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Revised August 2017 by D.R. Tovey (Sheffield) and January 2000 by
J.D. Jackson (LBNL).

Throughout this section units are used in which A = ¢ = 1. The
following conversions are useful: ic = 197.3 MeV fm, (fic)? = 0.3894
(GeV)? mb.

48.1. Lorentz transformations

The energy F and 3-momentum p of a particle of mass m form a 4-vector p = (E, p)
whose square p? = E? — |p|?> = m?. The velocity of the particle is 3 = p/E. The energy
and momentum (E£*, p*) viewed from a frame moving with velocity 3 are given by

E*N _( vy _’Yfﬁf> <E) .
<pﬁ ) - <—7fﬂf o) \e ) Pr TP 1D

where ¢ = (1 - ﬁ]zc)_l/ 2 and j (p”) are the components of p perpendicular (parallel) to
By. Other 4-vectors, such as the space-time coordinates of events, of course transform in
the same way. The scalar product of two 4-momenta pj - po = E1E2 — p; - py is invariant
(frame independent).

48.2. Center-of-mass energy and momentum

In the collision of two particles of masses mi and mo the total center-of-mass energy
can be expressed in the Lorentz-invariant form

1/2
Eem = [(El + E2)2 - (pl + p2)2] )

9 9 1/2
= [ml +mj5 + 2E1 Eo(1 — 5132 cos 9)} , (48.2)

where 6 is the angle between the particles. In the frame where one particle (of mass ms2)
is at rest (lab frame),

Eem = (m} +m3 + 2By 15, m2) /2 . (48.3)
The velocity of the center-of-mass in the lab frame is
Bem = Plab/ (E11ab +m2) (48.4)
where pj,p, = P11ap and
Yem = (E11ab +m2)/Eem - (48.5)
The c.m. momenta of particles 1 and 2 are of magnitude
m2
Pecm = plabE . (48'6)
cm

For example, if a 0.80 GeV/c kaon beam is incident on a proton target, the center of mass
energy is 1.699 GeV and the center of mass momentum of either particle is 0.442 GeV/c.
It is also useful to note that

Eem dEcy = mo dE1 155 = M2 1 1ab dP1ab - (48'7)
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2 48. Kinematics

48.3. Lorentz-invariant amplitudes

The matrix elements for a scattering or decay process are written in terms of an
invariant amplitude —i.Z. As an example, the S-matrix for 2 — 2 scattering is related
to A by

(P1ph 1S| pip2) = I —i(2m)* 6*(p1 + p2 — P} — ph)
y A (p1, p2; DY, Ph)
(2E1)1/2 (2E5)1/2 (2E1)1/2 (2E4)1/2

(48.8)

The state normalization is such that

('lp) = (2m)°6%(p — ) . (48.9)

For a 2 — 2 scattering process producing unstable particles 1’ and 2’ decaying via
1" — 3’4" and 2/ — 5’6’ the matrix element for the complete process can be written in the
narrow width approximation as:
M2 — 12N (1 — 34w (2 — 56
hyrhor (M3

, . . (48.10)
- m%, + zml/Fl/)(mg,fi, — m%, + imorLor)

Here, m;; is the invariant mass of particles 7 and j, mj, and I'y, are the mass and total
width of particle k, and the sum runs over the helicities of the intermediate particles.
This enables the cross section for such a process to be written as the product of the cross
section for the initial 2 — 2 scattering process with the branching ratios (relative partial
decay rates) of the subsequent decays.

48.4. Particle decays

The partial decay rate of a particle of mass M into n bodies in its rest frame is given
in terms of the Lorentz-invariant matrix element .# by

(2m)*
2M

where d®,, is an element of n-body phase space given by

dl' = |2 dD, (P; pi, ..., pn), (48.11)

n

n
d3 .
4 (P; p1, ..., pn) =64 (P =Y pi) [] e - (48.12)
1=1 1=1

This phase space can be generated recursively, viz.
d®n(P; p1, ..., pn) = d®;(q; p1, ..., Pj)
X d(I)n—j—i—l (P7 q; Pj+1, - '7pn)(27r)3dq2 ) (4813)

. . 2
where ¢ = (37_, E;)? — ‘2321 p;| - This form is particularly useful in the case where a
particle decays into another particle that subsequently decays.
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48. Kinematics 3

48.4.1. Survival probability : 1f a particle of mass M has mean proper lifetime 7
(= 1/I') and has momentum (FE, p), then the probability that it lives for a time tg or
greater before decaying is given by

P(tg) = e /7 = =Mt T/E (48.14)

and the probability that it travels a distance xg or greater is

P(zg) = e M=o T/IP| (48.15)

48.4.2. Two-body decays :

) ATRUS
P,.M
p2) m2

Figure 48.1: Definitions of variables for two-body decays.

In the rest frame of a particle of mass M, decaying into 2 particles labeled 1 and 2,

M2—m%+m%

b i | (48.16)
|p1] = P2
1/2

(022 = (g ) (M = (= mo)?)] (45.17)

oM ’ |

and 1 1Py

ro L 2 1P1l Q0 48.1

U= o2 1 3 42 e

where d€) = d¢1d(cosfy) is the solid angle of particle 1. The invariant mass M can be
determined from the energies and momenta using Eq. (48.2) with M = E¢p,.
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4 48. Kinematics

48.4.3. Three-body decays :

p{,myq

P M Py, My

p37 m3

Figure 48.2: Definitions of variables for three-body decays.

Defining p;; = p; + pj and mw = pm, then m%Q + m%3 + m%3 = M?+ m% + m% + m%
and m%z = (P—p3)?> = M? + m3 — 2M E3, where E3 is the energy of particle 3 in the
rest frame of M. In that frame, the momenta of the three decay particles lie in a plane.
The relative orientation of these three momenta is fixed if their energies are known. The
momenta can therefore be specified in space by giving three Euler angles («, 3,7) that
specify the orientation of the final system relative to the initial particle. The direction
of any one of the particles relative to the frame in which the initial particle is described
can be specified in space by two angles («, 3) while a third angle, -, can be set as the
azimuthal angle of a second particle around the first [1]. Then

1

— 2
dl' = @n)p 16M |4 dEy dE3 da d(cos 8) dy (48.19)
Alternatively
1 1
= || |P}| |p3| dmiz dQ dQ 48.20
(27)5 162 2| |pi| |p3| dmaz d2y d€23 ( )

where (|p}|, €2]) is the momentum of particle 1 in the rest frame of 1 and 2, and 3 is the
angle of particle 3 in the rest frame of the decaying particle. |pj| and |p3| are given by

[(m3y = (m1 +m2)?) (my — (my —my)?)] V2
2mig

|p1| = : (48.21a)

and
[(M2 = (1 +m3)?) (M = (ma1z — m3)*)]"?

2M

py] = (48.210)

[Compare with Eq. (48.17).]

If the decaying particle is a scalar or we average over its spin states, then integration
over the angles in Eq. (48.19) gives

1

aT' = 53 8M |.#)2 dF, dFs
R —
= (2 )3 32M3 |«%| dm12 dm23 (4822)

This is the standard form for the Dalitz plot.
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48. Kinematics 5

48.4.3.1. Dalitz plot: For a given value of m%z, the range of mgg is determined by its
values when p, is parallel or antiparallel to ps:

(m%?,)max =

(B3 + B5)? <\/E 2B - m3) , (48.23a)
(m23>mln =

(B3 + E3)? (\/E2 —m3 + \/E*2 — m§)2 : (48.23b)

Here £ = (m2y —m?2 +m3)/2mi2 and Ef = (M? — m2, — m2)/2m12 are the energies
of particles 2 and 3 in the mqs rest frame. The scatter plot in m%2 and mgg is called a
Dalitz plot. If |.#|? is constant, the allowed region of the plot will be uniformly populated
with events [see Eq. (48.22)]. A nonuniformity in the plot gives immediate information
on |.#|?. For example, in the case of D — K, bands appear when M) = M+ (892)
reflecting the appearance of the decay chain D — K*(892)r — Kr.
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Figure 48.3: Dalitz plot for a three-body final state. In this example, the state
is 7t K9 at 3 GeV. Four-momentum conservation restricts events to the shaded
region.
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6 48. Kinematics

48.4.4. Kinematic limits :

48.4.4.1. Three-body decays: In a three-body decay (Fig. 48.2) the maximum of |ps|,
[given by Eq. (48.21)], is achieved when mi2 = mj + mg, i.e., particles 1 and 2 have
the same vector velocity in the rest frame of the decaying particle. If, in addition,
ms3 > mi,ma, then |p3|maX > |p1 |max; |p2|max. The distribution of mq9 values possesses
an end-point or maximum value at mia = M — mg. This can be used to constrain the
mass difference of a parent particle and one invisible decay product.

48.4.4.2. Sequential two-body decays:

Figure 48.4: Particles participating in sequential two-body decay chain. Particles
labeled 1 and 2 are visible while the particle terminating the chain (a) is invisible.

When a heavy particle initiates a sequential chain of two-body decays terminating
in an invisible particle, constraints on the masses of the states participating in the
chain can be obtained from end-points and thresholds in invariant mass distributions of
the aggregated decay products. For the two-step decay chain depicted in Fig. 48.4 the
invariant mass distribution of the two visible particles possesses an end-point given by:

2 2 2 2
(a2 = e mb)(me ™) (48.24)
my,

provided particles 1 and 2 are massless. If visible particle 1 has non-zero mass m; then
Eq. (48.24) is replaced by

2 2
ms —m
(M2 = m? + (07219><
me
<m% + m% — mg + \/(—m% + m% —m2)2 — 4m%m§) ) (48.25)

See Refs. 2 and 3 for other cases.
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48. Kinematics 7

48.4.5. Multibody decays : The above results may be generalized to final states
containing any number of particles by combining some of the particles into “effective
particles” and treating the final states as 2 or 3 “effective particle” states. Thus, if

Dijk... =Pi +pj +pp+ ..., then
Mijk... = \/p2ijk... ) (48.26)

and m; ;. may be used in place of e.g., mi2 in the relations in Sec. 48.4.3 or Sec. 48.4.4
above.

48.5. Cross sections

P, My b3 mg

2

m
P M Ppio Myio

Figure 48.5: Definitions of variables for production of an n-body final state.

The differential cross section is given by

2 4 2
do — (2m)°| 4|
4\/(1?1 -p2)? — mim3
X dPn(p1 + p2; p3; - -5 Pnt2) - (48.27)

[See Eq. (48.12).] In the rest frame of mg(lab),

\/(pl -p2)? — m%m% = Mm2pP1lab > (48.28a)
while in the center-of-mass frame
\/ (p1-p2)? — mim3 = premV/'s - (48.28b)
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8 48. Kinematics

48.5.1. Two-body reactions :

P, mq Pg, mg

Dy, My Dy my

Figure 48.6: Definitions of variables for a two-body final state.

Two particles of momenta p; and ps and masses m; and mo scatter to particles of

momenta p3 and p4 and masses m3 and my; the Lorentz-invariant Mandelstam variables
are defined by

s = (p1+p2)* = (p3 + pa)*

= m} 4+ 2B Ey — 2py - py +m3 | (48.29)
t=(p1—p3)* = (p2 — pa)?
—m2 — 2E1F3 +2p; - p3 +m3 , (48.30)
u=(p1—pa)? = (p2 — p3)°
=m3} — 2E1Ey + 2py - py +m7 (48.31)
and they satisfy
s-l—t-l—u:m%-l-m%-i-m%—i-mi. (48.32)

The two-body cross section may be written as

do 1 1

T = 6ims P A (48.33)
In the center-of-mass frame
t = (Fiem — F3em)” = (Plem — P3em)”® = 4Piem P3em Sin*(Bem/2)
= t0 — 4p1em P3em Sin®(fem/2) (48.34)

where 6¢py, is the angle between particle 1 and 3. The limiting values tg (e = 0) and
t1 (Oem = m) for 2 — 2 scattering are

2 2 2 272
mi —m3 —mj+my

to(t1) = 2/s — (P1em :Fp3cm)2 . (48.35)

In the literature the notation iy (tmax) for tg (t1) is sometimes used, which should
be discouraged since tg > t1. The center-of-mass energies and momenta of the incoming
particles are
2 2 2 2
s+mi—m s+ms5—m
Fiem=——21—2,  Fopp=—-—2—1 48.36
lem 9 \/g 2cm 2 \/g ( )
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48. Kinematics 9

For Fscm and Fycm, change my to ms and mg to my. Then

/ p ma
Picm = Efcm - mi2 and piem = % . (48.37)

Here the subscript lab refers to the frame where particle 2 is at rest. [For other relations
see Eqgs. (48.2)-(48.4).]

48.5.2. Inclusive reactions : Choose some direction (usually the beam direction) for
the z-axis; then the energy and momentum of a particle can be written as

E =mgcoshy , pz , py, pz = mysinhy , (48.38)
where m.., conventionally called the ‘transverse mass’, is given by
2 2 2 2
my, =m" +pg +py - (48.39)

and the rapidity y is defined by

y_2 E—p;

E +p. —1 [Pz
=1 = tanh = . 48.4
n ( - ) an (E) (48.40)

Note that the definition of the transverse mass in Eq. (48.39) differs from that used
by experimentalists at hadron colliders (see Sec. 48.6.1 below). Under a boost in the
z-direction to a frame with velocity 3, y — y — tanh™! 3. Hence the shape of the rapidity
distribution dN/dy is invariant, as are differences in rapidity. The invariant cross section
may also be rewritten

d3o d3o d’c
d3p  dédyprdp; T dy d(p?,)

(48.41)

The second form is obtained using the identity dy/dp, = 1/FE, and the third form
represents the average over ¢.

Feynman’s x variable is given by

Pz E+p,
Pz max (E + pz)max

T = (pr < |p2) - (48.42)

In the c.m. frame,

2 2 inh
A Pzcm _ M. S1INN Yem (48.43)

Vs Vs
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10 48. Kinematics

and
= (Yem)max = In(v/s/m) . (48.44)

The invariant mass M of the two-particle system described in Sec. 48.4.2 can be
written in terms of these variables as

M? =m? +m3 + 2[Er(1)Er(2) cosh Ay — pp(1) - pp(2)] (48.45)

Er(i) = \/lpr(i)]> +mi (48.46)

and pp(i) denotes the transverse momentum vector of particle i.
For p > m, the rapidity [Eq. (48.40)] may be expanded to obtain

where

B lln cos?(0/2) +m? /4p® + ...
Y72 Gin2(0/2) + m2/4p2 1 .

~ —In tan(0/2) = (48.47)

where cos = p,/p. The pseudorapidity n defined by the second line is approximately
equal to the rapidity y for p > m and 6 > 1/, and in any case can be measured when
the mass and momentum of the particle are unknown. From the definition one can obtain
the identities

sinhn =cotf , coshn=1/sinf , tanhn = cosf . (48.48)

48.6. Transverse variables

At hadron colliders, a significant and unknown proportion of the energy of the incoming
hadrons in each event escapes down the beam-pipe. Consequently if invisible particles
are created in the final state, their net momentum can only be constrained in the plane
transverse to the beam direction. Defining the z-axis as the beam direction, this net
momentum is equal to the missing transverse energy vector

EfS = = "pr(i), (48.49)
7

where the sum runs over the transverse momenta of all visible final state particles.

48.6.1. Single production with semi-invisible final state :

Consider a single heavy particle of mass M produced in association with visible
particles which decays as in Fig. 48.1 to two particles, of which one (labeled particle 1)
is invisible. The mass of the parent particle can be constrained with the quantity My
defined by

M7 = [Er(1) + Er(2)° = [pr(1) + pr(2))?
= mf +mj + 2[Er(1) Er(2) - pr(1) - pr(2)] (48.50)
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48. Kinematics 11

where .
pr(1) = Ep™ . (48.51)

This quantity is called the ‘transverse mass’ by hadron collider experimentalists but it
should be noted that it is quite different from that used in the description of inclusive
reactions [Eq. (48.39)]. The distribution of event My values possesses an end-point at
Mj@ax =M. If m; = mo =0 then

M2 = 2|pp(1)||pr(2)|(1 — cos d12) | (48.52)

where ¢;; is defined as the angle between particles i and j in the transverse plane.

48.6.2. Pair production with semi-invisible final states :

p1:m1 p3’m1

pz’ mz p4 H m4

Figure 48.7: Definitions of variables for pair production of semi-invisible final
states. Particles 1 and 3 are invisible while particles 2 and 4 are visible.

Consider two identical heavy particles of mass M produced such that their combined
center-of-mass is at rest in the transverse plane (Fig. 48.7). Each particle decays to a
final state consisting of an invisible particle of fixed mass m together with an additional
visible particle. M and mj can be constrained with the variables Mr9 and Mo which
are defined in Refs. 4 and 5.
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