$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$ Status: *** The $\Xi_c^{\prime 0}$ and $\Xi_c^{\prime +}$ presumably complete the SU(3) sextet whose other members are the Σ_c^{++} , Σ_c^{+} , Σ_c^{0} , and Ω_c^{0} : see Fig. 3 in the note on Charmed Baryons. The quantum numbers given above come from this presumption but have not been measured. ## Ξ'0 MASS The mass is obtained from the mass-difference measurement that follows. VALUE (MeV) DOCUMENT ID 2578.8±0.5 OUR FIT Error includes scale factor of 1.2. ## $\equiv_c^{\prime 0} - \equiv_c^{0}$ MASS DIFFERENCE VALUE (MeV)EVTSDOCUMENT IDTECNCOMMENT108.0 \pm 0.4 OUR FITError includes scale factor of 1.2.108.3 \pm 0.1 \pm 0.411.5kYELTON16BELL e^+e^- , Υ regions• • • We do not use the following data for averages, fits, limits, etc.• •107.0 \pm 1.4 \pm 2.528JESSOP99CLE2 $e^+e^-\approx \Upsilon(4S)$ ## $\equiv_{c}^{\prime 0}$ DECAY MODES The $\Xi_c^{\prime0}$ - Ξ_c^0 mass difference is too small for any strong decay to occur. | | Mode | Fraction (Γ_i/Γ) | |----------------|---------------------|------------------------------| | Γ ₁ | $\equiv_c^0 \gamma$ | seen | ## **≡**⁰ REFERENCES YELTON 16 PR D94 052011 J. Yelton et al. (BELLE Collab.) JESSOP 99 PRL 82 492 C.P. Jessop et al. (CLEO Collab.) Created: 6/5/2018 19:00