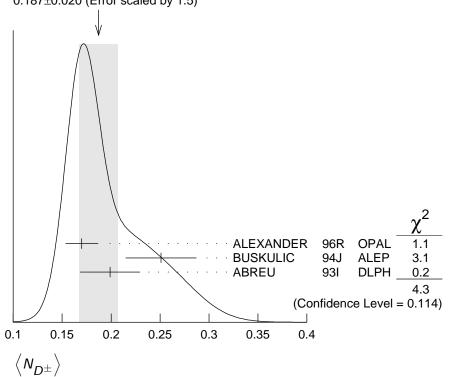
<u>VALUE</u>	<u>DOCUMENT ID</u>		TECN	COMMENT
0.72 ±0.05 OUR AVERAGE				
$0.712 \pm 0.031 \pm 0.059$	ABREU	95L	DLPH	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$
$0.72\ \pm0.02\ \pm0.08$	ACTON	93	OPAL	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$

$\langle N_{K^*(892)^0} \rangle$

VALUE	DOCUMENT ID		TECN	COMMENT
0.739 ± 0.022 OUR AVERAGE				
0.707 ± 0.041	ABE	99E	SLD	$E_{ m cm}^{\it ee}=$ 91.2 GeV
$0.74 \pm 0.02 \pm 0.02$	ACKERSTAFF	97 S	OPAL	$E_{ m cm}^{ m ee}=$ 91.2 GeV
$0.77 \pm 0.02 \pm 0.07$	ABREU	96 U	DLPH	$E_{ m cm}^{ m ee}=$ 91.2 GeV
$0.83 \pm 0.01 \pm 0.09$	BUSKULIC	96н	ALEP	$E_{ m cm}^{ m ee}=$ 91.2 GeV
$0.97\ \pm0.18\ \pm0.31$	ABREU	93	DLPH	$E_{ m cm}^{\it ee} = 91.2 \; { m GeV}$

$\left< N_{K_2^*(1430)} \right>$

<u>VALUE</u>	DOCUMENT ID		TECN	<u>COMMENT</u>
0.073±0.023	ABREU	99J	DLPH	$E_{\rm cm}^{ee} = 91.2 \text{ GeV}$


ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

$\langle N_{D^{\pm}} \rangle$

VALUE	DOCUMENT ID		TECN	COMMENT
0.187 ± 0.020 OUR AVERAGE	Error includes scale	factor	of 1.5.	See the ideogram below.
$0.170\pm0.009\pm0.014$	ALEXANDER	96R	OPAL	$E_{cm}^{ee} = 91.2 \; GeV$
$0.251 \pm 0.026 \pm 0.025$	BUSKULIC	94J	ALEP	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$
$0.199 \pm 0.019 \pm 0.024$	¹ ABREU	931	DLPH	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$

¹See ABREU 95 (erratum).

WEIGHTED AVERAGE 0.187±0.020 (Error scaled by 1.5)

HTTP://PDG.LBL.GOV

Page 28

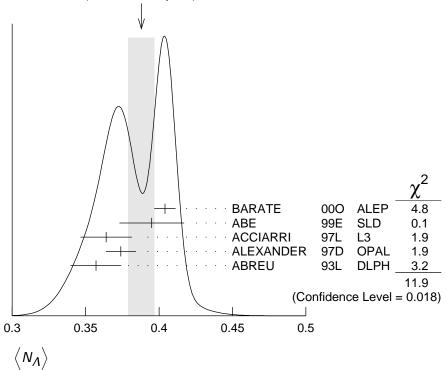
⁹⁵X OPAL $E_{cm}^{ee} = 91.2 \text{ GeV}$ $0.19 \ \pm 0.04 \ \pm 0.06$

 $^{^{1}}$ AKERS 95X obtain this value for x < 0.3.

$\langle N_{D^0} \rangle$				
VALUE	DOCUMENT ID		TECN	COMMENT
0.462 ± 0.026 OUR AVERAGE	ALEVANDED	065	ODAL	F66 01 0 C V
$0.465 \pm 0.017 \pm 0.027$				$E_{\text{cm}}^{\text{ee}} = 91.2 \text{ GeV}$ $E_{\text{cm}}^{\text{ee}} = 91.2 \text{ GeV}$
$0.518 \pm 0.052 \pm 0.035$	BUSKULIC ¹ ABREU			
$0.403 \pm 0.038 \pm 0.044$	- ABREU	931	DLPH	E ^{ee} _{cm} = 91.2 GeV
¹ See ABREU 95 (erratum).				
$\langle N_{D_{\pmb{s}}^{\pm}} angle$				
VALUE	DOCUMENT ID			
$0.131 \pm 0.010 \pm 0.018$	ALEXANDER	96 R	OPAL	$E_{cm}^{ee} = 91.2 \; GeV$
$\langle N_{D^*(2010)^{\pm}} \rangle$				
0.183 ±0.008 OUR AVERAGE	<u>DOCUMENT ID</u>		<u>TECN</u>	COMMENI
$0.1854 \pm 0.0041 \pm 0.0091$	¹ ACKERSTAFF	98E	OPAL	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$
$0.187 \pm 0.015 \pm 0.013$				$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$
$0.171 \pm 0.012 \pm 0.016$	² ABREU	931	DLPH	$E_{\rm cm}^{ee} = 91.2 \text{ GeV}$
¹ ACKERSTAFF 98E systemati	c error includes a	n unc	ertainty	of ± 0.0069 due to the
branching ratios B($D^{*+} \rightarrow D$ 0.0012. ² See ABREU 95 (erratum).	$(0\pi^{+}) = 0.683 \pm 0.$	014 a	nd B(<i>D</i> ⁽	$(0.0383 \pm 0.0383 \pm 0.0384 \pm $
$\langle N_{D_{s1}(2536)^+} \rangle$				
VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following	g data for averages	, fits,	limits, e	etc. • • •
$2.9^{igoplus 0.7}_{-0.6} \pm 0.2$	¹ ACKERSTAFF	97W	OPAL	E _{cm} ^{ee} = 91.2 GeV
$2.9^{+0.7}_{-0.6}\pm0.2$ ACKERSTAFF 97W obtain the width is saturated by the D^* I	is value for $x > 0.6$			E ^{ee} _{cm} = 91.2 GeV
¹ ACKERSTAFF 97W obtain this width is saturated by the <i>D* I</i>	is value for $x > 0.6$			E ^{ee} _{cm} = 91.2 GeV
¹ ACKERSTAFF 97W obtain th	is value for $x>0.6$ K final states.	and w	vith the s	$E_{ m cm}^{ee} = 91.2~{ m GeV}$ assumption that its decay
¹ ACKERSTAFF 97W obtain thi width is saturated by the <i>D* I</i> $\langle N_{B^*} \rangle$	is value for $x>0.6$ K final states.	and w	vith the s	$E_{ extsf{Cm}}^{ee} = 91.2 \; extsf{GeV}$ assumption that its decay
1 ACKERSTAFF 97W obtain the width is saturated by the <i>D* I</i> (N _{B*}) VALUE	is value for $x>0.6$ % final states. $\frac{DOCUMENT\ ID}{1\ ABREU}$	and w	vith the sound of	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$ assumption that its decay $\frac{\it COMMENT}{\it E_{ m cm}^{\it ee}}=91.2~{ m GeV}$
1 ACKERSTAFF 97W obtain this width is saturated by the <i>D* I</i> (<i>N_{B*}</i>) VALUE 0.28±0.01±0.03	is value for x> 0.6 K final states. DOCUMENT ID ABREU for a flavor-average	95R	vith the and the state of the s	$E_{ m cm}^{ m ee}=91.2~{ m GeV}$ assumption that its decay $\frac{{ m COMMENT}}{{ m Ecm}^{ m ee}}=91.2~{ m GeV}$ i.e.
1 ACKERSTAFF 97W obtain this width is saturated by the <i>D* I</i> (<i>N_{B*}</i>) VALUE 0.28±0.01±0.03 1 ABREU 95R quote this value of (<i>N_{J/ψ(15)}</i>) VALUE	is value for x> 0.6 K final states. DOCUMENT ID ABREU for a flavor-average	95R	vith the and the state of the s	$E_{ m cm}^{ m ee}=91.2~{ m GeV}$ assumption that its decay $\frac{{ m COMMENT}}{{ m Ecm}^{ m ee}}=91.2~{ m GeV}$ i.e.
1 ACKERSTAFF 97W obtain this width is saturated by the <i>D* II</i> (<i>N_{B*}</i>) VALUE 0.28±0.01±0.03 1 ABREU 95R quote this value of (<i>N_{J/ψ(15)}</i>) VALUE 0.0056±0.0003±0.0004	is value for x> 0.6 X final states. DOCUMENT ID ABREU for a flavor-average DOCUMENT ID ALEXANDER	95R ed exc	TECN DLPH ited stat	$E_{ m cm}^{ m ee}=91.2~{ m GeV}$ assumption that its decay $\frac{COMMENT}{E_{ m cm}^{ m ee}}=91.2~{ m GeV}$ e. $\frac{COMMENT}{E_{ m cm}^{ m ee}}=91.2~{ m GeV}$
1 ACKERSTAFF 97W obtain this width is saturated by the <i>D* I</i> (<i>N_{B*}</i>) VALUE 0.28±0.01±0.03 1 ABREU 95R quote this value of (<i>N_{J/ψ(15)}</i>) VALUE	is value for x> 0.6 X final states. DOCUMENT ID ABREU for a flavor-average DOCUMENT ID ALEXANDER	95R ed exc	TECN DLPH ited stat	$E_{ m cm}^{ m ee}=91.2~{ m GeV}$ assumption that its decay $\frac{COMMENT}{E_{ m cm}^{ m ee}}=91.2~{ m GeV}$ e. $\frac{COMMENT}{E_{ m cm}^{ m ee}}=91.2~{ m GeV}$
1 ACKERSTAFF 97W obtain this width is saturated by the D^* N_{B^*} N_{B^*} N_{AUE} 0.28±0.01±0.03 1 ABREU 95R quote this value N_{AUE}	is value for $x>0.6$ K final states. $\frac{DOCUMENT\ ID}{1\ ABREU}$ for a flavor-average $\frac{DOCUMENT\ ID}{1\ ALEXANDER}$ $\psi(1S)$ from the de	95R ed exc	TECN DLPH ited stat TECN OPAL nto lepto	$E_{ m cm}^{ee}=91.2~{ m GeV}$ assumption that its decay $\frac{COMMENT}{E_{ m cm}^{ee}}=91.2~{ m GeV}$ i.e. $\frac{COMMENT}{E_{ m cm}^{ee}}=91.2~{ m GeV}$ on pairs.
1 ACKERSTAFF 97W obtain this width is saturated by the D* II \(\mathbb{N}_{\mathbb{B}*}\) \(\mathbb{N}_{\mathbb{B}*}\) \(\mathbb{N}_{\mathbb{B}*}\) \(\mathbb{N}_{\mathbb{A}UE}\) 0.28\pm 0.01\pm 0.03 1 ABREU 95R quote this value is \(\mathbb{N}_{\mathbb{J}/\psi}(15)\) \(\mathbb{N}_{\mathbb{A}UE}\) 0.0056\pm 0.0003\pm 0.0004 1 ALEXANDER 96B identify J/	is value for $x>0.6$ K final states. $\frac{DOCUMENT\ ID}{1\ ABREU}$ for a flavor-average $\frac{DOCUMENT\ ID}{1\ ALEXANDER}$ $\psi(1S)$ from the de	95R ed exce	TECN DLPH ited stat TECN OPAL nto lepto	$E_{ m cm}^{ m ee}=91.2~{ m GeV}$ assumption that its decay $\frac{COMMENT}{E_{ m cm}^{ m ee}}=91.2~{ m GeV}$ e. $\frac{COMMENT}{E_{ m cm}^{ m ee}}=91.2~{ m GeV}$

$\langle N_p \rangle$

VALUE	DOCUMENT ID		TECN	COMMENT
1.046±0.026 OUR AVERAGE				
1.054 ± 0.035	ABE	04 C	SLD	$E_{ m cm}^{\it ee} = 91.2 \; { m GeV}$
$1.08 \pm 0.04 \pm 0.03$	ABREU	98L	DLPH	$E_{ m cm}^{\it ee} = 91.2 \; { m GeV}$
1.00 ± 0.07	BARATE	98V	ALEP	$E_{ m cm}^{\it ee} = 91.2 \; { m GeV}$
0.92 ± 0.11	AKERS	94 P	OPAL	$E_{ m cm}^{\it ee} = 91.2 \; { m GeV}$


$\langle N_{\Delta(1232)^{++}} \rangle$

<u>VALUE</u>	<u>DOCUMENT ID</u>	TECN	COMMENT
0.087 ± 0.033 OUR AVERAGE	Error includes scale fa	actor of 2.4.	
$0.079 \pm 0.009 \pm 0.011$	ABREU	95w DLPH	$E_{ m cm}^{\it ee} = 91.2 \; { m GeV}$
$0.22 \pm 0.04 \pm 0.04$	ALEXANDER	95D OPAL	$E_{cm}^{ee} = 91.2 \; GeV$

$\langle N_A \rangle$

<u>VALUE</u>	<u>DOCUMENT ID</u>		TECN	COMMENT
0.388 ± 0.009 OUR AVERAGE	Error includes scale	factor	of 1.7.	See the ideogram below.
$0.404 \pm 0.002 \pm 0.007$	BARATE	000	ALEP	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$
0.395 ± 0.022	ABE	99E	SLD	$E_{ m cm}^{ m ee}=$ 91.2 GeV
$0.364 \pm 0.004 \pm 0.017$	ACCIARRI	97L	L3	$E_{ m cm}^{ m ee}=$ 91.2 GeV
$0.374 \pm 0.002 \pm 0.010$	ALEXANDER	97 D	OPAL	$E_{ m cm}^{ m ee}=$ 91.2 GeV
$0.357 \pm 0.003 \pm 0.017$	ABREU	93L	DLPH	$E_{\rm cm}^{\it ee}=91.2~{\rm GeV}$

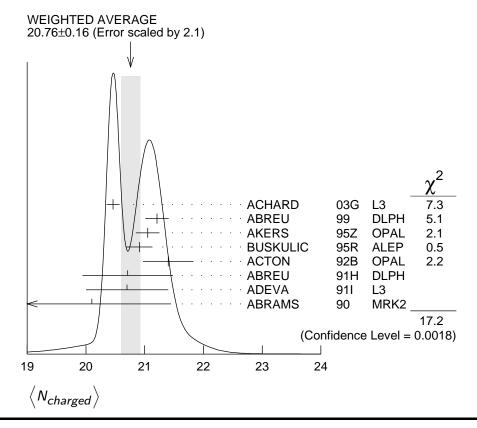
WEIGHTED AVERAGE 0.388±0.009 (Error scaled by 1.7)

$\langle N_{\Lambda(1520)} \rangle$

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
0.0224 ± 0.0027 OUR AVERAGE				
$0.029 \pm 0.005 \pm 0.005$	ABREU	00P	DLPH	$E_{ m cm}^{ m ee}=$ 91.2 GeV
$0.0213 \pm 0.0021 \pm 0.0019$	ALEXANDER	97 D	OPAL	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$
$\langle N_{\Sigma^+} angle$				
VALUE	DOCUMENT ID		TECN	COMMENT
0.107 ± 0.010 OUR AVERAGE				
$0.114 \pm 0.011 \pm 0.009$	ACCIARRI	001	L3	$E_{ m cm}^{\it ee}=$ 91.2 GeV
$0.099 \pm 0.008 \pm 0.013$	ALEXANDER	97E	OPAL	$E_{ m cm}^{ m ee}=$ 91.2 GeV
$\langle N_{\Sigma^{-}} \rangle$				
VALUE	DOCUMENT ID		TECN	COMMENT
0.082±0.007 OUR AVERAGE	<u>DOCUMENT ID</u>		<u>TECN</u>	COMMENT
	ABREU			$E_{\rm cm}^{ee} = 91.2 \text{ GeV}$
0.082±0.007 OUR AVERAGE	ABREU	00P	DLPH	
0.082±0.007 OUR AVERAGE 0.081±0.002±0.010	ABREU	00P	DLPH	<i>E</i> _{cm} = 91.2 GeV
0.082 \pm 0.007 OUR AVERAGE 0.081 \pm 0.002 \pm 0.010 0.083 \pm 0.006 \pm 0.009 $\langle N_{\Sigma^{+}+\Sigma^{-}} \rangle_{VALUE}$	ABREU ALEXANDER	00P 97E	DLPH OPAL	E ^{ee} _{Cm} = 91.2 GeV E ^{ee} _{Cm} = 91.2 GeV

 $^{^1\}text{We}$ have combined the values of $\langle \textit{N}_{\sum^+}\rangle$ and $\langle \textit{N}_{\sum^-}\rangle$ from ALEXANDER 97E adding the statistical and systematic errors of the two final states separately in quadrature. If isospin symmetry is assumed this value becomes $0.174\pm0.010\pm0.015$.

$\langle N_{\Sigma^0} \rangle$


VALUE	DOCUMENT ID		TECN	COMMENT
0.076±0.010 OUR AVERAGE				
$0.095 \pm 0.015 \pm 0.013$	ACCIARRI	001	L3	$E_{ m cm}^{\it ee}=$ 91.2 GeV
$0.071 \pm 0.012 \pm 0.013$	ALEXANDER	97E	OPAL	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$
$0.070 \pm 0.010 \pm 0.010$	ADAM	96 B	DLPH	E ^{ee} _{cm} = 91.2 GeV
$\langle N_{(\Sigma^+ + \Sigma^- + \Sigma^0)/3} \rangle$				
VALUE	DOCUMENT ID		TECN	COMMENT
$0.084 \pm 0.005 \pm 0.008$	ALEXANDER 97E		OPAL	$E_{ m cm}^{\it ee}=$ 91.2 GeV
$\langle N_{oldsymbol{\Sigma}(1385)^+} angle$				
VALUE	DOCUMENT ID		TECN	COMMENT
$0.0239 \pm 0.0009 \pm 0.0012$	ALEXANDER	97 D	OPAL	$E_{ m cm}^{\it ee} = 91.2 \; { m GeV}$
$\langle N_{\Sigma(1385)^{-}} \rangle$	DOCUMENT ID		T= CN	COMMENT
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
$0.0240 \pm 0.0010 \pm 0.0014$	ALEXANDER	97 D	OPAL	E ^{ee} _{cm} = 91.2 GeV

$\langle N_{\Sigma(1385)^++\Sigma(1385)^-} angle$	DOCUMENT ID		TECN	COMMENT
0.046 ±0.004 OUR AVERAGE	Error includes sca			
$0.0479 \pm 0.0013 \pm 0.0026$	ALEXANDER	97 D	OPAL	$E_{\mathrm{cm}}^{\mathrm{ee}} = 91.2 \; \mathrm{GeV}$
$0.0382\!\pm\!0.0028\!\pm\!0.0045$	ABREU	950	DLPH	$E_{ m cm}^{\it ee}=91.2~{ m GeV}$
⟨N ₌ -⟩ VALUE	DOCUMENT ID		TECN	COMMENT
0.0258±0.0009 OUR AVERAGE				
$0.0247\!\pm\!0.0009\!\pm\!0.0025$	ABDALLAH	06E	DLPH	$E_{cm}^{ee} = 91.2 \; GeV$
$0.0259\!\pm\!0.0004\!\pm\!0.0009$	ALEXANDER	97 D	OPAL	$E_{cm}^{ee} = 91.2 \; GeV$
⟨ N _{≡(1530)} ₀⟩	<u>DOCUMENT ID</u>		<u>TECN</u>	<u>COMMENT</u>
0.0059±0.0011 OUR AVERAGE	Error includes sca	ale fac	tor of 2.	3.
$0.0045 \pm 0.0005 \pm 0.0006$	ABDALLAH	05 C	DLPH	$E_{\mathrm{cm}}^{\mathrm{ee}} = 91.2 \; \mathrm{GeV}$
$0.0068 \pm 0.0005 \pm 0.0004$	ALEXANDER	97 D	OPAL	$E_{\mathrm{cm}}^{\mathrm{ee}} = 91.2 \; \mathrm{GeV}$
$\langle N_{\Omega^-} \rangle$ VALUE	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>
0.00164 ± 0.00028 OUR AVERAGE				
$0.0018 \pm 0.0003 \pm 0.0002$	ALEXANDER			$E_{cm}^{ee} = 91.2 \; GeV$
$0.0014 \pm 0.0002 \pm 0.0004$	ADAM	96 B	DLPH	$E_{cm}^{ee} = 91.2 \; GeV$
$\langle N_{\Lambda_c^+} \rangle$				
VALUE	DOCUMENT ID			
$0.078 \pm 0.012 \pm 0.012$	ALEXANDER	96R	OPAL	E ^{ee} _{cm} = 91.2 GeV
$\langle N_{\overline{D}} \rangle$				
	DOCUMENT ID			
ullet $ullet$ We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
$5.9\!\pm\!1.8\!\pm\!0.5$	¹ SCHAEL	06A	ALEP	$E_{cm}^{ee} = 91.2 \; GeV$
1				

 $^{^1}$ SCHAEL 06A obtain this anti-deuteron production rate per hadronic Z decay in the anti-deuteron momentum range from 0.62 to 1.03 GeV/c.

$\langle N_{charged} \rangle$

VALUE	DOCUMENT ID	TECN	COMMENT
20.76±0.16 OUR AVERAGE	Error includes scale factor	of 2.1.	See the ideogram below.
$20.46 \pm 0.01 \pm 0.11$	ACHARD 03G	L3	$E_{cm}^{ee} = 91.2 \; GeV$
$21.21 \pm 0.01 \pm 0.20$	ABREU 99	DLPH	$E_{cm}^{\mathit{ee}} = 91.2 \; GeV$
21.05 ± 0.20	AKERS 95z	OPAL	$E_{cm}^{ee} = 91.2 \; GeV$
$20.91\!\pm\!0.03\!\pm\!0.22$	BUSKULIC 95R	ALEP	$E_{cm}^{ee} = 91.2 \; GeV$
21.40 ± 0.43	ACTON 92B	OPAL	$E_{cm}^{ee} = 91.2 \; GeV$
$20.71 \pm 0.04 \pm 0.77$	ABREU 91H	DLPH	$E_{cm}^{ee} = 91.2 \; GeV$
20.7 ± 0.7	ADEVA 91ı	L3	$E_{cm}^{ee} = 91.2 \; GeV$
$20.1 \pm 1.0 \pm 0.9$	ABRAMS 90	MRK2	$E_{cm}^{ee} = 91.1 \; GeV$

Z HADRONIC POLE CROSS SECTION

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). This quantity is defined as

$$\sigma_h^0 = \frac{12\pi}{M_Z^2} \, \frac{\Gamma(e^+ \, e^-) \, \Gamma(\text{hadrons})}{\Gamma_Z^2}$$

It is one of the parameters used in the Z lineshape fit.

VALUE (nb)	EVTS	DOCUMENT ID		TECN	COMMENT
41.541±0.037 OUR F	FIT T				
41.501 ± 0.055	4.10M	$^{ m 1}$ ABBIENDI	01 A	OPAL	E ^{ee} _{cm} = 88–94 GeV
41.578 ± 0.069	3.70M	ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV
41.535 ± 0.055	3.54M	ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
41.559 ± 0.058	4.07M	² BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV
ullet $ullet$ $ullet$ We do not use	the followin	g data for averages	s, fits,	limits, e	etc. • • •
42 ±4	450	ABRAMS	89 B	MRK2	E ^{ee} _{cm} = 89.2–93.0 GeV

¹ABBIENDI 01A error includes approximately 0.031 due to statistics, 0.033 due to event selection systematics, 0.029 due to uncertainty in luminosity measurement, and 0.011 due to LEP energy uncertainty.

²BARATE 00C error includes approximately 0.030 due to statistics, 0.026 due to experimental systematics, and 0.025 due to uncertainty in luminosity measurement.

Z VECTOR COUPLINGS

These quantities are the effective vector couplings of the Z to charged leptons. Their magnitude is derived from a measurement of the Z lineshape and the forward-backward lepton asymmetries as a function of energy around the Z mass. The relative sign among the vector to axial-vector couplings is obtained from a measurement of the Z asymmetry parameters, A_e , A_μ , and A_τ . By convention the sign of g_A^e is fixed to be negative (and opposite to that of g^{ν_e} obtained using ν_e scattering measurements). For the light quarks, the sign of the couplings is assigned consistently with this assumption. The fit values quoted below correspond to global nine- or five-parameter fits to lineshape, lepton forward-backward asymmetry, and A_e , A_μ , and A_τ measurements. See the note "The Z boson" and ref. LEP-SLC 06 for details. Where $p\bar{p}$ and ep data is quoted, OUR FIT value corresponds to a weighted average of this with the LEP/SLD fit result.

g	e V
5	V

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
-0.03817±0.00047 OUR FI	Т				
-0.058 ± 0.016 ± 0.007	5026	$^{ m 1}$ ACOSTA	05м	CDF	$E_{cm}^{p\overline{p}} = 1.96 \; TeV$
-0.0346 ± 0.0023	137.0K	² ABBIENDI	010	OPAL	E ^{ee} _{cm} = 88–94 GeV
-0.0412 ± 0.0027	124.4k	³ ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
-0.0400 ± 0.0037		BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV
$-0.0414\ \pm0.0020$		⁴ ABE	95 J	SLD	$E_{\rm cm}^{ee} = 91.31 \; {\rm GeV}$

¹ ACOSTA 05M determine the forward–backward asymmetry of e^+e^- pairs produced via $q \, \overline{q} \to Z/\gamma^* \to e^+e^-$ in 15 M(e^+e^-) effective mass bins ranging from 40 GeV to 600 GeV. These results are used to obtain the vector and axial–vector couplings of the Z to e^+e^- , assuming the quark couplings are as predicted by the standard model. Higher order radiative corrections have not been taken into account.

order radiative corrections have not been taken into account. 2 ABBIENDI 010 use their measurement of the τ polarization in addition to the lineshape and forward-backward lepton asymmetries.

 3 ACCIARRI 00C use their measurement of the au polarization in addition to forward-backward lepton asymmetries.

 4 ABE 95J obtain this result combining polarized Bhabha results with the A_{LR} measurement of ABE 94C. The Bhabha results alone give $-0.0507 \pm 0.0096 \pm 0.0020$.

${m g}_{m V}^{\mu}$

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
-0.0367 ± 0.0023 OUR	FIT				
$-0.0388 {}^{+ 0.0060}_{- 0.0064}$	182.8K	¹ ABBIENDI	010	OPAL	E ^{ee} _{cm} = 88–94 GeV
-0.0386 ± 0.0073	113.4k	² ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
$-0.0362\!\pm\!0.0061$		BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV
• • • We do not use the	he following	g data for averages	, fits,	limits, e	etc. • • •
$-0.0413\!\pm\!0.0060$	66143	³ ABBIENDI	01 K	OPAL	<i>E</i> ^{ee} _{cm} = 89−93 GeV

 $^{^1}$ ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

²ACCIARRI 00C use their measurement of the τ polarization in addition to forward-backward lepton asymmetries.

³ ABBIENDI 01K obtain this from an angular analysis of the muon pair asymmetry which takes into account effects of initial state radiation on an event by event basis and of initial-final state interference.

g	_
---	---

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
-0.0366 ± 0.0010 OUF	FIT				
-0.0365 ± 0.0023	151.5K	$^{ m 1}$ abbiendi	010	OPAL	$E_{\rm cm}^{\it ee}$ = 88–94 GeV
$-0.0384 \!\pm\! 0.0026$	103.0k	² ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
$-0.0361\!\pm\!0.0068$		BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV

 $^{^1}$ ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

g_V^ℓ

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
-0.03783 ± 0.00041 C	OUR FIT				
-0.0358 ± 0.0014	471.3K	¹ ABBIENDI	010	OPAL	E ^{ee} _{cm} = 88–94 GeV
-0.0397 ± 0.0020	379.4k	² ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV
-0.0397 ± 0.0017	340.8k	³ ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
-0.0383 ± 0.0018	500k	BARATE	00 C	ALEP	$E_{\rm cm}^{ee} = 88-94 \; {\rm GeV}$

 $^{^1}$ ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

g_V^u

- V								
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT			
0.18 ±0.05 OUR AVERAGE								
$0.144 ^{+ 0.066}_{- 0.058}$		¹ ABT	16					
$0.201\!\pm\!0.112$	156k	² ABAZOV	11 D	D0	$E_{cm}^{oldsymbol{p}\overline{oldsymbol{p}}}=1.97\;TeV$			
$0.24 \begin{array}{l} +0.28 \\ -0.11 \end{array}$		³ LEP-SLC	06		$E_{cm}^{\mathit{ee}} = 88 – 94 \; GeV$			
$0.399^{+0.152}_{-0.188}{\pm}0.066$	5026	⁴ ACOSTA	05м	CDF	$E_{cm}^{p\overline{p}} = 1.96 \; TeV$			
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$								
$0.14 \begin{array}{l} +0.09 \\ -0.09 \end{array}$		⁵ ABRAMOWIC						
0.27 ± 0.13	1500	⁶ AKTAS	06	H1	$e^{\pm} p ightarrow \; \overline{ u}_{m{e}}(u_{m{e}}) X, \ \sqrt{s} pprox 300 \; {\sf GeV}$			

 $^{^{1}}$ ABT 16 determine the Z^{0} couplings to u- and d-quarks using the same techniques and data as ABRAMOWICZ 16A but additionally use the published H1 polarised data.

 $^{^2}$ ACCIARRI 00C use their measurement of the au polarization in addition to forward-backward lepton asymmetries.

² Using forward-backward lepton asymmetries.

 $^{^3}$ ACCIARRI 00C use their measurement of the au polarization in addition to forward-backward lepton asymmetries.

 $^{^2}$ ABAZOV 11D study $p\overline{p}\to Z/\gamma^*e^+e^-$ events using 5 fb $^{-1}$ data at $\sqrt{s}=1.96$ TeV. The candidate events are selected by requiring two isolated electromagnetic showers with $E_T>25$ GeV, at least one electron in the central region and the di-electron mass in the range 50–1000 GeV. From the forward-backward asymmetry, determined as a function of the di-electron mass, they derive the axial and vector couplings of the u- and d- quarks and the value of $\sin^2\theta_{eff}^\ell=0.2309\pm0.0008(\text{stat})\pm0.0006(\text{syst})$.

³ LEP-SLC 06 is a combination of the results from LEP and SLC experiments using light quark tagging. s- and d-quark couplings are assumed to be identical.

⁴ ACOSTA 05M determine the forward-backward asymmetry of e^+e^- pairs produced via $q \overline{q} \rightarrow Z/\gamma^* \rightarrow e^+e^-$ in 15 M(e^+e^-) effective mass bins ranging from 40 GeV to

- 600 GeV. These results are used to obtain the vector and axial-vector couplings of the Z to the light quarks, assuming the electron couplings are as predicted by the Standard Model. Higher order radiative corrections have not been taken into account.
- 5 ABRAMOWICZ 16A determine the Z^0 couplings to u- and d-quarks using the ZEUS polarised data from Run II together with the unpolarised data from both ZEUS and H1 Collaborations for Run I and unpolarised H1 data from Run II.
- ⁶AKTAS 06 fit the neutral current (1.5 \leq Q² \leq 30,000 GeV²) and charged current (1.5 \leq Q² \leq 15,000 GeV²) differential cross sections. In the determination of the *u*-quark couplings the electron and *d*-quark couplings are fixed to their standard model values.

g V VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT				
-0.35 +0.05 OUR AVERAGE									
$-0.503 ^{+ 0.171}_{- 0.103}$		¹ ABT	16						
-0.351 ± 0.251	156k	² ABAZOV	11 D	D0	$E_{cm}^{ar{p}}=1.97\;TeV$				
$-0.33 \begin{array}{l} +0.05 \\ -0.07 \end{array}$		³ LEP-SLC	06		E ^{ee} _{cm} = 88–94 GeV				
$-0.226^{+0.635}_{-0.290}{\pm0.090}$	5026	⁴ ACOSTA	05м	CDF	$E_{cm}^{p\overline{p}} = 1.96 \; TeV$				
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$									
$-0.41 \begin{array}{l} +0.25 \\ -0.20 \end{array}$		⁵ ABRAMOWIC	Z16A	ZEUS					
-0.33 ± 0.33	1500	⁶ AKTAS	06	H1	$e^{\pm}p ightarrow \; \overline{ u}_{e}(u_{e})X, \ \sqrt{s} pprox 300 \; { m GeV}$				

 1 ABT 16 determine the Z^{0} couplings to u- and d-quarks using the same techniques and data as ABRAMOWICZ 16A but additionally use the published H1 polarised data.

- 2 ABAZOV 11D study $p\overline{p}\to Z/\gamma^*\,e^+\,e^-$ events using 5 fb $^{-1}$ data at $\sqrt{s}=1.96$ TeV. The candidate events are selected by requiring two isolated electromagnetic showers with $E_T>25$ GeV, at least one electron in the central region and the di-electron mass in the range 50–1000 GeV. From the forward-backward asymmetry, determined as a function of the di-electron mass, they derive the axial and vector couplings of the u- and d- quarks and the value of $\sin^2\!\theta_{eff}^\ell=0.2309\pm0.0008(\text{stat})\pm0.0006(\text{syst}).$
- ³LEP-SLC 06 is a combination of the results from LEP and SLC experiments using light quark tagging. s- and d-quark couplings are assumed to be identical.
- ⁴ ACOSTA 05M determine the forward-backward asymmetry of e^+e^- pairs produced via $q \overline{q} \rightarrow Z/\gamma^* \rightarrow e^+e^-$ in 15 M(e^+e^-) effective mass bins ranging from 40 GeV to 600 GeV. These results are used to obtain the vector and axial-vector couplings of the Z to the light quarks, assuming the electron couplings are as predicted by the Standard Model. Higher order radiative corrections have not been taken into account.
- 5 ABRAMOWICZ 16A determine the Z^0 couplings to $\emph{u-}$ and $\emph{d-}$ quarks using the ZEUS polarised data from Run II together with the unpolarised data from both ZEUS and H1 Collaborations for Run I and unpolarised H1 data from Run II.
- ⁶ AKTAS 06 fit the neutral current (1.5 \leq Q² \leq 30,000 GeV²) and charged current (1.5 \leq Q² \leq 15,000 GeV²) differential cross sections. In the determination of the *d*-quark couplings the electron and *u*-quark couplings are fixed to their standard model values.

Z AXIAL-VECTOR COUPLINGS

These quantities are the effective axial-vector couplings of the Z to charged leptons. Their magnitude is derived from a measurement of the Z lineshape and the forward-backward lepton asymmetries as a function of energy around the Z mass. The relative sign among the vector to axial-vector couplings is obtained from a measurement of the Z asymmetry parameters, A_e , A_μ , and A_τ . By convention the sign of g_A^e is fixed to be negative

(and opposite to that of $g^{\nu e}$ obtained using ν_e scattering measurements). For the light quarks, the sign of the couplings is assigned consistently with this assumption. The fit values quoted below correspond to global nine- or five-parameter fits to lineshape, lepton forward-backward asymmetry, and A_e , A_μ , and A_τ measurements. See the note "The Z boson" and ref. LEP-SLC 06 for details. Where $p\overline{p}$ and ep data is quoted, OUR FIT value corresponds to a weighted average of this with the LEP/SLD fit result.

g A				
<u>VALUE</u>	EVTS	DOCUMENT ID	TEC	N COMMENT
-0.50111 ± 0.00035 OUR FI	Т			
-0.528 ± 0.123 ± 0.059	5026	$^{ m 1}$ ACOSTA	05м CD	F $E_{cm}^{p\overline{p}} = 1.96 \; TeV$
-0.50062 ± 0.00062	137.0K	² ABBIENDI	010 OP	AL <i>E</i> _{cm} ^{ee} = 88–94 GeV
-0.5015 ± 0.0007	124.4k	³ ACCIARRI	00C L3	E ^{ee} _{cm} = 88–94 GeV
-0.50166 ± 0.00057		BARATE	00C ALI	EP <i>E</i> ^{ee} _{cm} = 88–94 GeV
-0.4977 ± 0.0045		⁴ ABE	95J SLE	$E_{\rm cm}^{ee} = 91.31 \; {\rm GeV}$

¹ ACOSTA 05M determine the forward–backward asymmetry of e^+e^- pairs produced via $q \overline{q} \rightarrow Z/\gamma^* \rightarrow e^+e^-$ in 15 M(e^+e^-) effective mass bins ranging from 40 GeV to 600 GeV. These results are used to obtain the vector and axial–vector couplings of the Z to e^+e^- , assuming the quark couplings are as predicted by the standard model. Higher order radiative corrections have not been taken into account.

order radiative corrections have not been taken into account. ABBIENDI 010 use their measurement of the τ polarization in addition to the lineshape and forward-backward lepton asymmetries.

${oldsymbol{g}}_{oldsymbol{\mathcal{A}}}^{\mu}$

O A									
VALUE		<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT			
-0.50120	±0.00054 OL	JR FIT							
-0.50117	± 0.00099	182.8K	¹ ABBIENDI	010	OPAL	E ^{ee} _{cm} = 88–94 GeV			
-0.5009	± 0.0014	113.4k	² ACCIARRI	00 C	L3	<i>E</i> ^{ee} _{cm} = 88−94 GeV			
-0.50046	± 0.00093		BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV			
• • We do not use the following data for averages, fits, limits, etc. • •									
-0.520	± 0.015	66143	³ ABBIENDI	01K	OPAL	$E_{cm}^{ee} = 89-93 \text{ GeV}$			

 $^{^{1}}$ ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape

 $^{^3}$ ACCIARRI 00C use their measurement of the au polarization in addition to forward-backward lepton asymmetries.

 $^{^4}$ ABE 95J obtain this result combining polarized Bhabha results with the A_{LR} measurement of ABE 94C. The Bhabha results alone give $-0.4968 \pm 0.0039 \pm 0.0027$.

and forward-backward lepton asymmetries. $^2\,\mathrm{ACCIARRI}\,$ 00C use their measurement of the τ polarization in addition to forward-

backward lepton asymmetries. ³ ABBIENDI 01K obtain this from an angular analysis of the muon pair asymmetry which takes into account effects of initial state radiation on an event by event basis and of initial-final state interference.

~	$\boldsymbol{\tau}$
8	Δ

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
-0.50204±0.00064 O	UR FIT				
-0.50165 ± 0.00124	151.5K	$^{ m 1}$ ABBIENDI	010	OPAL	E ^{ee} _{cm} = 88–94 GeV
$-0.5023\ \pm0.0017$	103.0k	² ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
-0.50216 ± 0.00100		BARATE	00 C	ALEP	$E_{\rm cm}^{ee} = 88-94 \; {\rm GeV}$

 $^{^1}$ ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

g_A^ℓ

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
-0.50123 ± 0.00026 O	UR FIT				
$-0.50089\!\pm\!0.00045$	471.3K	¹ ABBIENDI	010	OPAL	E ^{ee} _{cm} = 88–94 GeV
$-0.5007\ \pm0.0005$	379.4k	ABREU	00F	DLPH	E ^{ee} _{cm} = 88–94 GeV
$-0.50153\!\pm\!0.00053$	340.8k	² ACCIARRI	00 C	L3	E ^{ee} _{cm} = 88–94 GeV
-0.50150 ± 0.00046	500k	BARATE	00 C	ALEP	E ^{ee} _{cm} = 88–94 GeV

 $^{^1}$ ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

g_A^u

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT				
$0.50 \begin{array}{c} +0.04 \\ -0.05 \end{array}$ OUR AVERAGE									
$0.532 ^{igoplus 0.107}_{-0.063}$		¹ ABT	16						
$0.501\!\pm\!0.110$	156k	² ABAZOV	11 D	D0	$E_{cm}^{ar{p}}=1.97\;TeV$				
$0.47 \begin{array}{l} +0.05 \\ -0.33 \end{array}$		³ LEP-SLC	06		$E_{cm}^{\mathit{ee}} = 8894 \; GeV$				
$0.441^{igoplus 0.207}_{-0.173}\!\pm\!0.067$	5026	⁴ ACOSTA	05м	CDF	$E_{cm}^{p\overline{p}} = 1.96 \; TeV$				
• • • We do not use th	e following	data for averages	s, fits,	limits, e	etc. • • •				
$0.50 \begin{array}{l} +0.12 \\ -0.05 \end{array}$		⁵ ABRAMOWIC	Z16A	ZEUS					
0.57 ±0.08	1500	⁶ AKTAS	06	H1	$e^{\pm}p ightarrow \overline{ u}_{m{e}}(u_{m{e}})X, \ \sqrt{s} pprox 300 { m GeV}$				

 $^{^1}$ ABT 16 determine the Z^0 couplings to u- and d-quarks using the same techniques and data as ABRAMOWICZ 16A but additionally use the published H1 polarised data. 2 ABAZOV 11D study $p\overline{p} \to Z/\gamma^*\,e^+\,e^-$ events using 5 fb $^{-1}$ data at $\sqrt{s}=1.96$ TeV.

 $^{^2}$ ACCIARRI 00C use their measurement of the au polarization in addition to forward-backward lepton asymmetries.

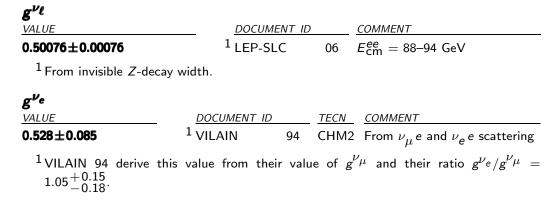
 $^{^2}$ ACCIARRI 00C use their measurement of the au polarization in addition to forward-backward lepton asymmetries.

 $^{^2}$ ABAZOV 11D study $p\overline{p}\to Z/\gamma^*\,e^+\,e^-$ events using 5 fb $^{-1}$ data at $\sqrt{s}=1.96$ TeV. The candidate events are selected by requiring two isolated electromagnetic showers with $E_T>25$ GeV, at least one electron in the central region and the di-electron mass in the range 50–1000 GeV. From the forward-backward asymmetry, determined as a function of the di-electron mass, they derive the axial and vector couplings of the u- and d- quarks and the value of $\sin^2\!\theta_{eff}^\ell=0.2309\pm0.0008(\text{stat})\pm0.0006(\text{syst}).$

³ LEP-SLC 06 is a combination of the results from LEP and SLC experiments using light quark tagging. s- and d-quark couplings are assumed to be identical.

⁴ ACOSTA 05M determine the forward-backward asymmetry of e^+e^- pairs produced via $q \overline{q} \rightarrow Z/\gamma^* \rightarrow e^+e^-$ in 15 M(e^+e^-) effective mass bins ranging from 40 GeV to

- 600 GeV. These results are used to obtain the vector and axial-vector couplings of the Z to the light quarks, assuming the electron couplings are as predicted by the Standard Model. Higher order radiative corrections have not been taken into account.
- 5 ABRAMOWICZ 16A determine the Z^0 couplings to u- and d-quarks using the ZEUS polarised data from Run II together with the unpolarised data from both ZEUS and H1 Collaborations for Run I and unpolarised H1 data from Run II.
- ⁶AKTAS 06 fit the neutral current (1.5 \leq Q² \leq 30,000 GeV²) and charged current (1.5 \leq Q² \leq 15,000 GeV²) differential cross sections. In the determination of the *u*-quark couplings the electron and *d*-quark couplings are fixed to their standard model values.


g A VALUE	<u>EVTS</u>	DOCUMENT ID		<u>TECN</u>	COMMENT				
$-0.514^{+0.050}_{-0.029}$ OUR AVERAGE									
$-0.409 {+0.373 \atop -0.213}$		¹ ABT	16						
$-0.497\!\pm\!0.165$	156k	² ABAZOV	11 D	D0	$E_{cm}^{p\overline{p}} = 1.97 \; TeV$				
$-0.52 \begin{array}{l} +0.05 \\ -0.03 \end{array}$		³ LEP-SLC	06		$E_{cm}^{\mathit{ee}} = 88 – 94 \; GeV$				
$-0.016^{+0.346}_{-0.536}\pm0.091$	5026	⁴ ACOSTA	05м	CDF	$E_{cm}^{p\overline{p}} = 1.96 \; TeV$				
• • • We do not use th	e following	data for averages	s, fits,	limits, e	etc. • • •				
$-0.56 \begin{array}{l} +0.41 \\ -0.15 \end{array}$		⁵ ABRAMOWIC	Z16A	ZEUS					
-0.80 ± 0.24	1500	⁶ AKTAS	06	H1	$e^{\pm} p ightarrow \overline{ u}_{e}(u_{e}) X, \ \sqrt{s} pprox 300 \; { m GeV}$				

- 1 ABT 16 determine the Z^{0} couplings to u- and d-quarks using the same techniques and data as ABRAMOWICZ 16A but additionally use the published H1 polarised data.
- 2 ABAZOV 11D study $p\overline{p}\to Z/\gamma^*\,e^+\,e^-$ events using 5 fb $^{-1}$ data at $\sqrt{s}=1.96$ TeV. The candidate events are selected by requiring two isolated electromagnetic showers with $E_T>25$ GeV, at least one electron in the central region and the di-electron mass in the range 50–1000 GeV. From the forward-backward asymmetry, determined as a function of the di-electron mass, they derive the axial and vector couplings of the u- and d- quarks and the value of $\sin^2\!\theta_{eff}^\ell=0.2309\pm0.0008(\text{stat})\pm0.0006(\text{syst}).$
- ³LEP-SLC 06 is a combination of the results from LEP and SLC experiments using light quark tagging. s- and d-quark couplings are assumed to be identical.
- ⁴ ACOSTA 05M determine the forward-backward asymmetry of e^+e^- pairs produced via $q\overline{q} \to Z/\gamma^* \to e^+e^-$ in 15 M(e^+e^-) effective mass bins ranging from 40 GeV to 600 GeV. These results are used to obtain the vector and axial-vector couplings of the Z to the light quarks, assuming the electron couplings are as predicted by the Standard Model. Higher order radiative corrections have not been taken into account.
- 5 ABRAMOWICZ 16A determine the Z^0 couplings to $\emph{u-}$ and $\emph{d-}$ quarks using the ZEUS polarised data from Run II together with the unpolarised data from both ZEUS and H1 Collaborations for Run I and unpolarised H1 data from Run II.
- ⁶AKTAS 06 fit the neutral current (1.5 \leq Q² \leq 30,000 GeV²) and charged current (1.5 \leq Q² \leq 15,000 GeV²) differential cross sections. In the determination of the *d*-quark couplings the electron and *u*-quark couplings are fixed to their standard model values.

..d

Z COUPLINGS TO NEUTRAL LEPTONS

Averaging over neutrino species, the invisible Z decay width determines the effective neutrino coupling $g^{\nu\ell}$. For g^{ν}_{e} and g^{ν}_{V} , $\nu_{e}e$ and $\nu_{\mu}e$ scattering results are combined with g^{e}_{A} and g^{e}_{V} measurements at the Z mass to obtain g^{ν}_{e} and g^{ν}_{μ} following NOVIKOV 93C.

Z ASYMMETRY PARAMETERS

For each fermion-antifermion pair coupling to the ${\it Z}$ these quantities are defined as

$$A_f = \frac{2g_V^f g_A^f}{(g_V^f)^2 + (g_A^f)^2}$$

where g_V^f and g_A^f are the effective vector and axial-vector couplings. For their relation to the various lepton asymmetries see the note "The Z boson" and ref. LEP-SLC 06.

A_e

Using polarized beams, this quantity can also be measured as $(\sigma_L - \sigma_R)/(\sigma_L + \sigma_R)$, where σ_L and σ_R are the e^+e^- production cross sections for Z bosons produced with left-handed and right-handed electrons respectively.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.1515±0.0019 OUR AVERA	AGE				
$0.1454 \pm 0.0108 \pm 0.0036$	144810	$^{ m 1}$ ABBIENDI	010	OPAL	Eee 88-94 GeV
0.1516 ± 0.0021	559000	² ABE	01 B	SLD	$E_{\rm cm}^{\it ee}=91.24~{\rm GeV}$
$0.1504 \pm 0.0068 \pm 0.0008$		³ HEISTER	01	ALEP	E ^{ee} _{cm} = 88–94 GeV
$0.1382 \!\pm\! 0.0116 \!\pm\! 0.0005$	105000	⁴ ABREU	00E	DLPH	E ^{ee} _{cm} = 88–94 GeV
HTTP://PDG.LBL.GOV	,	Page 40	Cre	eated: 5	5/30/2017 17:22

 $^{^1}$ VILAIN 94 derive this value from their measurement of the couplings $g_A^{e\,\nu_\mu}=-0.503\pm0.017$ and $g_V^{e\,\nu_\mu}=-0.035\pm0.017$ obtained from $\nu_\mu\,e$ scattering. We have re-evaluated this value using the current PDG values for g_A^e and g_V^e .

$0.1678 \pm 0.0127 \pm 0.0030$	137092	⁵ ACCIARRI	98н	L3	E ^{ee} _{cm} = 88–94 GeV
$0.162\ \pm0.041\ \pm0.014$	89838	⁶ ABE	97	SLD	$E_{cm}^{\mathit{ee}} = 91.27 \; GeV$
$0.202 \pm 0.038 \pm 0.008$		⁷ ABE	95J	SLD	$E_{cm}^{ee} = 91.31 \text{ GeV}$

 $^{^1}$ ABBIENDI 010 fit for A_e and $A_ au$ from measurements of the au polarization at varying au production angles. The correlation between A_e and $A_{ au}$ is less than 0.03.

 $^7\mathrm{ABE}$ 95J obtain this result from polarized Bhabha scattering.

This quantity is directly extracted from a measurement of the left-right forwardbackward asymmetry in $\mu^+\mu^-$ production at SLC using a polarized electron beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter A_e .

VALUE	<u>EVTS</u>	DOCUMENT	ID	TECN	COMMENT	
0.142 ± 0.015	16844	¹ ABE	01 B	SLD	$E_{ m cm}^{\it ee}=$ 91.24 GeV	
• • • We do not use	e the followin	g data for aver	ages, fits,	limits,	etc. ● ●	
0.153 ± 0.012	1.7M	² AAD	15 BT	ATLS	$E_{cm}^{pp} = 7 \text{ TeV}$	

 $^{^{}m 1}$ ABE 01B obtain this direct measurement using the left-right production and left-right forward-backward polar angle asymmetries in $\mu^+\mu^-$ decays of the Z boson obtained with a polarized electron beam.

The LEP Collaborations derive this quantity from the measurement of the au polarization in $Z \to \tau^+ \tau^-$. The SLD Collaboration directly extracts this quantity from its measured left-right forward-backward asymmetry in $Z \to \tau^+ \tau^-$ produced using a polarized e^- beam. This double asymmetry eliminates the dependence on the Z-e-ecoupling parameter A_{α} .

1 01	e				
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.143 ±0.004 OUR AVE	RAGE				
$0.1456 \pm 0.0076 \pm 0.0057$	144810	$^{ m 1}$ ABBIENDI	010	OPAL	Eee = 88–94 GeV
0.136 ± 0.015	16083	² ABE	01 B	SLD	$E_{\rm cm}^{\rm ee}=91.24~{\rm GeV}$
$0.1451 \!\pm\! 0.0052 \!\pm\! 0.0029$		³ HEISTER	01	ALEP	E ^{ee} _{cm} = 88–94 GeV
$0.1359\!\pm\!0.0079\!\pm\!0.0055$	105000	⁴ ABREU	00E	DLPH	E ^{ee} _{cm} = 88–94 GeV
$0.1476 \pm 0.0088 \pm 0.0062$	137092	ACCIARRI	98H	L3	E ^{ee} _{cm} = 88–94 GeV
HTTP://PDG.LBL.GO	V	Page 41	C	reated:	5/30/2017 17:22

 $^{^2}$ ABE 01B use the left-right production and left-right forward-backward decay asymmetries in leptonic Z decays to obtain a value of 0.1544 \pm 0.0060. This is combined with leftright production asymmetry measurement using hadronic Z decays (ABE 00B) to obtain the quoted value.

 $^{^3}$ HEISTER 01 obtain this result fitting the au polarization as a function of the polar production angle of the τ .

 $^{^4}$ ABREU 00E obtain this result fitting the au polarization as a function of the polar au production angle. This measurement is a combination of different analyses (exclusive τ decay modes, inclusive hadronic 1-prong reconstruction, and a neural network

 $^{^5}$ Derived from the measurement of forward-backward τ polarization asymmetry. 6 ABE 97 obtain this result from a measurement of the observed left-right charge asymmetry, $A_Q^{
m obs}=0.225\pm0.056\pm0.019$, in hadronic Z decays. If they combine this value of $A_Q^{\rm obs}$ with their earlier measurement of $A_{LR}^{\rm obs}$ they determine A_e to be 0.1574 \pm 0.0197 \pm 0.0067 independent of the beam polarization.

 $^{^2}$ AAD 15BT study $pp o Z o \ell^+\ell^-$ events where ℓ is an electron or a muon in the dilepton mass region 70-1000 GeV. The background in the Z peak region is estimated to be <1% for the muon channel. The muon asymmetry parameter is derived from the measured forward-backward asymmetry assuming the value of the quark asymmetry parameter from the SM. For this reason it is not used in the average.

- 1 ABBIENDI 010 fit for A_e and $A_ au$ from measurements of the au polarization at varying τ production angles. The correlation between A_e and A_τ is less than 0.03.
- 2 ABE 01B obtain this direct measurement using the left-right production and left-right forward-backward polar angle asymmetries in $\tau^+\tau^-$ decays of the Z boson obtained with a polarized electron beam.
- 3 HEISTER 01 obtain this result fitting the au polarization as a function of the polar production angle of the τ .
- 4 ABREU 00E obtain this result fitting the au polarization as a function of the polar au production angle. This measurement is a combination of different analyses (exclusive au decay modes, inclusive hadronic 1-prong reconstruction, and a neural network analysis).

The SLD Collaboration directly extracts this quantity by a simultaneous fit to four measured s-quark polar angle distributions corresponding to two states of e- polarization (positive and negative) and to the K^+K^- and $K^\pm K^0_S$ strange particle tagging modes in the hadronic final states

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
$0.895 \pm 0.066 \pm 0.062$	2870	$^{ m 1}$ ABE	00 D	SLD	$E_{\rm cm}^{ee} = 91.2 \; {\rm GeV}$

¹ABE 00D tag $Z \rightarrow s\bar{s}$ events by an absence of B or D hadrons and the presence in each hemisphere of a high momentum K^{\pm} or K_{S}^{0} .

This quantity is directly extracted from a measurement of the left-right forwardbackward asymmetry in $c\overline{c}$ production at SLC using polarized electron beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter A_e . OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06.

VALUE	DOCUMENT ID		TECN	COMMENT
0.670 ± 0.027 OUR FIT				
$0.6712 \pm 0.0224 \pm 0.0157$	¹ ABE	05	SLD	$E_{cm}^{\mathit{ee}} = 91.24 \; GeV$
• • • We do not use the followin	g data for average	s, fits,	limits,	etc. • • •
$0.583 \pm 0.055 \pm 0.055$	² ABE	02G	SLD	E ^{ee} _{cm} = 91.24 GeV
0.688 ± 0.041	³ ABE	01 C	SLD	$E_{cm}^{\mathit{ee}} = 91.25 \; GeV$

- $^{
 m 1}$ ABE 05 use hadronic Z decays collected during 1996–98 to obtain an enriched sample of $c\overline{c}$ events tagging on the invariant mass of reconstructed secondary decay vertices. The charge of the underlying c-quark is obtained with an algorithm that takes into account the net charge of the vertex as well as the charge of tracks emanating from the vertex and identified as kaons. This yields (9970 events) $A_{c}=0.6747\pm0.0290\pm0.0233$. Taking into account all correlations with earlier results reported in ABE 02G and ABE 01C, they obtain the quoted overall SLD result.
- 2 ABE 02G tag b and c quarks through their semileptonic decays into electrons and muons. A maximum likelihood fit is performed to extract simultaneously $A_{\mbox{\it b}}$ and $A_{\mbox{\it c}}$.
- ³ ABE 01C tag $Z \rightarrow c\overline{c}$ events using two techniques: exclusive reconstruction of D^{*+} , D^{+} and D^0 mesons and the soft pion tag for $D^{*+} \rightarrow D^0 \pi^+$. The large background from D mesons produced in $b\overline{b}$ events is separated efficiently from the signal using precision vertex information. When combining the $\boldsymbol{A}_{\boldsymbol{C}}$ values from these two samples, care is taken to avoid double counting of events common to the two samples, and common systematic errors are properly taken into account.

A_b

This quantity is directly extracted from a measurement of the left-right forward-backward asymmetry in $b\overline{b}$ production at SLC using polarized electron beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter A_e . OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06.

<u>VALUE</u>	EVTS	DOCUMENT ID		TECN	COMMENT
0.923 ±0.020 OUR FIT	•				
$0.9170 \pm 0.0147 \pm 0.0145$		$^{ m 1}$ ABE	05	SLD	$E_{ m cm}^{\it ee} = 91.24~{ m GeV}$
ullet $ullet$ We do not use the	following	data for averages,	fits, li	imits, et	c. • • •
$0.907\ \pm0.020\ \pm0.024$	48028	² ABE	03F	SLD	$E_{cm}^{\mathit{ee}} = 91.24 \; GeV$
$0.919 \ \pm 0.030 \ \pm 0.024$		³ ABE	02G	SLD	$E_{cm}^{ee} = 91.24 \; GeV$
$0.855\ \pm0.088\ \pm0.102$	7473	⁴ ABE	99L	SLD	$E_{ m cm}^{ee} = 91.27 \; { m GeV}$

- 1 ABE 05 use hadronic Z decays collected during 1996–98 to obtain an enriched sample of $b\,\overline{b}$ events tagging on the invariant mass of reconstructed secondary decay vertices. The charge of the underlying b–quark is obtained with an algorithm that takes into account the net charge of the vertex as well as the charge of tracks emanating from the vertex and identified as kaons. This yields (25917 events) $A_b=0.9173\pm0.0184\pm0.0173.$ Taking into account all correlations with earlier results reported in ABE 03F, ABE 02G and ABE 99L, they obtain the quoted overall SLD result.
- 2 ABE 03F obtain an enriched sample of $b\overline{b}$ events tagging on the invariant mass of a 3-dimensional topologically reconstructed secondary decay. The charge of the underlying b quark is obtained using a self-calibrating track-charge method. For the 1996–1998 data sample they measure $A_b=0.906\pm0.022\pm0.023$. The value quoted here is obtained combining the above with the result of ABE 98I (1993–1995 data sample).
- 3 ABE 02G tag b and c quarks through their semileptonic decays into electrons and muons. A maximum likelihood fit is performed to extract simultaneously A_b and A_c .
- ⁴ ABE 99L obtain an enriched sample of $b\overline{b}$ events tagging with an inclusive vertex mass cut. For distinguishing b and \overline{b} quarks they use the charge of identified K^{\pm} .

TRANSVERSE SPIN CORRELATIONS IN $Z \rightarrow \tau^+ \tau^-$

The correlations between the transverse spin components of $\tau^+\tau^-$ produced in Z decays may be expressed in terms of the vector and axial-vector couplings:

$$C_{TT} = \frac{|g_A^{\tau}|^2 - |g_V^{\tau}|^2}{|g_A^{\tau}|^2 + |g_V^{\tau}|^2}$$

$$C_{TN} = -2 \frac{|g_A^{\tau}| |g_V^{\tau}|}{|g_A^{\tau}|^2 + |g_V^{\tau}|^2} \sin(\Phi_{g_V^{\tau}} - \Phi_{g_A^{\tau}})$$

 C_{TT} refers to the transverse-transverse (within the collision plane) spin correlation and C_{TN} refers to the transverse-normal (to the collision plane) spin correlation.

The longitudinal au polarization $P_{ au} (= -A_{ au})$ is given by:

$$P_{\tau} = -2 \frac{|g_A^{\tau}||g_V^{\tau}|}{|g_A^{\tau}|^2 + |g_V^{\tau}|^2} \cos(\Phi_{g_V^{\tau}} - \Phi_{g_A^{\tau}})$$

Here Φ is the phase and the phase difference $\Phi_{{\mathcal g}_V^{\mathcal T}} - \Phi_{{\mathcal g}_A^{\mathcal T}}$ can be obtained using both the measurements of $\mathcal C_{TN}$ and $\mathcal P_{\mathcal T}.$

CTT					
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
1.01±0.12 OUR AVER	AGE				
$0.87 \pm 0.20 { + 0.10 \atop - 0.12 }$	9.1k	ABREU	97 G	DLPH	E ^{ee} _{cm} = 91.2 GeV
$1.06\!\pm\!0.13\!\pm\!0.05$	120k	BARATE	97 D	ALEP	E ^{ee} _{cm} = 91.2 GeV
C_{TN}					
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
$0.08 \pm 0.13 \pm 0.04$	120k	¹ BARATE	97 D	ALEP	$E_{\rm cm}^{\rm ee} = 91.2 \; {\rm GeV}$

 $^{^1}$ BARATE 97D combine their value of C_{TN} with the world average $P_{\tau}=-0.140\pm0.007$ to obtain $\tan(\Phi_{g_{A}^{\tau}}-\Phi_{g_{A}^{\tau}})=-0.57\pm0.97.$

FORWARD-BACKWARD $e^+e^- \rightarrow f \overline{f}$ CHARGE ASYMMETRIES

These asymmetries are experimentally determined by tagging the respective lepton or quark flavor in $e^+\,e^-$ interactions. Details of heavy flavor (c- or b-quark) tagging at LEP are described in the note on "The Z boson" and ref. LEP-SLC 06. The Standard Model predictions for LEP data have been (re)computed using the ZFITTER package (version 6.36) with input parameters $M_Z{=}91.187~{\rm GeV},~M_{\rm top}{=}174.3~{\rm GeV},~M_{\rm Higgs}{=}150~{\rm GeV},~\alpha_s{=}0.119,~\alpha^{\left(5\right)}~(M_Z){=}~1/128.877$ and the Fermi constant $G_F{=}~1.16637\times10^{-5}~{\rm GeV}^{-2}$ (see the note on "The Z boson" for references). For non-LEP data the Standard Model predictions are as given by the authors of the respective publications.

$A_{FR}^{(0,e)}$ CHARGE ASYMMETRY IN $e^+e^- \rightarrow e^+e^-$

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). For the Z peak, we report the pole asymmetry defined by $(3/4)A_e^2$ as determined by the nine-parameter fit to cross-section and lepton forward-backward asymmetry data.

ASYMMETRY (%)	STD. MODEL	\sqrt{s} (GeV)	DOCUMENT ID		TECN
1.45±0.25 OUR FIT					
0.89 ± 0.44	1.57	91.2	¹ ABBIENDI	01A	OPAL
1.71 ± 0.49	1.57	91.2	ABREU	00F	DLPH
1.06 ± 0.58	1.57	91.2	ACCIARRI	00 C	L3
1.88 ± 0.34	1.57	91.2	² BARATE	00 C	ALEP

- $A^{(0,\mu)}_{FB}$ CHARGE ASYMMETRY IN $e^+e^ightarrow~\mu^+\mu^-$ -

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). For the Z peak, we report the pole asymmetry defined by $(3/4)A_{\rm e}A_{\mu}$ as determined by the nine-parameter fit to cross-section and lepton forward-backward asymmetry data.

ASYMMETRY (%)	STD. MODEL	\sqrt{s} (GeV)	DOCUMENT ID		TECN
1.69± 0.13 OUR FIT					
1.59 ± 0.23	1.57	91.2	¹ ABBIENDI	01A	OPAL
1.65 ± 0.25	1.57	91.2	ABREU	00F	DLPH
1.88± 0.33	1.57	91.2	ACCIARRI	00C	L3
1.71 ± 0.24	1.57	91.2	² BARATE	00 C	ALEP
• • • We do not use the follow	wing data for	averages, fi	ts, limits, etc. • •	•	
9 ±30	-1.3	20		95м	DLPH
7 ± 26	-8.3	40	³ ABREU	95м	DLPH
-11 ± 33	-24.1	57	³ ABREU	95м	DLPH
-62 ± 17	-44.6	69	³ ABREU	95м	DLPH
-56 ± 10	-63.5	79	³ ABREU	95м	DLPH
-13 \pm 5	-34.4	87.5	³ ABREU	95м	DLPH
$-29.0 \ \ {}^{+}_{-}\ \ {}^{5.0}_{4.8}\ \ \pm 0.5$	-32.1	56.9	⁴ ABE	90ı	VNS
$-$ 9.9 \pm 1.5 \pm 0.5	-9.2	35	HEGNER	90	JADE
0.05 ± 0.22	0.026	91.14	⁵ ABRAMS	8 9 D	MRK2
-43.4 ± 17.0	-24.9	52.0	⁶ BACALA	89	AMY
-11.0 ± 16.5	-29.4	55.0	⁶ BACALA	89	AMY
-30.0 ± 12.4	-31.2	56.0	⁶ BACALA	89	AMY
-46.2 ± 14.9	-33.0	57.0	⁶ BACALA	89	AMY
-29 ± 13	-25.9	53.3	ADACHI	88C	TOPZ
$+$ 5.3 \pm 5.0 \pm 0.5	-1.2	14.0	ADEVA	88	MRKJ
$-10.4 \pm 1.3 \pm 0.5$	-8.6	34.8	ADEVA	88	MRKJ
$-12.3~\pm~5.3~\pm0.5$	-10.7	38.3	ADEVA	88	MRKJ
$-15.6~\pm~3.0~\pm0.5$	-14.9	43.8	ADEVA	88	MRKJ
$-$ 1.0 \pm 6.0	-1.2	13.9	BRAUNSCH	88D	TASS
$-$ 9.1 \pm 2.3 \pm 0.5	-8.6	34.5	BRAUNSCH	88D	TASS
$-10.6 \ \ \begin{array}{c} + \ \ 2.2 \\ - \ \ 2.3 \end{array} \ \pm 0.5$	-8.9	35.0	BRAUNSCH	88 D	TASS
$-17.6 \ \ \begin{array}{c} + \ \ 4.4 \\ - \ \ 4.3 \end{array} \ \pm 0.5$	-15.2	43.6	BRAUNSCH	88D	TASS
$-$ 4.8 \pm 6.5 \pm 1.0	-11.5	39	BEHREND	87C	CELL
$-18.8~\pm~4.5~\pm1.0$	-15.5	44	BEHREND	87C	CELL
$+$ 2.7 \pm 4.9	-1.2	13.9	BARTEL	86 C	JADE
$-11.1~\pm~1.8~\pm1.0$	-8.6	34.4	BARTEL	86 C	JADE
$-17.3~\pm~4.8~\pm1.0$	-13.7	41.5	BARTEL	86 C	JADE
$-22.8~\pm~5.1~\pm1.0$	-16.6	44.8	BARTEL	86 C	JADE

 $^{^{1}}$ ABBIENDI 01A error includes approximately 0.38 due to statistics, 0.16 due to event selection systematics, and 0.18 due to the theoretical uncertainty in t-channel prediction.

 $^{^2}$ BARATE 00C error includes approximately 0.31 due to statistics, 0.06 due to experimental systematics, and 0.13 due to the theoretical uncertainty in t-channel prediction.

$-$ 6.3 \pm 0.8 \pm 0.2	-6.3	29	ASH	85	MAC
$-$ 4.9 \pm 1.5 \pm 0.5	-5.9	29	DERRICK	85	HRS
$-$ 7.1 \pm 1.7	-5.7	29	LEVI	83	MRK2
-16.1 ± 3.2	-9.2	34.2	BRANDELIK	82C	TASS

 $^{^{}m 1}$ ABBIENDI 01A error is almost entirely on account of statistics.

– $A^{(0, au)}_{FB}$ CHARGE ASYMMETRY IN $e^+\,e^ightarrow~ au^+\, au^-$ -

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). For the Z peak, we report the pole asymmetry defined by $(3/4)A_{\rho}A_{\tau}$ as determined by the nine-parameter fit to cross-section and lepton forward-backward asymmetry data.

	CTD	_			
ASYMMETRY (%)	STD. MODEL	$\frac{\sqrt{s}}{(GeV)}$	DOCUMENT ID		TECN
1.88± 0.17 OUR FIT			•		·
1.45 ± 0.30	1.57	91.2	$^{ m 1}$ abbiendi	01A	OPAL
2.41 ± 0.37	1.57	91.2	ABREU	00F	DLPH
2.60 ± 0.47	1.57	91.2	ACCIARRI	00C	L3
1.70 ± 0.28	1.57	91.2	² BARATE	00 C	ALEP
• • • We do not use the follo	wing data for	averages, f	fits, limits, etc. •	• •	
$-32.8 \ \begin{array}{c} + & 6.4 \\ - & 6.2 \end{array} \pm 1.5$	-32.1	56.9	³ ABE	901	VNS
$-$ 8.1 \pm 2.0 \pm 0.6	-9.2	35	HEGNER	90	JADE
$-18.4\ \pm 19.2$	-24.9	52.0	⁴ BACALA	89	AMY
-17.7 ± 26.1	-29.4	55.0	⁴ BACALA	89	AMY
-45.9 ± 16.6	-31.2	56.0	⁴ BACALA	89	AMY
-49.5 ± 18.0	-33.0	57.0	⁴ BACALA	89	AMY
-20 ± 14	-25.9	53.3	ADACHI	88C	TOPZ
$-10.6~\pm~3.1~\pm1.5$	-8.5	34.7	ADEVA	88	MRKJ
$-$ 8.5 \pm 6.6 \pm 1.5	-15.4	43.8	ADEVA	88	MRKJ
$-$ 6.0 \pm 2.5 \pm 1.0	8.8	34.6	BARTEL	85F	JADE
$-11.8 \pm 4.6 \pm 1.0$	14.8	43.0	BARTEL	85F	JADE
$-$ 5.5 \pm 1.2 \pm 0.5	-0.063	29.0	FERNANDEZ	85	MAC
$-$ 4.2 \pm 2.0	0.057	29	LEVI	83	MRK2
-10.3 ± 5.2	-9.2	34.2	BEHREND	82	CELL
$-$ 0.4 \pm 6.6	-9.1	34.2	BRANDELIK	82C	TASS

 $^{^{}m 1}$ ABBIENDI 01A error includes approximately 0.26 due to statistics and 0.14 due to event selection systematics.

²BARATE 00C error is almost entirely on account of statistics.

³ ABREU 95M perform this measurement using radiative muon-pair events associated with high-energy isolated photons.

⁴ ABE 901 measurements in the range 50 $\leq \sqrt{s} \leq$ 60.8 GeV.

⁵ ABRAMS 89D asymmetry includes both 9 $\mu^+\mu^-$ and 15 $\tau^+\tau^-$ events.

⁶BACALA 89 systematic error is about 5%.

²BARATE 00C error includes approximately 0.26 due to statistics and 0.11 due to experimental systematics.

 $^{^3}$ ABE 901 measurements in the range 50 $\leq \sqrt{s} \leq$ 60.8 GeV.

⁴BACALA 89 systematic error is about 5%.

For the Z peak, we report the pole asymmetry defined by $(3/4)A_\ell^2$ as determined by the five-parameter fit to cross-section and lepton forward-backward asymmetry data assuming lepton universality. For details see the note "The Z boson" and ref. LEP-SLC 06.

ASYMMETRY (%)	STD. MODEL	\sqrt{s} (GeV)	DOCUMENT ID		TECN
1.71±0.10 OUR FIT					
$1.45 \!\pm\! 0.17$	1.57	91.2	¹ ABBIENDI	01A	OPAL
$1.87\!\pm\!0.19$	1.57	91.2	ABREU	00F	DLPH
1.92 ± 0.24	1.57	91.2	ACCIARRI	00C	L3
1.73 ± 0.16	1.57	91.2	² BARATE	00C	ALEP

¹ ABBIENDI 01A error includes approximately 0.15 due to statistics, 0.06 due to event selection systematics, and 0.03 due to the theoretical uncertainty in *t*-channel prediction.

——— $A_{FB}^{(0,u)}$ CHARGE ASYMMETRY IN $e^+e^- \rightarrow u\overline{u}$

$4.0\pm 6.7\pm 2.8$	7.2	91.2	¹ ACKERSTAFF 97T	OPAL
ASYMMETRY (%)	STD. MODEL	\sqrt{s} (GeV)	DOCUMENT ID	TECN

¹ ACKERSTAFF 97T measure the forward-backward asymmetry of various fast hadrons made of light quarks. Then using SU(2) isospin symmetry and flavor independence for down and strange quarks authors solve for the different quark types.

The *s*-quark asymmetry is derived from measurements of the forward-backward asymmetry of fast hadrons containing an *s* quark.

ASYMMETRY (%)	STD. MODEL	√ <i>s</i> (GeV)	DOCUMENT ID	TECN
9.8 ±1.1 OUR AVERAGE				
$10.08 \pm 1.13 \pm 0.40$	10.1	91.2	71D11E0 000	DLPH
$6.8\ \pm 3.5\ \pm 1.1$	10.1	91.2	² ACKERSTAFF 97T	OPAL

¹ ABREU 00B tag the presence of an *s* quark requiring a high-momentum-identified charged kaon. The *s*-quark pole asymmetry is extracted from the charged-kaon asymmetry taking the expected *d*- and *u*-quark asymmetries from the Standard Model and using the measured values for the *c*- and *b*-quark asymmetries.

OUR FIT, which is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06, refers to the Z pole asymmetry. The experimental values,

² BARATE 00C error includes approximately 0.15 due to statistics, 0.04 due to experimental systematics, and 0.02 due to the theoretical uncertainty in *t*-channel prediction.

² ACKERSTAFF 97T measure the forward-backward asymmetry of various fast hadrons made of light quarks. Then using SU(2) isospin symmetry and flavor independence for down and strange quarks authors solve for the different quark types. The value reported here corresponds then to the forward-backward asymmetry for "down-type" quarks.

on the other hand, correspond to the measurements carried out at the respective energies.

ASYMMETRY (%)	STD. MODEL	$\frac{\sqrt{s}}{(\text{GeV})}$	DOCUMENT ID		TECN
$7.07\pm~0.35~\text{OUR FIT}$			•		
$6.31\pm\ 0.93\pm0.65$	6.35	91.26	¹ ABDALLAH	04F	DLPH
$5.68 \pm 0.54 \pm 0.39$	6.3	91.25	² ABBIENDI	03 P	OPAL
$6.45 \pm 0.57 \pm 0.37$	6.10	91.21	³ HEISTER	02H	ALEP
$6.59 \pm 0.94 \pm 0.35$	6.2	91.235	⁴ ABREU	99Y	DLPH
$6.3 \pm 0.9 \pm 0.3$	6.1	91.22	⁵ BARATE	980	ALEP
$6.3 \pm 1.2 \pm 0.6$	6.1	91.22	⁶ ALEXANDER	97C	OPAL
$8.3 \pm 3.8 \pm 2.7$	6.2	91.24	⁷ ADRIANI	92 D	L3
• • • We do not use the follow	ving data for	averages, fit	s, limits, etc. • •	•	
$3.1 \pm 3.5 \pm 0.5$	-3.5	89.43	¹ ABDALLAH	04F	DLPH
$11.0 \pm 2.8 \pm 0.7$	12.3	92.99	¹ ABDALLAH	04F	DLPH
$-6.8 \pm 2.5 \pm 0.9$	-3.0	89.51	² ABBIENDI	03P	OPAL
$14.6 \pm 2.0 \pm 0.8$	12.2	92.95	² ABBIENDI	03P	OPAL
$-12.4 \pm 15.9 \pm 2.0$	-9.6	88.38	³ HEISTER	02H	ALEP
$-2.3 \pm 2.6 \pm 0.2$	-3.8	89.38	³ HEISTER	02H	ALEP
$-0.3 \pm 8.3 \pm 0.6$	0.9	90.21	³ HEISTER	02H	ALEP
$10.6 \pm 7.7 \pm 0.7$	9.6	92.05	³ HEISTER	02H	ALEP
$11.9 \pm 2.1 \pm 0.6$	12.2	92.94	³ HEISTER	02н	ALEP
$12.1 \pm 11.0 \pm 1.0$	14.2	93.90	³ HEISTER	02н	ALEP
$-4.96\pm3.68\pm0.53$	-3.5	89.434	⁴ ABREU	99Y	DLPH
$11.80 \pm \ 3.18 \pm 0.62$	12.3	92.990	⁴ ABREU	99Y	DLPH
$-$ 1.0 \pm 4.3 \pm 1.0	-3.9	89.37	⁵ BARATE	980	ALEP
$11.0 \pm 3.3 \pm 0.8$	12.3	92.96	⁵ BARATE	980	ALEP
$3.9 \pm 5.1 \pm 0.9$	-3.4	89.45	⁶ ALEXANDER	97c	OPAL
$15.8 \pm 4.1 \pm 1.1$	12.4	93.00	⁶ ALEXANDER	97c	OPAL
$-12.9~\pm~7.8~\pm5.5$	-13.6	35	BEHREND	90 D	CELL
$7.7 \pm 13.4 \pm 5.0$	-22.1	43	BEHREND	90 D	CELL
$-12.8 \pm 4.4 \pm 4.1$	-13.6	35	ELSEN	90	JADE
$-10.9 \pm 12.9 \pm 4.6$	-23.2	44	ELSEN	90	JADE
$-14.9~\pm~6.7$	-13.3	35	OULD-SAADA	89	JADE

¹ ABDALLAH 04F tag b- and c-quarks using semileptonic decays combined with charge flow information from the hemisphere opposite to the lepton. Enriched samples of $c\overline{c}$ and $b\overline{b}$ events are obtained using lifetime information.

² ABBIENDI 03P tag heavy flavors using events with one or two identified leptons. This allows the simultaneous fitting of the b and c quark forward-backward asymmetries as well as the average $B^0-\overline{B}^0$ mixing.

 $^{^3}$ HEISTER 02H measure simultaneously b and c quark forward-backward asymmetries using their semileptonic decays to tag the quark charge. The flavor separation is obtained with a discriminating multivariate analysis.

⁴ ABREU 99Y tag $Z \to b\overline{b}$ and $Z \to c\overline{c}$ events by an exclusive reconstruction of several D meson decay modes (D^{*+} , D^0 , and D^+ with their charge-conjugate states).

⁵BARATE 980 tag $Z \rightarrow c\overline{c}$ events requiring the presence of high-momentum reconstructed D^{*+} , D^+ , or D^0 mesons.

 $^{^6}$ ALEXANDER 97C identify the b and c events using a D/D^{st} tag.

⁷ ADRIANI 92D use both electron and muon semileptonic decays.

$-A_{FB}^{(0,b)}$ CHARGE ASYMMETRY IN e^+e^- → $b\overline{b}$ ———

OUR FIT, which is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06, refers to the \boldsymbol{Z} pole asymmetry. The experimental values, on the other hand, correspond to the measurements carried out at the respective energies.

ASYMMETRY (%)	STD. MODEL	\sqrt{s} (GeV)	DOCUMENT ID	TECN
9.92± 0.16 OUR FIT			·	
$9.58\pm \ 0.32\pm \ 0.14$	9.68	91.231	¹ ABDALLAH 0	5 DLPH
$10.04 \pm \ 0.56 \pm \ 0.25$	9.69	91.26	² ABDALLAH 0	04F DLPH
$9.72\pm \ 0.42\pm \ 0.15$	9.67	91.25	³ ABBIENDI 0	3P OPAL
$9.77 \pm \ 0.36 \pm \ 0.18$	9.69	91.26	⁴ ABBIENDI 0)2ı OPAL
$9.52 \pm \ 0.41 \pm \ 0.17$	9.59	91.21	_	O2H ALEP
$10.00 \pm \ 0.27 \pm \ 0.11$	9.63	91.232	_	1D ALEP
$7.62 \pm \ 1.94 \pm \ 0.85$	9.64	91.235	7	99Y DLPH
$9.60\pm \ 0.66\pm \ 0.33$	9.69	91.26	^	99D L3
$9.31 \pm \ 1.01 \pm \ 0.55$	9.65	91.24	^	98∪ L3
$9.4 \pm 2.7 \pm 2.2$	9.61	91.22	10	7c OPAL
• • • We do not use the follow				•
$6.37 \pm \ 1.43 \pm \ 0.17$	5.8	89.449	1)5 DLPH
$10.41\pm 1.15\pm 0.24$	12.1	92.990		DLI II
$6.7 \pm 2.2 \pm 0.2$	5.7	89.43	•)4F DLPH
$11.2 \pm 1.8 \pm 0.2$	12.1	92.99	2)4F DLFH
$4.7 \pm 1.8 \pm 0.2$	5.9	89.51	^)3P OPAL
$10.3 \pm 1.5 \pm 0.2$	12.0	92.95	2	3P OPAL
$5.82\pm 1.53\pm 0.12$	5.9	89.50	A)2ı OPAL
$12.21\pm 1.23\pm 0.25$	12.0	92.91	4)2i OPAL
$-13.1 \pm 13.5 \pm 1.0$	3.2	92.91 88.38	_)2H ALEP
$-13.1 \pm 13.5 \pm 1.0$ $5.5 \pm 1.9 \pm 0.1$			_	
	5.6	89.38	F	
	7.5	90.21	_)2H ALEP
$11.1 \pm 6.4 \pm 0.5$	11.0	92.05	_)2H ALEP
$10.4 \pm 1.5 \pm 0.3$	12.0	92.94	_)2H ALEP
$13.8 \pm 9.3 \pm 1.1$	12.9	93.90)2H ALEP
$4.36\pm 1.19\pm 0.11$	5.8	89.472		1D ALEP
$11.72 \pm 0.97 \pm 0.11$	12.0	92.950		1D ALEP
$5.67\pm \ 7.56\pm \ 1.17$	5.7	89.434		99Y DLPH
$8.82 \pm 6.33 \pm 1.22$	12.1	92.990		99Y DLPH
$6.11\pm\ 2.93\pm\ 0.43$	5.9	89.50		99D L3
$13.71 \pm 2.40 \pm 0.44$	12.2	93.10	^	99D L3
$4.95\pm 5.23\pm 0.40$	5.8	89.45		98∪ L3
$11.37 \pm 3.99 \pm 0.65$	12.1	92.99		98∪ L3
$-$ 8.6 ± 10.8 \pm 2.9	5.8	89.45	¹⁰ ALEXANDER 9	
$-2.1 \pm 9.0 \pm 2.6$	12.1	93.00	¹⁰ ALEXANDER 9	97C OPAL
-71 ± 34 $+ 7$ $- 8$	-58	58.3	SHIMONAKA 9	1 TOPZ
$-22.2~\pm~7.7~\pm~3.5$	-26.0	35	BEHREND 9	00D CELL
$-49.1 \pm 16.0 \pm 5.0$	-39.7	43	BEHREND 9	00D CELL
-28 ± 11	-23	35	BRAUNSCH 9	00 TASS
$-16.6~\pm~7.7~\pm~4.8$	-24.3	35	ELSEN 9	00 JADE

$-33.6 \pm 22.2 \pm 5.2$	-39.9	44	ELSEN	90	JADE
$3.4~\pm~7.0~\pm~3.5$	-16.0	29.0	BAND	89	MAC
-72 ± 28 ± 13	-56	55.2	SAGAWA	89	AMY

¹ ABDALLAH 05 obtain an enriched samples of $b\overline{b}$ events using lifetime information. The quark (or antiquark) charge is determined with a neural network using the secondary vertex charge, the jet charge and particle identification.

CHARGE ASYMMETRY IN $e^+e^- \rightarrow q\overline{q}$

Summed over five lighter flavors.

Experimental and Standard Model values are somewhat event-selection dependent. Standard Model expectations contain some assumptions on $B^0-\overline{B}^0$ mixing and on other electroweak parameters.

ASYMMETRY (%)	STD. MODEL	$\frac{\sqrt{s}}{(\text{GeV})}$	DOCUMENT ID		TECN
• • • We do not use the follow	ving data for	averages, fits	s, limits, etc. • •	•	
$-0.76\pm0.12\pm0.15$			¹ ABREU	921	DLPH
$4.0 \pm 0.4 \pm 0.63$	4.0	91.3	² ACTON	92L	OPAL
$9.1\ \pm 1.4\ \pm 1.6$	9.0	57.9	ADACHI	91	TOPZ
$-0.84\pm0.15\pm0.04$		91	DECAMP	91 B	ALEP
$8.3\ \pm 2.9\ \pm 1.9$	8.7	56.6	STUART	90	AMY
$11.4 \pm 2.2 \pm 2.1$	8.7	57.6	ABE	89L	VNS
6.0 ± 1.3	5.0	34.8	GREENSHAW	89	JADE
8.2 ± 2.9	8.5	43.6	GREENSHAW	89	JADE

² ABDALLAH 04F tag b- and c-quarks using semileptonic decays combined with charge flow information from the hemisphere opposite to the lepton. Enriched samples of $c\overline{c}$ and $b\overline{b}$ events are obtained using lifetime information.

³ABBIENDI 03P tag heavy flavors using events with one or two identified leptons. This allows the simultaneous fitting of the b and c quark forward-backward asymmetries as well as the average B^0 - \overline{B}^0 mixing.

⁴ ABBIENDI 02I tag $Z^0 \rightarrow b\overline{b}$ decays using a combination of secondary vertex and lepton tags. The sign of the *b*-quark charge is determined using an inclusive tag based on jet, vertex, and kaon charges.

 $^{^{5}}$ HEISTER 02H measure simultaneously b and c quark forward-backward asymmetries using their semileptonic decays to tag the quark charge. The flavor separation is obtained with a discriminating multivariate analysis.

⁶ HEISTER 01D tag $Z \rightarrow b\overline{b}$ events using the impact parameters of charged tracks complemented with information from displaced vertices, event shape variables, and lepton identification. The *b*-quark direction and charge is determined using the hemisphere charge method along with information from fast kaon tagging and charge estimators of primary and secondary vertices. The change in the quoted value due to variation of A_{FB}^{C} and R_{b} is given as +0.103 ($A_{FB}^{C}-0.0651$) -0.440 ($R_{b}-0.21585$).

⁷ ABREU 99Y tag $Z \rightarrow b\overline{b}$ and $Z \rightarrow c\overline{c}$ events by an exclusive reconstruction of several D meson decay modes (D^{*+} , D^0 , and D^+ with their charge-conjugate states).

⁸ ACCIARRI 99D tag $Z \to b \, \overline{b}$ events using high p and p_T leptons. The analysis determines simultaneously a mixing parameter $\chi_b = 0.1192 \pm 0.0068 \pm 0.0051$ which is used to correct the observed asymmetry.

⁹ ACCIARRI 980 tag $Z \rightarrow b\overline{b}$ events using lifetime and measure the jet charge using the hemisphere charge.

 $^{^{10}}$ ALEXANDER 97C identify the b and c events using a D/D^* tag.

¹ ABREU 921 has 0.14 systematic error due to uncertainty of quark fragmentation.

CHARGE ASYMMETRY IN $p\overline{p} \rightarrow Z \rightarrow e^+e^-$

ASYMMETRY (%)	STD. MODEL	$\frac{\sqrt{s}}{(\text{GeV})}$	DOCUMENT ID		TECN
• • • We do not use the follow	ving data for	averages, fits	, limits, etc. •	• •	
$5.2 \!\pm\! 5.9 \!\pm\! 0.4$		91	ABE	91E	CDF

ANOMALOUS $ZZ\gamma$, $Z\gamma\gamma$, AND ZZV COUPLINGS

A REVIEW GOES HERE - Check our WWW List of Reviews

Combining the LEP-2 results taking into account the correlations, the following 95% CL limits are derived [SCHAEL 13A]:

$$\begin{array}{lll} -0.12 < h_1^Z < +0.11, & -0.07 < h_2^Z < +0.07, \\ -0.19 < h_3^Z < +0.06, & -0.04 < h_4^Z < +0.13, \\ -0.05 < h_1^\gamma < +0.05, & -0.04 < h_2^\gamma < +0.02, \\ -0.05 < h_3^\gamma < +0.00, & +0.01 < h_4^\gamma < +0.05. \end{array}$$

Some of the recent results from the Tevatron and LHC experiments individually surpass the combined LEP-2 results in precision (see below).

DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 1 AAD 16Q ATLS $E_{cm}^{pp} = 8 \text{ TeV}$ 2 KHACHATRY...16AE CMS $E_{\text{CM}}^{pp}=8$ TeV 3 KHACHATRY...15AC CMS $E_{cm}^{pp}=8$ TeV $E_{\rm cm}^{\it pp}=7~{\rm TeV}$ ⁴ CHATRCHYAN 14AB CMS 13AN ATLS $E_{cm}^{pp} = 7 \text{ TeV}$ 5 AAD $E_{\rm cm}^{pp}=7~{\rm TeV}$ ⁶ CHATRCHYAN 13BI CMS $E_{\rm cm}^{p\overline{p}}=1.96~{\rm TeV}$ ⁷ ABAZOV 12s D0 $E_{\rm cm}^{p\overline{p}}=1.96~{\rm TeV}$ ⁸ AALTONEN 11s CDF $E_{\rm cm}^{pp}=7~{\rm TeV}$ ⁹ CHATRCHYAN 11M CMS $E_{\mathsf{cm}}^{p\overline{p}} = 1.96 \; \mathsf{TeV}$ ¹⁰ ABAZOV 09L D0 $E_{\mathsf{cm}}^{p\overline{p}} = 1.96 \; \mathsf{TeV}$ ¹¹ ABAZOV 07M D0 07C DLPH $E_{\mathsf{cm}}^{ee} = 183-208 \; \mathsf{GeV}$ ¹² ABDALLAH ¹³ ACHARD 04H L3 $E_{\rm cm}^{ee} = 183-208 \; {\rm GeV}$ 00C OPAL $E_{
m cm}^{\it ee}=189~{
m GeV}$ ¹⁴ ABBIENDI,G $E_{
m cm}^{
ho\overline{p}}=1.8~{
m TeV}$ ¹⁵ ABBOTT 98M D0 ¹⁶ ABREU 98K DLPH $E_{cm}^{ee} = 161, 172 \text{ GeV}$

 $^{^2}$ ACTON 92L use the weight function method on 259k selected $Z \to \,$ hadrons events. The systematic error includes a contribution of 0.2 due to $B^0\text{-}\overline{B}{}^0$ mixing effect, 0.4 due to Monte Carlo (MC) fragmentation uncertainties and 0.3 due to MC statistics. ACTON 92L derive a value of $\sin^2\!\theta_W^{\rm eff}$ to be 0.2321 \pm 0.0017 \pm 0.0028.

- 1 AAD 16Q study $Z\gamma$ production in pp collisions. In events with no additional jets, 10268 (12738) Z decays to electron (muon) pairs are selected, with an expected background of 1291 \pm 340 (1537 \pm 408) events, as well as 1039 Z decays to neutrino pairs with an expected background of 450 \pm 96 events. Analyzing the photon transverse momentum distribution above 250 GeV (400 GeV) for lepton (neutrino) events, yields the 95% C.L. limits: $-7.8\times10^{-4} < h_3^Z < 8.6\times10^{-4}, -3.0\times10^{-6} < h_4^Z < 2.9\times10^{-6}, -9.5\times10^{-4} < h_3^\gamma < 9.9\times10^{-4}, -3.2\times10^{-6} < h_4^\gamma < 3.2\times10^{-6}.$
- 2 KHACHATRYAN 16AE determine the $Z\gamma \to \nu \overline{\nu} \gamma$ cross section by selecting events with a photon of $E_T > 145$ GeV and $E_T > 140$ GeV. 630 candidate events are observed with an expected SM background of 269 ± 26 . The E_T spectrum of the photon is used to set 95% C.L. limits as follows: $-1.5 \times 10^{-3} < h_3^Z < 1.6 \times 10^{-3}, -3.9 \times 10^{-6} < h_4^Z < 4.5 \times 10^{-6}, -1.1 \times 10^{-3} < h_3^\gamma < 0.9 \times 10^{-3}, -3.8 \times 10^{-6} < h_4^\gamma < 4.3 \times 10^{-6}.$
- 3 KHACHATRYAN 15AC study $Z\gamma$ events in 8 TeV pp interactions, where the Z decays into 2 same-flavor, opposite sign leptons (e or μ) and a photon with $p_T>15$ GeV. The p_T of a lepton is required to be >20 GeV/c, their effective mass >50 GeV, and the photon should have a separation $\Delta R>0.7$ with each lepton. The observed p_T distribution of the photons is used to extract the 95% C.L. limits: $-3.8\times 10^{-3} < h_3^Z < 3.7\times 10^{-3}, -3.1\times 10^{-5} < h_4^Z < 3.0\times 10^{-5}, -4.6\times 10^{-3} < h_3^\gamma < 4.6\times 10^{-3}, -3.6\times 10^{-5} < h_4^\gamma < 3.5\times 10^{-5}.$
- 4 CHATRCHYAN 14AB measure $Z\gamma$ production cross section for ${\rm p}_T^\gamma>15$ GeV and ${\rm R}(\ell\gamma)>0.7$, which is the separation between the γ and the final state charged lepton (e or μ) in the azimuthal angle-pseudorapidity $(\phi-\eta)$ plane. The di-lepton mass is required to be >50 GeV. After background subtraction the number of $e\,e\gamma$ and $\mu\mu\gamma$ events is determined to be 3160 ± 120 and 5030 ± 233 respectively, compatible with expectations from the SM. This leads to a 95% CL limits of -1×10^{-2} < h_3^γ < 1×10^{-2} , -9×10^{-5} < h_4^γ < 9×10^{-5} , -9×10^{-3} < h_3^Z < 9×10^{-3} , -8×10^{-5} < h_4^Z < 8×10^{-5} , assuming h_1^V and h_2^V have SM values, $V=\gamma$ or Z.
- 5 AAD 13AN study $Z\gamma$ production in pp collisions. In events with no additional jet, 1417 (2031) Z decays to electron (muon) pairs are selected, with an expected background of 156 \pm 54 (244 \pm 64) events, as well as 662 Z decays to neutrino pairs with an expected background of 302 \pm 42 events. Analysing the photon p_T spectrum above 100 GeV yields the 95% C.L. limts: $-0.013 < h_3^Z < 0.014, -8.7 \times 10^{-5} < h_4^Z < 8.7 \times 10^{-5}, -0.015 < h_3^{\gamma} < 0.016, -9.4 \times 10^{-5} < h_4^{\gamma} < 9.2 \times 10^{-5}.$ Supersedes AAD 12BX.
- 6 CHATRCHYAN 13BI determine the $Z\gamma \to \nu \overline{\nu} \gamma$ cross section by selecting events with a photon of $E_T > 145$ GeV and a $E_T > 130$ GeV. 73 candidate events are observed with an expected SM background of 30.2 ± 6.5 . The E_T spectrum of the photon is used to set 95% C.L. limits as follows: $\left|h_3^Z\right| < 2.7 \times 10^{-3}$, $\left|h_4^Z\right| < 1.3 \times 10^{-5}$, $\left|h_3^{\gamma}\right| < 2.9 \times 10^{-3}$, $\left|h_4^{\gamma}\right| < 1.5 \times 10^{-5}$.
- ⁷ ABAZOV 12s study $Z\gamma$ production in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV using 6.2 fb⁻¹ of data where the Z decays to electron (muon) pairs and the photon has at least 10 GeV of transverse momentum. In data, 304 (308) di-electron (di-muon) events are observed with an expected background of 255 \pm 16 (285 \pm 24) events. Based on the photon p_T spectrum, and including also earlier data and the $Z\to\nu\overline{\nu}$ decay mode (from ABAZOV 09L), the following 95% C.L. limits are reported: $|h_{03}^Z|<0.026, |h_{04}^Z|<0.0013, |h_{03}^\gamma|<0.027, |h_{04}^\gamma|<0.0014$ for a form factor scale of $\Lambda=1.5$ TeV.
- ⁸ AALTONEN 11S study $Z\gamma$ events in $p\overline{p}$ interactions at $\sqrt{s}=1.96$ TeV with integrated luminosity 5.1 fb⁻¹ for $Z\to e^+e^-/\mu^+\mu^-$ and 4.9 fb⁻¹ for $Z\to \nu\overline{\nu}$. For the charged lepton case, the two leptons must be of the same flavor with the transverse

- momentum/energy of one > 20 GeV and the other > 10 GeV. The isolated photon must have $E_T>$ 50 GeV. They observe 91 events with 87.2 \pm 7.8 events expected from standard model processes. For the $\nu\overline{\nu}$ case they require solitary photons with $E_T>$ 25 GeV and missing $E_T>$ 25 GeV and observe 85 events with standard model expectation of 85.9 \pm 5.6 events. Taking the form factor $\Lambda=1.5$ TeV they derive 95% C.L. limits as $|h_A^{\gamma}, Z|<0.022$ and $|h_A^{\gamma}, Z|<0.0009$.
- 9 CHATRCHYAN 11M study $Z\gamma$ production in $p\,p$ collisions at $\sqrt{s}=7$ TeV using $36~{\rm pb}^{-1}$ $p\,p$ data, where the Z decays to $e^+\,e^-$ or $\mu^+\,\mu^-$. The total cross sections are measured for photon transverse energy $E_T^\gamma>10$ GeV and spatial separation from charged leptons in the plane of pseudo rapidity and azimuthal angle $\Delta R(\ell,\gamma)>0.7$ with the dilepton invariant mass requirement of $M_{\ell\,\ell}>50$ GeV. The number of $e^+\,e^-\gamma$ and $\mu^+\,\mu^-\gamma$ candidates is 81 and 90 with estimated backgrounds of $20.5\,\pm\,2.5$ and $27.3\,\pm\,3.2$ events respectively. The 95% CL limits for $Z\,Z\gamma$ couplings are -0.05< $h_3^Z<0.06$ and -0.0005< $h_4^Z<0.0005$, and for $Z\,\gamma\gamma$ couplings are -0.07< $h_3^\gamma<0.07$ and -0.0005< $h_4^\gamma<0.0006$.
- 10 ABAZOV 09L study $Z\gamma,~Z\rightarrow~\nu\overline{\nu}$ production in $p\overline{p}$ collisions at 1.96 TeV C.M. energy. They select 51 events with a photon of transverse energy E_T larger than 90 GeV, with an expected background of 17 events. Based on the photon E_T spectrum and including also Z decays to charged leptons (from ABAZOV 07M), the following 95% CL limits are reported: $|h_{30}^{\gamma}|<0.033,~|h_{40}^{\gamma}|<0.0017,~|h_{30}^{Z}|<0.033,~|h_{40}^{Z}|<0.0017.$
- 11 ABAZOV 07M use 968 $p\overline{p}\to e^+e^-/\mu^+\mu^-\gamma X$ candidates, at 1.96 TeV center of mass energy, to tag $p\overline{p}\to Z\gamma$ events by requiring $E_T(\gamma)>$ 7 GeV, lepton-gamma separation $\Delta R_{\ell\gamma}>$ 0.7, and di-lepton invariant mass > 30 GeV. The cross section is in agreement with the SM prediction. Using these $Z\gamma$ events they obtain 95% C.L. limits on each h_i^V , keeping all others fixed at their SM values. They report: $-0.083 < h_{30}^Z < 0.082,$ $-0.0053 < h_{40}^Z < 0.0054,$ $-0.085 < h_{30}^\gamma < 0.084,$ $-0.0053 < h_{40}^\gamma < 0.0054,$ for the form factor scale $\Lambda=1.2$ TeV.
- 12 Using data collected at $\sqrt{s}=183$ –208, ABDALLAH 07C select 1,877 $e^+e^- \to Z\gamma$ events with $Z \to q\overline{q}$ or $\nu\overline{\nu}$, 171 $e^+e^- \to ZZ$ events with $Z \to q\overline{q}$ or lepton pair (except an explicit τ pair), and 74 $e^+e^- \to Z\gamma^*$ events with a $q\overline{q}\mu^+\mu^-$ or $q\overline{q}e^+e^-$ signature, to derive 95% CL limits on h_I^V . Each limit is derived with other parameters set to zero. They report: $-0.23 < h_1^Z < 0.23$, $-0.30 < h_3^Z < 0.16$, $-0.14 < h_1^\gamma < 0.14$, $-0.049 < h_3^\gamma < 0.044$.
- ^{13} ACHARD 04H select 3515 e^+e^- $\to Z\gamma$ events with $Z \to q \, \overline{q}$ or $\nu \, \overline{\nu}$ at $\sqrt{s} = 189$ –209 GeV to derive 95% CL limits on h_i^V . For deriving each limit the other parameters are fixed at zero. They report: $-0.153 < h_1^Z < 0.141, -0.087 < h_2^Z < 0.079, -0.220 < h_3^Z < 0.112, -0.068 < h_4^Z < 0.148, -0.057 < h_1^{\gamma} < 0.057, -0.050 < h_2^{\gamma} < 0.023, -0.059 < h_3^{\gamma} < 0.004, -0.004 < h_4^{\gamma} < 0.042.$
- 14 ABBIENDI,G 00C study $e^+e^- \rightarrow Z\gamma$ events (with $Z \rightarrow q\overline{q}$ and $Z \rightarrow \nu\overline{\nu}$) at 189 GeV to obtain the central values (and 95% CL limits) of these couplings: $h_1^Z = 0.000 \pm 0.100 \; (-0.190, 0.190), \; h_2^Z = 0.000 \pm 0.068 \; (-0.128, 0.128), \; h_3^Z = -0.074^{+0.102}_{-0.103} \; (-0.269, 0.119), \; h_4^Z = 0.046 \pm 0.068 \; (-0.084, 0.175), \; h_1^{\gamma} = 0.000 \pm 0.061 \; (-0.115, 0.115), \; h_2^{\gamma} = 0.000 \pm 0.041 \; (-0.077, 0.077), \; h_3^{\gamma} = -0.080^{+0.039}_{-0.041} \; (-0.164, -0.006), \; h_4^{\gamma} = 0.064^{+0.033}_{-0.030} \; (+0.007, +0.134). \;$ The results are derived assuming that only one coupling at a time is different from zero.

- ¹⁵ ABBOTT 98M study $p\overline{p} \to Z\gamma + X$, with $Z \to e^+e^-$, $\mu^+\mu^-$, $\overline{\nu}\nu$ at 1.8 TeV, to obtain 95% CL limits at $\Lambda = 750$ GeV: $|h_{30}^Z| < 0.36$, $|h_{40}^Z| < 0.05$ (keeping $h_i^{\gamma} = 0$), and $|h_{30}^{\gamma}| < 0.37$, $|h_{40}^{\gamma}| < 0.05$ (keeping $h_i^{Z} = 0$). Limits on the *CP*-violating couplings are $|h_{10}^{Z}| < 0.36$, $|h_{20}^{Z}| < 0.05$ (keeping $h_i^{\gamma} = 0$), and $|h_{10}^{\gamma}| < 0.37$, $|h_{20}^{\gamma}| < 0.05$ (keeping $h_i^{Z} = 0$).
- ¹⁶ ABREU 98K determine a 95% CL upper limit on $\sigma(e^+e^- \to \gamma + \text{invisible particles}) < 2.5 pb using 161 and 172 GeV data. This is used to set 95% CL limits on <math>|h_{30}^{\gamma}| < 0.8$ and $|h_{30}^{Z}| < 1.3$, derived at a scale $\Lambda = 1$ TeV and with n = 3 in the form factor representation.

Combining the LEP-2 results taking into account the correlations, the following 95% CL limits are derived [SCHAEL 13A]:

$$-0.28 < f_4^Z < +0.32,$$
 $-0.34 < f_5^Z < +0.35,$ $-0.17 < f_4^{\gamma} < +0.19,$ $-0.35 < f_5^{\gamma} < +0.32.$

Some of the recent results from the Tevatron and LHC experiments individually surpass the combined LEP-2 results in precision (see below).

<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

- 1 KHACHATRYAN 15 B study ZZ production in 8 TeV $p\,p$ collisions. In the decay modes $ZZ\to ^4e, 4\mu, \, 2e\,2\mu, \, 54, \, 75, \, 148$ events are observed, with an expected background of $2.2\pm0.9, \, 1.2\pm0.6, \, \text{and} \, 2.4\pm1.0$ events, respectively. Analysing the 4-lepton invariant mass spectrum in the range from 110 GeV to 1200 GeV, the following 95% C.L. limits are obtained: $\left|f\frac{Z}{4}\right| < 0.004, \, \left|f\frac{Z}{5}\right| < 0.004, \, \left|f\frac{\gamma}{4}\right| < 0.005, \, \left|f\frac{\gamma}{5}\right| < 0.005.$
- 2 KHACHATRYAN 15BC use the cross section measurement of the final state $pp \to ZZ \to 2\ell 2\nu$, $(\ell$ being an electron or a muon) at 7 and 8 TeV to put limits on these triple gauge couplings. Effective mass of the charged lepton pair is required to be in the range 83.5–98.5 GeV and the dilepton $p_T >$ 45 GeV. The reduced missing E_T is required to be > 65 GeV, which takes into account the fake missing E_T due to detector effects. The numbers of e^+e^- and $\mu^+\mu^-$ events selected are 35 and 40 at 7 TeV and 176 and 271 at 8 TeV respectively. The production cross sections so obtained are in agreement with SM predictions. The following 95% C.L. limits are set: $-0.0028 < f_4^Z < 0.0032$, $-0.0037 < f_4^\gamma < 0.0033$, $-0.0029 < f_5^Z < 0.0031$, $-0.0033 < f_5^\gamma < 0.0037$. Combining with previous results (KHACHATRYAN 15B and CHATRCHYAN 13B) which include 7 TeV and 8 TeV data on the final states $pp \to ZZ \to 2\ell 2\ell'$ where ℓ and ℓ' are

an electron or a muon, the best limits are $-0.0022 < f_{A}^{Z} < 0.0026, -0.0029 < f_{A}^{\gamma} <$ $0.0026,\, -0.0023 \,\, < f_{\bf 5}^{Z} \,\, < 0.0023,\, -0.0026 \,\, < \,\, f_{\bf 5}^{\gamma} \,\, < 0.0027.$

- 3 AAD 13Z study ZZ production in pp collisions at $\sqrt{s}=$ 7 TeV. In the ZZ ightarrow $\ell^+\ell^-\ell'^+\ell'^-$ final state they observe a total of 66 events with an expected background of 0.9 ± 1.3 . In the $ZZ \rightarrow \ell^+ \ell^- \nu \nu$ final state they observe a total of 87 events with an expected background of 46.9 ± 5.2 . The limits on anomalous TGCs are determined using the observed and expected numbers of these ZZ events binned in p_T^Z . The 95% C.L. are as follows: for form factor scale $\Lambda=\infty$, -0.015 < f_4^{γ} < 0.015, -0.013 < f_4^{Z} <0.013, $-0.016 < f_5^{\gamma} < 0.015$, $-0.013 < f_5^{Z} < 0.013$; for form factor scale $\Lambda =$ 3 TeV, $-0.022 < f_{4}^{\gamma} < 0.023$, $-0.019 < f_{4}^{Z} < 0.019$, $-0.023 < f_{5}^{\gamma} < 0.023$, $-0.020 < f_{\rm E}^{Z} < 0.019.$
- 4 CHATRCHYAN 13B study ZZ production in pp collisions and select 54 ZZ candidates in the Z decay channel with electrons or muons with an expected background of 1.4 ± 0.5 events. The resulting 95% C.L. ranges are: $-0.013 < f_{\it A}^{\gamma} < 0.015, -0.011 < f_{\it A}^{Z} <$ 0.012, $-0.014 < f_5^{\gamma} < 0.014, -0.012 < f_5^{Z} < 0.012.$
- $^{
 m 5}$ Using data collected in the center of mass energy range 192–209 GeV, SCHAEL 09 select 318 $e^+e^- \rightarrow ZZ$ events with 319.4 expected from the standard model. Using this data they derive the following 95% CL limits: $-0.321 < f_{A}^{\gamma} < 0.318, -0.534 < f_{A}^{Z} < 0.318$ $0.534, -0.724 < f_5^{\gamma} < 0.733, -1.194 < f_5^{Z} < 1.190.$
- ⁶ ABAZOV 08K search for ZZ and $Z\gamma^*$ events with 1 fb⁻¹ $p\overline{p}$ data at $\sqrt{s}=1.96$ TeV in $(ee)(ee), (\mu\mu)(\mu\mu), (ee)(\mu\mu)$ final states requiring the lepton pair masses to be >30GeV. They observe 1 event, which is consistent with an expected signal of 1.71 \pm 0.15 events and a background of 0.13 \pm 0.03 events. From this they derive the following limits, for a form factor (Λ) value of 1.2 TeV: $-0.28 < f_{AO}^Z < 0.28, -0.31 < f_{EO}^Z < 0.28$ $0.29, -0.26 < f_{40}^{\gamma} < 0.26, -0.30 < f_{50}^{\gamma} < 0.28.$
- 7 Using data collected at $\sqrt{s}=$ 183–208 GeV, ABDALLAH 07C select 171 $e^+\,e^ightarrow~$ ZZevents with $Z \to q \overline{q}$ or lepton pair (except an explicit au pair), and 74 $e^+e^- o Z\gamma^*$ events with a $q \overline{q} \mu^+ \mu^-$ or $q \overline{q} e^+ e^-$ signature, to derive 95% CL limits on f_i^V . Each limit is derived with other parameters set to zero. They report: $-0.40 < f_4^{Z^{'}} < 0.42$ $-0.38 < f_{5}^{Z} < 0.62, -0.23 < f_{4}^{\gamma} < 0.25, -0.52 < f_{5}^{\gamma} < 0.48.$
- 8 ABBIENDI 04C study ZZ production in $e^+\,e^-$ collisions in the C.M. energy range 190-209 GeV. They select 340 events with an expected background of 180 events. Including the ABBIENDI 00N data at 183 and 189 GeV (118 events with an expected background of 65 events) they report the following 95% CL limits: $-0.45 < f_A^Z < 0.58$,
- -0.94 < $f_5^Z <$ 0.25, -0.32 < $f_4^{\gamma} <$ 0.33, and -0.71 < $f_5^{\gamma} <$ 0.59.
- 9 ACHARD 03D study Z-boson pair production in $e^{+}e^{-}$ collisions in the C.M. energy range 200-209 GeV. They select 549 events with an expected background of 432 events. Including the ACCIARRI 99G and ACCIARRI 990 data (183 and 189 GeV respectively, 286 events with an expected background of 241 events) and the 192-202 GeV ACCIARRI 011 results (656 events, expected background of 512 events), they report the following 95% CL limits: $-0.48 \le f_A^Z \le 0.46$, $-0.36 \le f_5^Z \le 1.03$, $-0.28 \le f_A^{\gamma} \le 0.28$, and $-0.40 \le 1.03$ $f_{5}^{\gamma} \leq 0.47.$

ANOMALOUS W/Z QUARTIC COUPLINGS

A REVIEW GOES HERE - Check our WWW List of Reviews

 a_0/Λ^2 , a_c/Λ^2

Combining published and unpublished preliminary LEP results the following 95% CL intervals for the QGCs associated with the $ZZ\gamma\gamma$ vertex are derived (CERN-PH-EP/2005-051 or hep-ex/0511027):

$$-0.008 < a_0^Z/\Lambda^2 < +0.021$$

 $-0.029 < a_0^Z/\Lambda^2 < +0.039$

Anomalous Z quartic couplings can also be measured by the experiments at the Tevatron and the LHC. As discussed in the review on "Anomalous W/Z quartic couplings (QGCS)," the measurements are typically done using different operator expansions which then do not allow the results to be compared and averaged. At least one common framework should be agreed upon for use in future publications by the experiments.

<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u>

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ ABBIENDI 04L OPAI ² HEISTER 04A ALEF ³ ACHARD 02G L3

¹ ABBIENDI 04L select 20 $e^+e^- \rightarrow \nu \overline{\nu} \gamma \gamma$ acoplanar events in the energy range 180–209 GeV and 176 $e^+e^- \rightarrow q \overline{q} \gamma \gamma$ events in the energy range 130–209 GeV. These samples are used to constrain possible anomalous $W^+W^-\gamma \gamma$ and $ZZ\gamma\gamma$ quartic couplings. Further combining with the $W^+W^-\gamma$ sample of ABBIENDI 04B the following one-parameter 95% CL limits are obtained: $-0.007 < a_0^Z/\Lambda^2 < 0.023 \ {\rm GeV}^{-2}, -0.029 < a_c^Z/\Lambda^2 < 0.029 \ {\rm GeV}^{-2}, -0.020 < a_0^W/\Lambda^2 < 0.020 \ {\rm GeV}^{-2}, -0.052 < a_c^W/\Lambda^2 < 0.037 \ {\rm GeV}^{-2}.$

 $^{0.037}~{\rm GeV}^{-2}.$ In the CM energy range 183 to 209 GeV HEISTER 04A select 30 $e^+\,e^-\to\nu\overline{\nu}\gamma\gamma$ events with two acoplanar, high energy and high transverse momentum photons. The photon-photon acoplanarity is required to be $>5^\circ$, $E_\gamma/\sqrt{s}>0.025$ (the more energetic photon having energy $>0.2~\sqrt{s}$), ${\rm p}_{T\gamma}/{\rm E}_{\rm beam}>0.05$ and $\left|\cos\theta_\gamma\right|<0.94.$ A likelihood fit to the photon energy and recoil missing mass yields the following one–parameter 95% CL limits: $-0.012< a_0^Z/\Lambda^2<0.019~{\rm GeV}^{-2}, -0.041< a_c^Z/\Lambda^2<0.044~{\rm GeV}^{-2}, -0.060< a_0^W/\Lambda^2<0.055~{\rm GeV}^{-2}, -0.099< a_c^W/\Lambda^2<0.093~{\rm GeV}^{-2}.$

³ ACHARD 02G study $e^+e^- \to Z\gamma\gamma \to q\overline{q}\gamma\gamma$ events using data at center-of-mass energies from 200 to 209 GeV. The photons are required to be isolated, each with energy >5 GeV and $|\cos\theta| < 0.97$, and the di-jet invariant mass to be compatible with that of the Z boson (74–111 GeV). Cuts on Z velocity ($\beta < 0.73$) and on the energy of the most energetic photon reduce the backgrounds due to non-resonant production of the $q\overline{q}\gamma\gamma$ state and due to ISR respectively, yielding a total of 40 candidate events of which 8.6 are expected to be due to background. The energy spectra of the least energetic photon are fitted for all ten center-of-mass energy values from 130 GeV to 209 GeV (as obtained adding to the present analysis 130–202 GeV data of ACCIARRI 01E, for a total of 137 events with an expected background of 34.1 events) to obtain the fitted values $a_0/\Lambda^2 = 0.00^{+0.02}_{-0.01}$ GeV⁻² and $a_c/\Lambda^2 = 0.03^{+0.01}_{-0.02}$ GeV⁻², where the other parameter is kept fixed to its Standard Model value (0). A simultaneous fit to both parameters yields the 95% CL limits -0.02 GeV⁻² $< a_0/\Lambda^2 < 0.03$ GeV⁻² and -0.07 GeV⁻² $< a_c/\Lambda^2 < 0.05$ GeV⁻².

Z REFERENCES

AABOUD	16K	PRL 117 111802	M. Aaboud et al.	(ATLAS Collab.)
AAD	16L	EPJ C76 210	G. Aad et al.	(ATLAS Collab.)
AAD	16Q	PR D93 112002	G. Aad <i>et al.</i>	(ATLAS Collab.)
ABRAMOWICZ	16A	PR D93 092002	H. Abramowicz et al.	(ZEUS Collab.)
ABT	16	PR D94 052007	I. Abt <i>et al.</i>	(MPIM, OXF, HAMB, DESY)
KHACHATRY			V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	16CC	PL B763 280	V. Khachatryan <i>et al.</i>	(CMS Collab.)
AAD		JHEP 1509 049	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15I	PRL 114 121801	G. Aad <i>et al.</i>	(ATLAS Collab.)
KHACHATRY	15AC	JHEP 1504 164	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	15B	PL B740 250	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY	-		V. Khachatryan <i>et al.</i>	(CMS Collab.)
-				
AAD	14AU	PR D90 072010	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	14N	PRL 112 231806	G. Aad et al.	(ATLAS Collab.)
AALTONEN	14E	PRL 112 111803	T. Aaltonen et al.	`(CDF Collab.)
				`
		PR D89 092005	S. Chatrchyan et al.	(CMS Collab.)
AAD	13AN	PR D87 112003	G. Aad <i>et al.</i>	(ATLAS Collab.)
Also		PR D91 119901 (errat.)	G. Aad et al.	(ATLAS Collab.)
AAD	13Z	JHEP 1303 128	G. Aad et al.	(ATLAS Collab.)
				`
CHATRCHYAN		JHEP 1301 063	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN	13BI	JHEP 1310 164	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
SCHAEL	13A	PRPL 532 119	S. Schael et al.	(ALEPH Collab., DELPHI, L3+)
AAD		PL B717 49	G. Aad et al.	(ATLAS Collab.)
ABAZOV	12S	PR D85 052001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
CHATRCHYAN	12BN	JHEP 1212 034	S. Chatrchyan et al.	(CMS Collab.)
AALTONEN	11S	PRL 107 051802	T. Aaltonen <i>et al.</i>	(CDF Collab.)
	-			`
ABAZOV	11D	PR D84 012007	V.M. Abazov <i>et al.</i>	(D0 Collab.)
CHATRCHYAN	11M	PL B701 535	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
ABAZOV	09L	PRL 102 201802	V.M. Abazov et al.	(D0 Collab.)
BEDDALL	09			
		PL B670 300	A. Beddall, A. Beddall, A.	
SCHAEL	09	JHEP 0904 124	S. Schael <i>et al.</i>	(ALEPH Collab.)
ABAZOV	08K	PRL 100 131801	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	07M	PL B653 378	V.M. Abazov et al.	(D0 Collab.)
ABDALLAH	07C	EPJ C51 525	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ABDALLAH	06E	PL B639 179	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
A 1/TAC	0.0	DL DC22 2F	A Al	
AKTAS	06	PL B032 33	A. Aktas <i>et al.</i>	(H1 Collab.)
		PL B632 35 PRPL 427 257		(H1 Collab.)
LEP-SLC	06	PRPL 427 257	ALEPH, DELPHI, L3, OF	PAL, SLD and working groups
	06 06A	PRPL 427 257 PL B639 192	ALEPH, DELPHI, L3, OF S. Schael <i>et al.</i>	
LEP-SLC	06	PRPL 427 257	ALEPH, DELPHI, L3, OF	PAL, SLD and working groups
LEP-SLC SCHAEL ABDALLAH	06 06A 05	PRPL 427 257 PL B639 192 EPJ C40 1	ALEPH, DELPHI, L3, OF S. Schael <i>et al.</i> J. Abdallah <i>et al.</i>	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH	06 06A 05 05C	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299	ALEPH, DELPHI, L3, OF S. Schael <i>et al.</i> J. Abdallah <i>et al.</i> J. Abdallah <i>et al.</i>	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE	06 06A 05 05C 05	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801	ALEPH, DELPHI, L3, OF S. Schael <i>et al.</i> J. Abdallah <i>et al.</i> J. Abdallah <i>et al.</i> K. Abe <i>et al.</i>	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH	06 06A 05 05C	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299	ALEPH, DELPHI, L3, OF S. Schael <i>et al.</i> J. Abdallah <i>et al.</i> J. Abdallah <i>et al.</i>	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE	06 06A 05 05C 05	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801	ALEPH, DELPHI, L3, OF S. Schael <i>et al.</i> J. Abdallah <i>et al.</i> J. Abdallah <i>et al.</i> K. Abe <i>et al.</i>	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA	06 06A 05 05C 05 05F 05M	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI	06 06A 05 05C 05 05F 05M 04B	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ACOSTA ABBIENDI ABBIENDI	06 06A 05 05C 05 05F 05M 04B 04C	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. G. Abbiendi et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (OPAL Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI	06 06A 05 05C 05 05F 05M 04B	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI	06 06A 05 05C 05 05F 05M 04B 04C	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. G. Abbiendi et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (OPAL Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI	06 06A 05 05C 05 05F 05M 04B 04C 04E	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04L	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. J. Abdallah et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ACOSTA ABBIENDI	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04L	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. K. Abdellah et al. J. Abdallah et al. K. Abe et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (SLD Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ACOSTA ABBIENDI ABCHARD	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04L 04F 04C	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. C. Abdallah et al. C. Abdallah et al. C. Achard et al. C. Achard et al. C. Achard et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (DELPHI Collab.) (SLD Collab.) (L3 Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABDALLAH ABE ACHARD ACHARD	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04C 04C	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. F. Abdallah et al. J. Abdallah et al. K. Abe et al. P. Achard et al. P. Achard et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (EDELPHI Collab.) (DELPHI Collab.) (L3 Collab.) (L3 Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABCHARD ACHARD HEISTER	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04L 04F 04C 04C	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. F. Abdallah et al. J. Abdallah et al. J. Abdallah et al. R. Abe et al. P. Achard et al. P. Achard et al. A. Heister et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (EDAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (ALEPH Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABDALLAH ABE ACHARD ACHARD	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04C 04C	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. F. Abdallah et al. J. Abdallah et al. K. Abe et al. P. Achard et al. P. Achard et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (EDELPHI Collab.) (DELPHI Collab.) (L3 Collab.) (L3 Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABCALLAH ABE ACHARD ACHARD HEISTER ABBIENDI	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04L 04C 04C 04C 04C 04C	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B577 18	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. F. Abdallah et al. J. Abdallah et al. P. Achard et al. P. Achard et al. A. Heister et al. G. Abbiendi et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (DELPHI Collab.) (SLD Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (OPAL Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABCALLAH ABE ACHARD HEISTER ABBIENDI ABDALLAH	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04L 04C 04C 04C 04C 04C 04C 04C 04C 04C	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B577 18 PL B569 129	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. F. Abdallah et al. J. Abdallah et al. K. Abe et al. P. Achard et al. P. Achard et al. A. Heister et al. G. Abbiendi et al. A. Heister et al. J. Abdallah et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (DELPHI Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (OPAL Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABDALLAH ABE ACHARD ACHARD HEISTER ABBIENDI ABBIENDI ABDALLAH ABEALLAH	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04L 04F 04C 04C 04H 04A 03P 03H	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B577 18 PL B569 129 PL B576 29	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. F. Abdallah et al. J. Abdallah et al. Abdallah et al. Abdallah et al. Abdallah et al. A. Heister et al. G. Abbiendi et al. A. Heister et al. A. Heister et al. J. Abdallah et al. J. Abdallah et al. J. Abdallah et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (DELPHI Collab.) (SLD Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (OPAL Collab.) (ALEPH Collab.) (OPAL Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABCALLAH ABE ACHARD HEISTER ABBIENDI ABDALLAH	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04L 04F 04C 04H 04A 03P 03H 03K	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B577 18 PL B569 129 PL B576 29 PRL 90 141804	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. F. Abdallah et al. J. Abdallah et al. K. Abe et al. P. Achard et al. P. Achard et al. A. Heister et al. G. Abbiendi et al. A. Heister et al. J. Abdallah et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (DELPHI Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (OPAL Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABDALLAH ABE ACHARD ACHARD HEISTER ABBIENDI ABBIENDI ABDALLAH ABEALLAH	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04L 04F 04C 04C 04H 04A 03P 03H	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B577 18 PL B569 129 PL B576 29	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. F. Abdallah et al. J. Abdallah et al. Abdallah et al. Abdallah et al. Abdallah et al. A. Heister et al. G. Abbiendi et al. A. Heister et al. A. Heister et al. J. Abdallah et al. J. Abdallah et al. J. Abdallah et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (DELPHI Collab.) (SLD Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (OPAL Collab.) (ALEPH Collab.) (OPAL Collab.)
LEP-SLC SCHAEL ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABDALLAH ABE ACHARD ACHARD HEISTER ABBIENDI ABDALLAH ABEALLAH ABEALLAH ABEALLAH ABEALLAH ABEALLAH ABEACHARD	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04L 04F 04C 04H 04A 03H 03K 03F	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B577 18 PL B569 129 PL B576 29 PRL 90 141804 PL B572 133	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. F. Abbiendi et al. J. Abdallah et al. J. Abdallah et al. P. Achard et al. A. Heister et al. G. Abbiendi et al. J. Abdallah et al. K. Abe et al. P. Achard et al. R. Abe et al. P. Achard et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (EXEPTICOL COLLAB.) (DELPHI Collab.) (L3 Collab.) (ALEPH Collab.) (DELPHI Collab.) (SLD Collab.) (L3 Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABDALLAH ABE ACHARD HEISTER ABBIENDI ABDALLAH ABDALLAH ABDALLAH ABDALLAH ABDALLAH ABDALLAH ABDALLAH ABCHARD ACHARD ACHARD ACHARD ACHARD	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04L 04F 04C 04H 04A 03P 03H 03K 03F 03D	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B577 18 PL B569 129 PL B576 29 PRL 90 141804 PL B572 133 PL B577 109	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. F. Abdallah et al. J. Abdallah et al. P. Achard et al. A. Heister et al. J. Abdallah et al. K. Abe et al. P. Achard et al. P. Achard et al. P. Achard et al. P. Achard et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (EIDELPHI Collab.) (SLD Collab.) (L3 Collab.) (ALEPH Collab.) (DELPHI Collab.) (OPAL Collab.) (SLD Collab.) (L3 Collab.) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (SLD Collab.) (SLD Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (L3 Collab.) (L3 Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBALLAH ABE ACHARD HEISTER ABBIENDI ABDALLAH ABDALLAH ABDALLAH ABCALAH ABCALA	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04C 04H 04A 03P 03H 03F 03D 03G	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B577 18 PL B577 18 PL B576 29 PRL 90 141804 PL B572 133 PL B577 109 PL B546 29	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. F. Abdallah et al. J. Abdallah et al. P. Achard et al. A. Heister et al. G. Abbiendi et al. P. Achard et al. A. Heister et al. J. Abdallah et al. P. Achard et al. G. Abbiendi et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (EDELPHI Collab.) (DELPHI Collab.) (L3 Collab.) (ALEPH Collab.) (DELPHI Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBALLAH ABE ACHARD HEISTER ABBIENDI ABDALLAH ABDALLAH ABCALAH ABCALAH ABCALAH ABE ACHARD ACHARD ACHARD ACHARD ACHARD ACHARD ACHARD ACHARD ACHARD ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABE	06 06A 05 05C 05 05F 05F 04B 04C 04E 04G 04C 04C 04C 04H 04A 03P 03H 03F 03G 03G 02I 02G	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B577 18 PL B569 129 PL B576 29 PRL 90 141804 PL B572 133 PL B577 109 PL B546 29 PRL 88 151801	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. F. Abdallah et al. J. Abdallah et al. P. Achard et al. A. Heister et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. P. Achard et al. J. Abdallah et al. K. Abe et al. P. Achard et al. P. Achard et al. P. Achard et al. C. Abbiendi et al. K. Abe et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (EXED Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (SLD Collab.) (L3 Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (L3 Collab.) (CPAL Collab.) (OPAL Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBALLAH ABE ACHARD HEISTER ABBIENDI ABDALLAH ABDALLAH ABDALLAH ABCALAH ABCALA	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04C 04H 04A 03P 03H 03F 03D 03G	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B577 18 PL B577 18 PL B576 29 PRL 90 141804 PL B572 133 PL B577 109 PL B546 29	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. F. Abdallah et al. J. Abdallah et al. P. Achard et al. A. Heister et al. G. Abbiendi et al. P. Achard et al. A. Heister et al. J. Abdallah et al. P. Achard et al. G. Abbiendi et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (EDELPHI Collab.) (DELPHI Collab.) (L3 Collab.) (ALEPH Collab.) (DELPHI Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBALLAH ABE ACHARD ACHARD HEISTER ABBIENDI ABDALLAH ABC ACHARD	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04L 04C 04C 04C 04C 04C 04C 04C 04C 04C 04C	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B577 18 PL B569 129 PL B576 29 PRL 90 141804 PL B577 109 PL B577 109 PL B546 29 PRL 88 151801 PL B540 43	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. F. Achard et al. D. Achard et al. A. Heister et al. D. Abdallah et al. C. Abbiendi et al. C. Abbiendi et al. C. Abbiendi et al. C. Abdallah et al. C. Abbiendi et al. C. Abbiendi et al. C. Abbiendi et al. C. Abdallah et al. C. Abbiendi et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (DELPHI Collab.) (SLD Collab.) (L3 Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (SLD Collab.) (L3 Collab.) (L3 Collab.) (CPAL Collab.) (SLD Collab.) (SLD Collab.) (SLD Collab.) (SLD Collab.) (SLD Collab.) (SLD Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABDALLAH ABE ACHARD HEISTER ABBIENDI ABDALLAH ABE ACHARD ABBIENDI ABE ACHARD HEISTER	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04L 04C 04C 04C 04C 04C 04C 04C 04C 04C 04C	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B577 18 PL B569 129 PL B576 29 PRL 90 141804 PL B572 133 PL B577 109 PL B546 29 PRL 88 151801 PL B540 43 PL B540 43 PL B556 34	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. H. Abdallah et al. J. Abdallah et al. A. Heister et al. J. Abdallah et al. P. Achard et al. J. Abdallah et al. K. Abe et al. P. Achard et al. P. Achard et al. G. Abbiendi et al. K. Abe et al. R. Achard et al. R. Achard et al. P. Achard et al. R. Abe et al. P. Achard et al. R. Abe et al. P. Achard et al. R. Abert et al. R. Abert et al. R. Abert et al. R. Achard et al. R. Achard et al. R. Achard et al. R. Achard et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (ESLD Collab.) (DELPHI Collab.) (SLD Collab.) (L3 Collab.) (L3 Collab.) (SLD Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABDALLAH ABE ACHARD HEISTER ABBIENDI ABDALLAH ABE ACHARD ACHARD ACHARD ACHARD ACHARD ACHARD HEISTER	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04L 04F 04C 04H 04A 03P 03H 03K 03F 03D 03G 02I 02G 02B 02C	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B577 18 PL B569 129 PL B577 18 PL B569 129 PL B576 29 PRL 90 141804 PL B572 133 PL B577 109 PL B540 29 PRL 88 151801 PL B540 43 PL B526 34 PL B526 34 PL B526 34	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. H. Abdallah et al. J. Abdallah et al. A. Heister et al. J. Abdallah et al. A. Heister et al. J. Abdallah et al. K. Abe et al. P. Achard et al. P. Achard et al. K. Abe et al. P. Achard et al. K. Abe et al. P. Achard et al. A. Heister et al. A. Heister et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (DELPHI Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.)
LEP-SLC SCHAEL ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABDALLAH ABE ACHARD HEISTER ABBIENDI ABDALLAH ABE ACHARD ABE ACHARD ACH	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04C 04H 04A 03P 03H 03G 02I 02G 02B 02C 02H	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B569 129 PL B570 18 PL B569 129 PL B576 29 PRL 90 141804 PL B572 133 PL B577 109 PL B546 29 PRL 88 151801 PL B540 43 PL B526 34 PL B528 19 EPJ C24 177	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. J. Abdallah et al. J. Abdallah et al. P. Achard et al. P. Achard et al. J. Abdallah et al. K. Abe et al. P. Achard et al. P. Achard et al. P. Achard et al. A. Heister et al. A. Heister et al. A. Heister et al. A. Heister et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (EXEPTI Collab.) (DELPHI Collab.) (SLD Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABDALLAH ABE ACHARD HEISTER ABBIENDI ABDALLAH ABE ACHARD ACHARD ACHARD ACHARD ACHARD ACHARD HEISTER	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04L 04F 04C 04H 04A 03P 03H 03K 03F 03D 03G 02I 02G 02B 02C	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B577 18 PL B569 129 PL B577 18 PL B569 129 PL B576 29 PRL 90 141804 PL B572 133 PL B577 109 PL B540 29 PRL 88 151801 PL B540 43 PL B526 34 PL B526 34 PL B526 34	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. H. Abdallah et al. J. Abdallah et al. A. Heister et al. J. Abdallah et al. A. Heister et al. J. Abdallah et al. K. Abe et al. P. Achard et al. P. Achard et al. K. Abe et al. P. Achard et al. K. Abe et al. P. Achard et al. A. Heister et al. A. Heister et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (DELPHI Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.)
LEP-SLC SCHAEL ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABDALLAH ABE ACHARD HEISTER ABBIENDI ABDALLAH ABE ACHARD ACHARD ACHARD ACHARD ABE ACHARD ACHARD ACHARD ACHARD ACHARD ABE ACHARD ACHARD ABE ACHARD ACHARD ABE ACHARD ABE ACHARD ABE ACHARD ABE ACHARD ABBIENDI ABE ACHARD	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04C 04H 04A 03P 03H 03G 02I 02G 02G 02B 02C 02H 01A	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B577 18 PL B569 129 PL B576 29 PRL 90 141804 PL B572 133 PL B577 109 PL B546 29 PRL 88 151801 PL B540 43 PL B540 43 PL B526 34 PL B528 19 EPJ C24 177 EPJ C19 587	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. J. Abdallah et al. J. Abdallah et al. P. Achard et al. J. Abdallah et al. J. Abdallah et al. P. Achard et al. J. Abdallah et al. K. Abe et al. P. Achard et al. P. Achard et al. P. Achard et al. A. Heister et al. G. Abbiendi et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (EAS Collab.) (DELPHI Collab.) (SLD Collab.) (L3 Collab.) (ALEPH Collab.) (DELPHI Collab.) (SLD Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.)
LEP-SLC SCHAEL ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBALLAH ABE ACHARD HEISTER ABBIENDI ABBALLAH ABE ACHARD ACHARD ACHARD ABE ACHARD ACHARD ABE ACHARD ACHARD ABE ACHARD ABBIENDI ABE ACHARD HEISTER HEISTER HEISTER ABBIENDI ABBIENDI ABBIENDI ABBIENDI	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04C 04H 04A 03P 03H 03G 02I 02G 02G 02B 02C 02H 01A 01G	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B577 18 PL B569 129 PL B576 29 PRL 90 141804 PL B572 133 PL B577 109 PL B546 29 PRL 90 141804 PL B572 133 PL B577 109 PL B546 29 PRL 88 151801 PL B540 43 PL B526 34 PL B528 19 EPJ C24 177 EPJ C19 587 EPJ C18 447	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. F. Abdallah et al. J. Abdallah et al. P. Achard et al. J. Abdallah et al. K. Abe et al. P. Achard et al. P. Achard et al. R. Abe et al. A. Heister et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (EXED Collab.) (L3 Collab.) (L3 Collab.) (DELPHI Collab.) (SLD Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (OPAL Collab.)
LEP-SLC SCHAEL ABDALLAH ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBALLAH ABE ACHARD HEISTER ABBIENDI ABDALLAH ABE ACHARD ACHAR	06 06A 05 05C 05 05F 05F 04B 04C 04E 04G 04C 04C 04H 04A 03P 03H 03G 02I 02G 02G 02G 02G 02H 01A 01G	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B577 18 PL B569 129 PL B576 29 PRL 90 141804 PL B572 133 PL B572 133 PL B577 109 PL B546 29 PRL 88 151801 PL B540 43 PL B528 19 EPJ C24 177 EPJ C19 587 EPJ C18 447 PL B516 1	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. J. Abdallah et al. J. Abdallah et al. J. Abdallah et al. P. Achard et al. P. Achard et al. J. Abdallah et al. J. Abdallah et al. A. Heister et al. J. Abdallah et al. A. Heister et al. P. Achard et al. P. Achard et al. A. Heister et al. A. Heister et al. A. Heister et al. G. Abbiendi et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (EXED Collab.) (DELPHI Collab.) (L3 Collab.) (L3 Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.)
LEP-SLC SCHAEL ABDALLAH ABE ABE ACOSTA ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABBALLAH ABE ACHARD HEISTER ABBIENDI ABBALLAH ABE ACHARD ACHARD ACHARD ABE ACHARD ACHARD ABE ACHARD ACHARD ABE ACHARD ABBIENDI ABE ACHARD HEISTER HEISTER HEISTER ABBIENDI ABBIENDI ABBIENDI ABBIENDI	06 06A 05 05C 05 05F 05M 04B 04C 04E 04G 04C 04H 04A 03P 03H 03G 02I 02G 02G 02B 02C 02H 01A 01G	PRPL 427 257 PL B639 192 EPJ C40 1 EPJ C44 299 PRL 94 091801 PR D71 112004 PR D71 052002 PL B580 17 EPJ C32 303 PL B586 167 EPJ C33 173 PR D70 032005 EPJ C34 109 PR D69 072003 PL B585 42 PL B597 119 PL B602 31 PL B577 18 PL B569 129 PL B576 29 PRL 90 141804 PL B572 133 PL B577 109 PL B546 29 PRL 90 141804 PL B572 133 PL B577 109 PL B546 29 PRL 88 151801 PL B540 43 PL B526 34 PL B528 19 EPJ C24 177 EPJ C19 587 EPJ C18 447	ALEPH, DELPHI, L3, OF S. Schael et al. J. Abdallah et al. J. Abdallah et al. K. Abe et al. K. Abe et al. D. Acosta et al. G. Abbiendi et al. F. Abdallah et al. J. Abdallah et al. P. Achard et al. J. Abdallah et al. K. Abe et al. P. Achard et al. P. Achard et al. R. Abe et al. A. Heister et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al.	PAL, SLD and working groups (ALEPH Collab.) (DELPHI Collab.) (DELPHI Collab.) (SLD Collab.) (SLD Collab.) (CDF Collab.) (OPAL Collab.) (EXED Collab.) (L3 Collab.) (L3 Collab.) (DELPHI Collab.) (SLD Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (OPAL Collab.)

ADDIENDI	010	ED I CO1 1	C Abbiendi et el	(ODAL Callata)
ABBIENDI	010	EPJ C21 1	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABE	01B	PRL 86 1162	K. Abe <i>et al.</i>	(SLD Collab.)
ABE	01C	PR D63 032005	K. Abe <i>et al.</i>	(SLD Collab.)
ACCIARRI	01E	PL B505 47	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	011	PL B497 23	M. Acciarri et al.	(L3 Collab.)
HEISTER	01	EPJ C20 401	A. Heister <i>et al.</i>	(ALEPH Collab.)
HEISTER	01D	EPJ C22 201	A. Heister <i>et al.</i>	(ALEPH Collab.)
ABBIENDI	00N	PL B476 256	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI,G	00C	EPJ C17 553	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABE	00B	PRL 84 5945	K. Abe <i>et al.</i>	(SLD Collab.)
ABE	00D	PRL 85 5059	K. Abe <i>et al.</i>	(SLD Collab.)
ABREU	00	EPJ C12 225	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	00B	EPJ C14 613	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	00E	EPJ C14 585	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	00F	EPJ C16 371	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	00P	PL B475 429	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	00	EPJ C13 47	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	00C	EPJ C16 1	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	00J	PL B479 79	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	00Q	PL B489 93	M. Acciarri <i>et al.</i>	(L3 Collab.)
BARATE	00B	EPJ C16 597	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE	00C	EPJ C14 1	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE	000	EPJ C16 613	R. Barate <i>et al.</i>	(ALEPH Collab.)
ABBIENDI	99B	EPJ C8 217	G. Abbiendi <i>et al</i> .	(OPAL Collab.)
ABBIENDI	991	PL B447 157	G. Abbiendi <i>et al</i> .	(OPAL Collab.)
ABE	99E	PR D59 052001	K. Abe <i>et al.</i>	(SLD Collab.)
ABE	99L	PRL 83 1902	K. Abe <i>et al.</i>	(SLD Collab.)
ABREU	99	EPJ C6 19	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	99B	EPJ C10 415	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	99J	PL B449 364	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	99U	PL B462 425	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	99Y	EPJ C10 219	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	99D	PL B448 152	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	99F	PL B453 94	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	99G	PL B450 281	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	990	PL B465 363	M. Acciarri <i>et al.</i>	(L3 Collab.)
ABBOTT	98M	PR D57 R3817	B. Abbott <i>et al.</i>	(D0 Collab.)
ABE	98D	PRL 80 660	K. Abe <i>et al.</i> K. Abe <i>et al.</i>	(SLD Collab.)
ABE	98I 98K	PRL 81 942	P. Abreu <i>et al.</i>	(SLD Collab.)
ABREU	98L	PL B423 194 EPJ C5 585	P. Abreu <i>et al.</i> P. Abreu <i>et al.</i>	(DELPHI Collab.) (DELPHI Collab.)
ABREU	96L 98G	PL B431 199	M. Acciarri <i>et al.</i>	
ACCIARRI ACCIARRI	98H	PL B431 199 PL B429 387	M. Acciarri <i>et al.</i>	(L3 Collab.) (L3 Collab.)
ACCIARRI	98U	PL B439 225	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACKERSTAFF	98A	EPJ C5 411	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
ACKERSTAFF	98E	EPJ C1 439	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
ACKERSTAFF	980	PL B420 157	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
ACKERSTAFF	98Q	EPJ C4 19	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
BARATE	980	PL B434 415	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE	98T	EPJ C4 557	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE	98V	EPJ C5 205	R. Barate <i>et al.</i>	(ALEPH Collab.)
ABE	97	PRL 78 17	K. Abe <i>et al.</i>	(SLD Collab.)
ABREU	97C	ZPHY C73 243	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	97E	PL B398 207	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	97G	PL B404 194	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	97D	PL B393 465	M. Acciarri et al.	(L3 Collab.)
ACCIARRI	97J	PL B407 351	M. Acciarri et al.	(L3 Collab.)
ACCIARRI	97L	PL B407 389	M. Acciarri et al.	(L3 Collab.)
ACCIARRI	97R	PL B413 167	M. Acciarri et al.	(L3 Collab.)
ACKERSTAFF	97M	ZPHY C74 413	K. Ackerstaff et al.	(OPAL Collab.)
ACKERSTAFF	97S	PL B412 210	K. Ackerstaff et al.	(OPAL Collab.)
ACKERSTAFF	97T	ZPHY C76 387	K. Ackerstaff et al.	(OPAL Collab.)
ACKERSTAFF	97W	ZPHY C76 425	K. Ackerstaff et al.	(OPAL Collab.)
ALEXANDER	97C	ZPHY C73 379	G. Alexander et al.	(OPAL Collab.)
ALEXANDER	97D	ZPHY C73 569	G. Alexander et al.	(OPAL Collab.)
ALEXANDER	97E	ZPHY C73 587	G. Alexander et al.	(OPAL Collab.)
BARATE	97D	PL B405 191	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE	97E	PL B401 150	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE	97F	PL B401 163	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE	97H	PL B402 213	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE	97J	ZPHY C74 451	R. Barate <i>et al.</i>	(ALEPH Collab.)

ABREU	96R	ZPHY C72 31	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	96S	PL B389 405	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	96U	ZPHY C73 61	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	96	PL B371 126	M. Acciarri <i>et al.</i>	(L3 Collab.)
ADAM	96	ZPHY C69 561	W. Adam et al.	(DELPHI Collab.)
				(DELDIII C-II-I-)
ADAM	96B	ZPHY C70 371	W. Adam <i>et al.</i>	(DELPHI Collab.)
ALEXANDER	96B	ZPHY C70 197	G. Alexander <i>et al.</i>	(OPAL Collab.)
	96F	PL B370 185	G. Alexander et al.	
ALEXANDER				(OPAL Collab.)
ALEXANDER	96N	PL B384 343	G. Alexander <i>et al.</i>	(OPAL Collab.)
ALEXANDER	96R	ZPHY C72 1	G. Alexander et al.	(OPAL Collab.)
BUSKULIC	96D	ZPHY C69 393	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
BUSKULIC	96H	ZPHY C69 379	D. Buskulic et al.	(ALEPH Collab.)
				1
BUSKULIC	96T	PL B384 449	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
BUSKULIC	96Y	PL B388 648	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
	95J			
ABE		PRL 74 2880	K. Abe <i>et al.</i>	(SLD Collab.)
ABREU	95	ZPHY C65 709	(erratum)P. Abreu et al.	(DELPHI Collab.)
ABREU	95D	ZPHY C66 323	P. Abreu et al.	(DELPHI Collab.)
ABREU	95L	ZPHY C65 587	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	95M	ZPHY C65 603	P. Abreu <i>et al.</i>	(DELPHI Collab.)
				• • • • • • • • • • • • • • • • • • • •
ABREU	95O	ZPHY C67 543	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	95R	ZPHY C68 353	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	95V	ZPHY C68 541	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	95W	PL B361 207	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	95X	ZPHY C69 1	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	95B	PL B345 589	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	95C	PL B345 609	M. Acciarri et al.	(L3 Collab.)
				` ` · · · · · · · · · · · · · · · · · ·
ACCIARRI	95G	PL B353 136	M. Acciarri <i>et al.</i>	(L3 Collab.)
AKERS	95C	ZPHY C65 47	R. Akers <i>et al.</i>	(OPAL Collab.)
AKERS	95U	ZPHY C67 389	R. Akers <i>et al.</i>	(OPAL Collab.)
AKERS	95W	ZPHY C67 555	R. Akers <i>et al.</i>	(OPAL Collab.)
AKERS	95X	ZPHY C68 1	R. Akers et al.	(OPAL Collab.)
				`
AKERS	95Z	ZPHY C68 203	R. Akers <i>et al.</i>	(OPAL Collab.)
ALEXANDER	95D	PL B358 162	G. Alexander et al.	(OPAL Collab.)
				. ` .
BUSKULIC	95R	ZPHY C69 15	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
MIYABAYASHI	95	PL B347 171	K. Miyabayashi et al.	(TOPAZ Collab.)
ABE	94C	PRL 73 25	K. Abe <i>et al.</i>	` (SLD Collab.)
				. `
ABREU	94B	PL B327 386	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	94P	PL B341 109	P. Abreu <i>et al.</i>	(DELPHI Collab.)
AKERS	94P	ZPHY C63 181	R. Akers <i>et al.</i>	(OPAL Collab.)
BUSKULIC	94G	ZPHY C62 179	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
BUSKULIC	94J	ZPHY C62 1	D. Buskulic et al.	(ALEPH Collab.)
VILAIN	94	PL B320 203	P. Vilain <i>et al.</i>	(CHARM II Collab.)
ABREU	93	PL B298 236	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	93I		P. Abreu <i>et al.</i>	3
	931	ZPHY C59 533		(DELPHI Collab.)
Also		ZPHY C65 709	(erratum)P. Abreu et al.	(DELPHI Collab.)
ABREU	93L	PL B318 249	P. Abreu <i>et al.</i>	(DELPHI Collab.)
				`
ACTON	93	PL B305 407	P.D. Acton et al.	
ACTON	93D	ZPHY C58 219		(OPAL Collab.)
ACTON			P.D. Acton <i>et al.</i>	
	u:≺⊢		P.D. Acton <i>et al.</i>	(OPAL Collab.)
	93E	PL B311 391	P.D. Acton et al.	(OPAL Collab.) (OPAL Collab.)
ADRIANI	93E 93			(OPAL Collab.)
ADRIANI	93	PL B311 391 PL B301 136	P.D. Acton <i>et al.</i> O. Adriani <i>et al.</i>	(OPAL Collab.) (OPAL Collab.) (L3 Collab.)
ADRIANI ADRIANI	93 93l	PL B311 391 PL B301 136 PL B316 427	P.D. Acton <i>et al.</i> O. Adriani <i>et al.</i> O. Adriani <i>et al.</i>	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.)
ADRIANI ADRIANI BUSKULIC	93 93I 93L	PL B311 391 PL B301 136 PL B316 427 PL B313 520	P.D. Acton <i>et al.</i> O. Adriani <i>et al.</i> O. Adriani <i>et al.</i> D. Buskulic <i>et al.</i>	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.)
ADRIANI ADRIANI	93 93l	PL B311 391 PL B301 136 PL B316 427	P.D. Acton <i>et al.</i> O. Adriani <i>et al.</i> O. Adriani <i>et al.</i> D. Buskulic <i>et al.</i>	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV	93 93I 93L 93C	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453	P.D. Acton <i>et al.</i> O. Adriani <i>et al.</i> O. Adriani <i>et al.</i> D. Buskulic <i>et al.</i> V.A. Novikov, L.B. Okun,	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) M.I. Vysotsky (ITEP)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU	93 93I 93L 93C 92I	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371	P.D. Acton <i>et al.</i> O. Adriani <i>et al.</i> O. Adriani <i>et al.</i> D. Buskulic <i>et al.</i> V.A. Novikov, L.B. Okun, P. Abreu <i>et al.</i>	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) M.I. Vysotsky (ITEP) (DELPHI Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV	93 93I 93L 93C	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453	P.D. Acton <i>et al.</i> O. Adriani <i>et al.</i> O. Adriani <i>et al.</i> D. Buskulic <i>et al.</i> V.A. Novikov, L.B. Okun,	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) M.I. Vysotsky (ITEP)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ABREU	93 93I 93L 93C 92I 92M	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199	P.D. Acton <i>et al.</i> O. Adriani <i>et al.</i> O. Adriani <i>et al.</i> D. Buskulic <i>et al.</i> V.A. Novikov, L.B. Okun, P. Abreu <i>et al.</i> P. Abreu <i>et al.</i>	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (M.I. Vysotsky (ITEP) (DELPHI Collab.) (DELPHI Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ABREU ACTON	93 93I 93L 93C 92I 92M 92B	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Abreu et al. D.P. Acton et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.) (DELPHI Collab.) (OPAL Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ABREU ACTON ACTON	93 93I 93L 93C 92I 92M 92B 92L	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Abreu et al. D.P. Acton et al. P.D. Acton et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) M.I. Vysotsky (ITEP) (DELPHI Collab.) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ABREU ACTON	93 93I 93L 93C 92I 92M 92B	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Abreu et al. D.P. Acton et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) M.I. Vysotsky (ITEP) (DELPHI Collab.) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ABREU ACTON ACTON ACTON	93 93L 93C 92I 92M 92B 92L 92N	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539 PL B294 436 PL B295 357	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Acton et al. P.D. Acton et al. P.D. Acton et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) M.I. Vysotsky (ITEP) (DELPHI Collab.) (DPAL Collab.) (OPAL Collab.) (OPAL Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ABREU ACTON ACTON ACTON ADEVA	93 93I 93L 93C 92I 92M 92B 92L 92N 92	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539 PL B294 436 PL B295 357 PL B275 209	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Abreu et al. D.P. Acton et al. P.D. Acton et al. P.D. Acton et al. B. Adeva et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) M.I. Vysotsky (ITEP) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (COPAL Collab.) (L3 Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ABREU ACTON ACTON ACTON	93 93L 93C 92I 92M 92B 92L 92N	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539 PL B294 436 PL B295 357	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Acton et al. P.D. Acton et al. P.D. Acton et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) M.I. Vysotsky (ITEP) (DELPHI Collab.) (DPAL Collab.) (OPAL Collab.) (OPAL Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ABREU ACTON ACTON ACTON ADEVA ADRIANI	93 93I 93L 93C 92I 92M 92B 92L 92N 92 92D	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539 PL B294 436 PL B295 357 PL B275 209 PL B292 454	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Acton et al. P.D. Acton et al. P.D. Acton et al. B. Adeva et al. O. Adriani et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (M.I. Vysotsky (ITEP) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (COPAL Collab.) (L3 Collab.) (L3 Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ABREU ACTON ACTON ACTON ADEVA ADRIANI ALITTI	93 93I 93L 93C 92I 92M 92B 92L 92N 92 92D 92B	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539 PL B294 436 PL B295 357 PL B275 209 PL B292 454 PL B276 354	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Acton et al. P.D. Acton et al. P.D. Acton et al. B. Adeva et al. O. Adriani et al. J. Alitti et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (M.I. Vysotsky (ITEP) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (COPAL Collab.) (COPAL Collab.) (L3 Collab.) (L3 Collab.) (UA2 Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ABREU ACTON ACTON ACTON ACTON ADEVA ADRIANI ALITTI BUSKULIC	93 93I 93L 93C 92I 92M 92B 92L 92N 92 92D 92B 92D	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539 PL B294 436 PL B295 357 PL B275 209 PL B292 454 PL B276 354 PL B292 210	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Abreu et al. D.P. Acton et al. P.D. Acton et al. P.D. Acton et al. B. Adeva et al. O. Adriani et al. J. Alitti et al. D. Buskulic et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPHI Collab.) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L4 Collab.) (L5 Collab.) (L6 Collab.) (L7 Collab.) (L8 Collab.) (L9 Collab.) (L9 Collab.) (L9 Collab.) (ALEPH Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ABREU ACTON ACTON ACTON ADEVA ADRIANI ALITTI	93 93I 93L 93C 92I 92M 92B 92L 92N 92 92D 92B	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539 PL B294 436 PL B295 357 PL B275 209 PL B292 454 PL B276 354	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Acton et al. P.D. Acton et al. P.D. Acton et al. B. Adeva et al. O. Adriani et al. J. Alitti et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPHI Collab.) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L4 Collab.) (L5 Collab.) (L6 Collab.) (L7 Collab.) (L8 Collab.) (L9 Collab.) (L9 Collab.) (L9 Collab.) (ALEPH Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ABREU ACTON ACTON ACTON ADEVA ADRIANI ALITTI BUSKULIC BUSKULIC	93 93I 93L 93C 92I 92M 92B 92L 92N 92 92D 92B 92D 92E	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539 PL B294 436 PL B295 357 PL B275 209 PL B292 454 PL B292 210 PL B294 145	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Abreu et al. D.P. Acton et al. P.D. Acton et al. P.D. Acton et al. Adeva et al. O. Adriani et al. J. Alitti et al. D. Buskulic et al. D. Buskulic et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (UA2 Collab.) (ALEPH Collab.) (ALEPH Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ACTON ACTON ACTON ACTON ADEVA ADRIANI ALITTI BUSKULIC BUSKULIC DECAMP	93 93I 93L 93C 92I 92M 92B 92L 92N 92 92D 92B 92D 92E 92	PL B311 391 PL B301 136 PL B316 427 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539 PL B294 436 PL B295 357 PL B275 209 PL B292 454 PL B276 354 PL B292 210 PL B294 145 PRPL 216 253	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Abreu et al. D.P. Acton et al. P.D. Acton et al. P.D. Acton et al. Adeva et al. O. Adriani et al. J. Alitti et al. D. Buskulic et al. D. Buskulic et al. D. Decamp et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (L4 Collab.) (L5 Collab.) (L6 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ABREU ACTON ACTON ACTON ADEVA ADRIANI ALITTI BUSKULIC BUSKULIC	93 93I 93L 93C 92I 92M 92B 92L 92N 92 92D 92B 92D 92E	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539 PL B294 436 PL B295 357 PL B275 209 PL B292 454 PL B292 210 PL B294 145	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Acton et al. P.D. Acton et al. P.D. Acton et al. P.D. Acton et al. Adeva et al. O. Adriani et al. J. Alitti et al. D. Buskulic et al. D. Buskulic et al. D. Decamp et al. F. Abe et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (UA2 Collab.) (ALEPH Collab.) (ALEPH Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ACTON ACTON ACTON ACTON ADEVA ADRIANI ALITTI BUSKULIC BUSKULIC DECAMP ABE	93 93I 93L 93C 92I 92M 92B 92L 92N 92 92D 92B 92D 92E 92	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539 PL B294 436 PL B295 357 PL B275 209 PL B292 454 PL B276 354 PL B276 354 PL B292 210 PL B294 145 PRPL 216 253 PRL 67 1502	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Abreu et al. D.P. Acton et al. P.D. Acton et al. P.D. Acton et al. Adeva et al. O. Adriani et al. J. Alitti et al. D. Buskulic et al. D. Buskulic et al. D. Decamp et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L4 Collab.) (ALEPH Collab.) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (L4 Collab.) (L5 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ACTON ACTON ACTON ACTON ADEVA ADRIANI ALITTI BUSKULIC BUSKULIC DECAMP ABE ABREU	93 93I 93L 93C 92I 92M 92B 92L 92N 92 92D 92B 92D 92E 92 91E 91H	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539 PL B294 436 PL B295 357 PL B275 209 PL B292 454 PL B276 354 PL B292 210 PL B294 145 PRPL 216 253 PRL 67 1502 ZPHY C50 185	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Acton et al. P.D. Acton et al. P.D. Acton et al. B. Adeva et al. O. Adriani et al. J. Alitti et al. D. Buskulic et al. D. Buskulic et al. D. Decamp et al. F. Abe et al. P. Abreu et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (M.I. Vysotsky (ITEP) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L4 Collab.) (L4 Collab.) (L4 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (CDF Collab.) (CDF Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ABREU ACTON ACTON ACTON ADEVA ADRIANI ALITTI BUSKULIC BUSKULIC DECAMP ABE ABREU ACTON	93 93I 93L 93C 92I 92M 92B 92L 92N 92 92D 92B 92D 92E 92 91E 91H 91B	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539 PL B294 436 PL B295 357 PL B275 209 PL B292 454 PL B276 354 PL B296 154 PL B296 155 PRL 216 253 PRL 67 1502 ZPHY C50 185 PL B273 338	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Acton et al. P.D. Acton et al. P.D. Acton et al. P.D. Acton et al. B. Adeva et al. O. Adriani et al. J. Alitti et al. D. Buskulic et al. D. Buskulic et al. D. Decamp et al. F. Abe et al. P. Abreu et al. P. Acton et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) M.I. Vysotsky (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L4 Collab.) (L4 Collab.) (L5 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (CDF Collab.) (DELPHI Collab.) (OPAL Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ACTON ACTON ACTON ACTON ADEVA ADRIANI ALITTI BUSKULIC BUSKULIC DECAMP ABE ABREU	93 93I 93L 93C 92I 92M 92B 92L 92N 92 92D 92B 92D 92E 92 91E 91H	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539 PL B294 436 PL B295 357 PL B275 209 PL B292 454 PL B276 354 PL B292 210 PL B294 145 PRPL 216 253 PRL 67 1502 ZPHY C50 185	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Acton et al. P.D. Acton et al. P.D. Acton et al. B. Adeva et al. O. Adriani et al. J. Alitti et al. D. Buskulic et al. D. Buskulic et al. D. Decamp et al. F. Abe et al. P. Abreu et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (M.I. Vysotsky (ITEP) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L4 Collab.) (L4 Collab.) (L4 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (CDF Collab.) (CDF Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ABREU ACTON ACTON ACTON ADEVA ADRIANI ALITTI BUSKULIC BUSKULIC BUSKULIC DECAMP ABE ABREU ACTON ADACHI	93 93I 93L 93C 92I 92B 92L 92N 92 92D 92B 92D 92B 91E 91H 91B 91	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539 PL B294 436 PL B295 357 PL B275 209 PL B292 454 PL B276 354 PL B292 210 PL B294 145 PRPL 216 253 PRL 67 1502 ZPHY C50 185 PL B273 338 PL B255 613	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Acton et al. P.D. Acton et al. P.D. Acton et al. B. Adeva et al. O. Adriani et al. J. Alitti et al. D. Buskulic et al. D. Buskulic et al. D. Decamp et al. F. Abe et al. P. Acton et al. P. Abreu et al. Al. P. Abreu et al. P. Adachi et al. D. P. Acton et al. D. P. Acton et al. D. Adachi et al. D. P. Acton et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) M.I. Vysotsky (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L4 Collab.) (L4 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (CDF Collab.) (DELPHI Collab.) (CDF Collab.) (OPAL Collab.) (CDF Collab.) (OPAL Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ABREU ACTON ACTON ACTON ADEVA ADRIANI ALITTI BUSKULIC BUSKULIC DECAMP ABE ABREU ACTON ADEVA	93 93I 93L 93C 92I 92B 92L 92D 92B 92D 92B 92D 91E 91H 91B 91 91I	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539 PL B294 436 PL B295 357 PL B275 209 PL B292 454 PL B276 354 PL B292 210 PL B294 145 PRPL 216 253 PRL 67 1502 ZPHY C50 185 PL B273 338 PL B255 613 PL B259 199	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Abreu et al. D.P. Acton et al. P.D. Acton et al. P.D. Acton et al. B. Adeva et al. O. Adriani et al. J. Alitti et al. D. Buskulic et al. D. Buskulic et al. P. Abreu et al. P. Abreu et al. Abreu et al. P. Abreu et al. P. Adreu et al. P. Adreu et al. Adachi et al. B. Adeva et al. Adachi et al. B. Adeva et al. B. Adeva et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPHI Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L4 Collab.) (L4 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (CDF Collab.) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (TOPAZ Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ABREU ACTON ACTON ACTON ADEVA ADRIANI ALITTI BUSKULIC BUSKULIC DECAMP ABE ABREU ACTON ADEVA ADRIANI ALITTI AUSKULIC A	93 93I 93L 93C 92I 92M 92B 92L 92D 92B 92D 92E 92 91E 91H 91B 91 91I 91F	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539 PL B294 436 PL B295 357 PL B275 209 PL B292 454 PL B292 210 PL B294 145 PRPL 216 253 PRL 67 1502 ZPHY C50 185 PL B273 338 PL B273 338 PL B255 613 PL B259 199 PL B257 531	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Abreu et al. P.D. Acton et al. P.D. Acton et al. P.D. Acton et al. Adeva et al. O. Adriani et al. J. Alitti et al. D. Buskulic et al. D. Buskulic et al. D. Decamp et al. F. Abe et al. P. Abreu et al. D.P. Acton et al. Alitti et al. D. Decamp et al. F. Abce et al. Abcomposition et al. D.P. Acton et al. Adachi et al. B. Adeva et al. B. Adeva et al. B. Adeva et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L4 Collab.) (L4 Collab.) (L5 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (CDF Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (TOPAZ Collab.) (L3 Collab.) (L3 Collab.) (CDAL Collab.)
ADRIANI ADRIANI BUSKULIC NOVIKOV ABREU ABREU ACTON ACTON ACTON ADEVA ADRIANI ALITTI BUSKULIC BUSKULIC DECAMP ABE ABREU ACTON ADEVA	93 93I 93L 93C 92I 92B 92L 92D 92B 92D 92B 92D 91E 91H 91B 91 91I	PL B311 391 PL B301 136 PL B316 427 PL B313 520 PL B298 453 PL B277 371 PL B289 199 ZPHY C53 539 PL B294 436 PL B295 357 PL B275 209 PL B292 454 PL B276 354 PL B292 210 PL B294 145 PRPL 216 253 PRL 67 1502 ZPHY C50 185 PL B273 338 PL B255 613 PL B259 199	P.D. Acton et al. O. Adriani et al. O. Adriani et al. D. Buskulic et al. V.A. Novikov, L.B. Okun, P. Abreu et al. P. Abreu et al. D.P. Acton et al. P.D. Acton et al. P.D. Acton et al. B. Adeva et al. O. Adriani et al. J. Alitti et al. D. Buskulic et al. D. Buskulic et al. P. Abreu et al. P. Abreu et al. Abreu et al. P. Abreu et al. P. Adreu et al. P. Adreu et al. Adachi et al. B. Adeva et al. Adachi et al. B. Adeva et al. B. Adeva et al.	(OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPHI Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (L3 Collab.) (L3 Collab.) (L4 Collab.) (L4 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (CDF Collab.) (DELPHI Collab.) (OPAL Collab.) (OPAL Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (TOPAZ Collab.)