
40. Monte Carlo techniques 1

40. Monte Carlo Techniques

Revised September 2017 by G. Cowan (RHUL).

Monte Carlo techniques are often the only practical way to evaluate difficult integrals
or to sample random variables governed by complicated probability density functions.
Here we describe an assortment of methods for sampling some commonly occurring
probability density functions.

40.1. Sampling the uniform distribution

Most Monte Carlo sampling or integration techniques assume a “random number
generator,” which generates uniform statistically independent values on the half open
interval [0, 1); for reviews see, e.g., Refs. [1,2].

Uniform random number generators are available in software libraries such as CLHEP
[3], and ROOT [4]. For example, in addition to a basic congruential generator TRandom

(see below), ROOT provides three more sophisticated routines: TRandom1 implements
the RANLUX generator [5] based on the method by Lüscher, and allows the user to
select different quality levels, trading off quality with speed; TRandom2 is based on the
maximally equidistributed combined Tausworthe generator by L’Ecuyer [6]; the TRandom3

generator implements the Mersenne twister algorithm of Matsumoto and Nishimura [7].
All of the algorithms produce a periodic sequence of numbers, and to obtain effectively
random values, one must not use more than a small subset of a single period. The
Mersenne twister algorithm has an extremely long period of 219937 − 1.

The performance of the generators can be investigated with tests such as DIEHARD
[8] or TestU01 [9]. Many commonly available congruential generators fail these tests and
often have sequences (typically with periods less than 232), which can be easily exhausted
on modern computers. A short period is a problem for the TRandom generator in ROOT,
which, however, has the advantage that its state is stored in a single 32-bit word. The
generators TRandom1, TRandom2, or TRandom3 have much longer periods, with TRandom3

being recommended by the ROOT authors as providing the best combination of speed
and good random properties. For further information see, e.g., Ref. [10].

40.2. Inverse transform method

If the desired probability density function is f(x) on the range −∞ < x < ∞, its
cumulative distribution function (expressing the probability that x ≤ a) is given by
Eq. (38.6). If a is chosen with probability density f(a), then the integrated probability
up to point a, F (a), is itself a random variable which will occur with uniform probability
density on [0, 1]. Suppose u is generated according to a uniformly distributed in (0, 1). If
x can take on any value, and ignoring the endpoints, we can then find a unique x chosen
from the p.d.f. f(x) for a given u if we set

u = F (x) , (40.1)

provided we can find an inverse of F , defined by

x = F−1(u) . (40.2)

M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)
June 5, 2018 19:58

2 40. Monte Carlo techniques

This method is shown in Fig. 40.1a. It is most convenient when one can calculate by
hand the inverse function of the indefinite integral of f . This is the case for some common
functions f(x) such as exp(x), (1 − x)n, and 1/(1 + x2) (Cauchy or Breit-Wigner),
although it does not necessarily produce the fastest generator. Standard libraries contain
software to implement this method numerically, working from functions or histograms in
one or more dimensions, e.g., the UNU.RAN package [11], available in ROOT.

0

1

0

1

F(x)

F(x)

} f (xk)

x
xk+1xk

u

x
x = F−1(u)

Continuous

distribution

Discrete

distribution

u

(a)

(b)

Figure 40.1: Use of a random number u chosen from a uniform distribution (0,1)
to find a random number x from a distribution with cumulative distribution function
F (x).

For a discrete distribution, F (x) will have a discontinuous jump of size f(xk) at each
allowed xk, k = 1, 2, · · ·. Choose u from a uniform distribution on (0,1) as before. Find
xk such that

F (xk−1) < u ≤ F (xk) ≡ Prob (x ≤ xk) =
k

∑

i=1

f(xi) ; (40.3)

then xk is the value we seek (note: F (x0) ≡ 0). This algorithm is illustrated in Fig. 40.1b.

June 5, 2018 19:58

40. Monte Carlo techniques 3

40.3. Acceptance-rejection method (Von Neumann)

Very commonly an analytic form for F (x) is unknown or too complex to work with,
so that obtaining an inverse as in Eq. (40.2) is impractical. We suppose that for any
given value of x, the probability density function f(x) can be computed, and further
that enough is known about f(x) that we can enclose it entirely inside a shape which
is C times an easily generated distribution h(x), as illustrated in Fig. 40.2. That is,
Ch(x) ≥ f(x) must hold for all x.

C h(x)

C h(x)

f (x)

x

f (x)

(a)

(b)

Figure 40.2: Illustration of the acceptance-rejection method. Random points are
chosen inside the upper bounding figure, and rejected if the ordinate exceeds f(x).
The lower figure illustrates a method to increase the efficiency (see text).

Frequently h(x) is uniform or is a normalized sum of uniform distributions.
Note that both f(x) and h(x) must be normalized to unit area, and therefore, the
proportionality constant C > 1. To generate f(x), first generate a candidate x according
to h(x). Calculate f(x) and the height of the envelope C h(x); generate u and test if
uC h(x) ≤ f(x). If so, accept x; if not reject x and try again. If we regard x and uC h(x)
as the abscissa and ordinate of a point in a two-dimensional plot, these points will
populate the entire area C h(x) in a smooth manner; then we accept those which fall
under f(x). The efficiency is the ratio of areas, which must equal 1/C; therefore we must
keep C as close as possible to 1.0. Therefore, we try to choose C h(x) to be as close to
f(x) as convenience dictates, as in the lower part of Fig. 40.2.

June 5, 2018 19:58

4 40. Monte Carlo techniques

40.4. Algorithms

Algorithms for generating random numbers belonging to many different distributions
are given for example by Press [12], Ahrens and Dieter [13], Rubinstein [14], Devroye [15],
Walck [16] and Gentle [17]. For many distributions, alternative algorithms exist, varying
in complexity, speed, and accuracy. For time-critical applications, these algorithms may
be coded in-line to remove the significant overhead often encountered in making function
calls.

In the examples given below, we use the notation for the variables and parameters
given in Table 38.1. Variables named “u” are assumed to be independent and uniform
on [0,1). Denominators must be verified to be non-zero where relevant.

40.4.1. Exponential decay :

This is a common application of the inverse transform method, and uses the fact that
if u is uniformly distributed in [0, 1], then (1 − u) is as well. Consider an exponential
p.d.f. f(t) = (1/τ) exp(−t/τ) that is truncated so as to lie between two values, a and b,
and renormalized to unit area. To generate decay times t according to this p.d.f., first let
α = exp(−a/τ) and β = exp(−b/τ); then generate u and let

t = −τ ln(β + u(α − β)). (40.4)

For (a, b) = (0,∞), we have simply t = −τ lnu. (See also Sec. 40.4.6.)

40.4.2. Isotropic direction in 3D :

Isotropy means the density is proportional to solid angle, the differential element of
which is dΩ = d(cos θ)dφ. Hence cos θ is uniform (2u1 − 1) and φ is uniform (2πu2). For
alternative generation of sinφ and cos φ, see the next subsection.

40.4.3. Sine and cosine of random angle in 2D :

Generate u1 and u2. Then v1 = 2u1 − 1 is uniform on (−1,1), and v2 = u2 is uniform
on (0,1). Calculate r2 = v2

1
+ v2

2
. If r2 > 1, start over. Otherwise, the sine (S) and cosine

(C) of a random angle (i.e., uniformly distributed between zero and 2π) are given by

S = 2v1v2/r2 and C = (v2
1 − v2

2)/r2 . (40.5)

40.4.4. Gaussian distribution :

If u1 and u2 are uniform on (0,1), then

z1 = sin(2πu1)
√

−2 lnu2 and z2 = cos(2πu1)
√

−2 lnu2 (40.6)

are independent and Gaussian distributed with mean 0 and σ = 1.

There are many variants of this basic algorithm, which may be faster. For example,
construct v1 = 2u1 − 1 and v2 = 2u2 − 1, which are uniform on (−1,1). Calculate
r2 = v2

1
+ v2

2
, and if r2 > 1 start over. If r2 < 1, it is uniform on (0,1). Then

z1 = v1

√

−2 ln r2

r2
and z2 = v2

√

−2 ln r2

r2
(40.7)

June 5, 2018 19:58

40. Monte Carlo techniques 5

are independent numbers chosen from a normal distribution with mean 0 and variance 1.
z′i = µ + σzi distributes with mean µ and variance σ2.

For a multivariate Gaussian with an n × n covariance matrix V , one can start by
generating n independent Gaussian variables, {ηj}, with mean 0 and variance 1 as above.
Then the new set {xi} is obtained as xi = µi +

∑

j Lijηj , where µi is the mean of xi, and

Lij are the components of L, the unique lower triangular matrix that fulfils V = LLT .
The matrix L can be easily computed by the following recursive relation (Cholesky’s
method):

Ljj =



Vjj −
j−1
∑

k=1

L2

jk





1/2

, (40.8a)

Lij =
Vij −

∑j−1

k=1
LikLjk

Ljj
, j = 1, ..., n ; i = j + 1, ..., n, (40.8b)

where Vij = ρijσiσj are the components of V . For n = 2 one has

L =

(

σ1 0
ρσ2

√

1 − ρ2 σ2

)

, (40.9)

and therefore the correlated Gaussian variables are generated as x1 = µ1 + σ1η1,
x2 = µ2 + ρσ2η1 +

√

1 − ρ2 σ2η2.

40.4.5. χ2(n) distribution :

To generate a variable following the χ2 distribution for n degrees of freedom, use the
Gamma distribution with k = n/2 and λ = 1/2 using the method of Sec. 40.4.6.

40.4.6. Gamma distribution :

All of the following algorithms are given for λ = 1. For λ 6= 1, divide the resulting
random number x by λ.

• If k = 1 (the exponential distribution), accept x = − lnu. (See also Sec. 40.4.1.)

• If 0 < k < 1, initialize with v1 = (e + k)/e (with e = 2.71828... being the natural log
base). Generate u1, u2. Define v2 = v1u1.

Case 1: v2 ≤ 1. Define x = v
1/k
2

. If u2 ≤ e−x, accept x and stop, else restart
by generating new u1, u2.
Case 2: v2 > 1. Define x = −ln([v1 − v2]/k). If u2 ≤ xk−1, accept x and stop,
else restart by generating new u1, u2. Note that, for k < 1, the probability
density has a pole at x = 0, so that return values of zero due to underflow must
be accepted or otherwise dealt with.

June 5, 2018 19:58

6 40. Monte Carlo techniques

• Otherwise, if k > 1, initialize with c = 3k − 0.75. Generate u1 and compute
v1 = u1(1 − u1) and v2 = (u1 − 0.5)

√

c/v1. If x = k + v2 − 1 ≤ 0, go back and
generate new u1; otherwise generate u2 and compute v3 = 64v3

1
u2

2
. If v3 ≤ 1− 2v2

2
/x

or if ln v3 ≤ 2{[k − 1] ln[x/(k − 1)] − v2}, accept x and stop; otherwise go back and
generate new u1.

40.4.7. Binomial distribution :

Begin with k = 0 and generate u uniform in [0, 1). Compute Pk = (1 − p)n and store
Pk into B. If u ≤ B accept rk = k and stop. Otherwise, increment k by one; compute the
next Pk as Pk · (p/(1− p)) · (n− k)/(k + 1); add this to B. Again, if u ≤ B, accept rk = k
and stop, otherwise iterate until a value is accepted. If p > 1/2, it will be more efficient
to generate r from f(r; n, q), i.e., with p and q interchanged, and then set rk = n − r.

40.4.8. Poisson distribution :

Iterate until a successful choice is made: Begin with k = 1 and set A = 1 to start.
Generate u. Replace A with uA; if now A < exp(−µ), where µ is the Poisson parameter,
accept nk = k − 1 and stop. Otherwise increment k by 1, generate a new u and repeat,
always starting with the value of A left from the previous try.

Note that the Poisson generator used in ROOT’s TRandom classes before version
5.12 (including the derived classes TRandom1, TRandom2, TRandom3) uses a Gaussian
approximation when µ exceeds a given threshold. This may be satisfactory (and much
faster) for some applications. To do this, generate z from a Gaussian with zero mean
and unit standard deviation; then use x = max(0, [µ + z

√
µ + 0.5]) where [] signifies

the greatest integer ≤ the expression. The routines from Numerical Recipes [12] and
CLHEP’s routine RandPoisson do not make this approximation (see, e.g., Ref. 10).

40.4.9. Student’s t distribution :

Generate u1 and u2 uniform in (0, 1); then t = sin(2πu1)[n(u
−2/n
2

− 1)]1/2 follows the
Student’s t distribution for n > 0 degrees of freedom (n not necessarily an integer).

Alternatively, generate x from a Gaussian with mean 0 and σ2 = 1 according to the
method of 40.4.4. Next generate y, an independent gamma random variate, according to
40.4.6 with λ = 1/2 and k = n/2. Then z = x/

√

y/n is distributed as a t with n degrees
of freedom.

For the special case n = 1, the Breit-Wigner distribution, generate u1 and u2; set
v1 = 2u1 − 1 and v2 = 2u2 − 1. If v2

1
+ v2

2
≤ 1 accept z = v1/v2 as a Breit-Wigner

distribution with unit area, center at 0.0, and FWHM 2.0. Otherwise start over. For
center M0 and FWHM Γ, use W = zΓ/2 + M0.

June 5, 2018 19:58

40. Monte Carlo techniques 7

40.4.10. Beta distribution :

The choice of an appropriate algorithm for generation of beta distributed random
numbers depends on the values of the parameters α and β. For, e.g., α = 1, one can use
the transformation method to find x = 1 − u1/β , and similarly if β = 1 one has x = u1/α.
For more general cases see, e.g., Refs. [16,17] and references therein.

40.5. Markov Chain Monte Carlo

In applications involving generation of random numbers following a multivariate
distribution with a high number of dimensions, the transformation method may not be
possible and the acceptance-rejection technique may have too low of an efficiency to be
practical. If it is not required to have independent random values, but only that they
follow a certain distribution, then Markov Chain Monte Carlo (MCMC) methods can
be used. In depth treatments of MCMC can be found, e.g., in the texts by Robert and
Casella [18], Liu [19], and the review by Neal [20]. HEP-oriented software for MCMC is
available from the Bayesian Analysis Toolkit (BAT) [21].

MCMC is particularly useful in connection with Bayesian statistics, where a p.d.f. p(θ)
for an n-dimensional vector of parameters θ = (θ1, . . . , θn) is obtained, and one needs the
marginal distribution of a subset of the components. Here one samples θ from p(θ) and
simply records the marginal distribution for the components of interest.

A simple and broadly applicable MCMC method is the Metropolis-Hastings algorithm,
which allows one to generate multidimensional points θ distributed according to a target
p.d.f. that is proportional to a given function p(θ). It is not necessary to have p(θ)
normalized to unit area, which is useful in Bayesian statistics, as posterior probability
densities are often determined only up to an unknown normalization constant.

To generate points that follow p(θ), one first needs a proposal p.d.f. q(θ; θ0), which
can be (almost) any p.d.f. from which independent random values θ can be generated,
and which contains as a parameter another point in the same space θ0. For example, a
multivariate Gaussian centered about θ0 can be used. Beginning at an arbitrary starting
point θ0, the Hastings algorithm iterates the following steps:

1. Generate a value θ using the proposal density q(θ; θ0);

2. Form the Hastings test ratio, α = min

[

1,
p(θ)q(θ0; θ)

p(θ0)q(θ; θ0)

]

;

3. Generate a value u uniformly distributed in [0, 1];

4. If u ≤ α, take θ1 = θ. Otherwise, repeat the old point, i.e., θ1 = θ0.

5. Set θ0 = θ1 and return to step 1.

If one takes the proposal density to be symmetric in θ and θ0, then this is the
Metropolis -Hastings algorithm, and the test ratio becomes α = min[1, p(θ)/p(θ0)]. That
is, if the proposed θ is at a value of probability higher than θ0, the step is taken. If the
proposed step is rejected, the old point is repeated.

Methods for assessing and optimizing the performance of the algorithm are discussed
in, e.g., Refs. [18–20]. One can, for example, examine the autocorrelation as a function

June 5, 2018 19:58

8 40. Monte Carlo techniques

of the lag k, i.e., the correlation of a sampled point with that k steps removed. This
should decrease as quickly as possible for increasing k.

Generally one chooses the proposal density so as to optimize some quality measure
such as the autocorrelation. For certain problems it has been shown that one achieves
optimal performance when the acceptance fraction, that is, the fraction of points with
u ≤ α, is around 40%. This can be adjusted by varying the width of the proposal density.
For example, one can use for the proposal p.d.f. a multivariate Gaussian with the same
covariance matrix as that of the target p.d.f., but scaled by a constant.

40.6. Generative Adversarial Networks

Recent developments in Machine Learning have led to new types of Monte Carlo
methods based on generative models. The goal is to generate events each consisting of
a vector of quantities x, which could represent the set of pixels in an image or energy
deposits in the cells of a calorimeter. Suppose, however, that we do not have direct access
to the underlying probability density f(x), but rather we only have an implicit model
(e.g., a computer program able to simulate the complexities of the physical system),
which can provide a set of events usable as training data. In the case of a calorimeter,
for example, this could represent real events from a control measurement or simply the
output from a detailed simulation.

Generative models such as such as Variational Autoencoders (VAEs) [22,23] and
Generative Adversarial Networks (GANs) [24] are algorithms for generating events that
mimic the training data. Recently GANs have been investigated in HEP for simulation of
energy deposits in calorimeters, so far in a simplified setting. They are able to generate
events that capture detailed properties of those from a detailed Monte Carlo simulation
but require far less computing time (for a recent example see, e.g., Ref. [25]).

Here we sketch the main ideas behind GANs used to simulate a random vector x.
This follows some distribution f(x) which itself is not known, but we have a set of
instances (events) x1, . . . , xN as training data, here regarded as representative of the
true distribution. We seek a function (the generator) G(z) which takes as input a vector
of random numbers z and produces directly as output an event vector, i.e., x = G(z).
The method is in this sense similar to the transformation method described in 40.2, but
here both the function G and the input of random values z are multidimensional. As
a prototypical example we can take the components of z as independent and Gaussian
distributed about zero with unit variance.

The GAN makes use of two functions, the generator G(z) and a discriminator D(x).
The generator tries to produce events x that mimic the (real) training data and thus
look as if they were sampled from the unknown distribution f(x). Simultaneously, the
discriminator is trained to do its best to distinguish the generated events from the real
ones.

To find the function G(z) that generates events that are as similar as possible to the
training data, one may use a Deep Neural Network (DNN), i.e., a neural network with a
sufficiently large number of hidden layers, and thus having a large set of parameters θg.
This is needed so that network is capable of modelling accurately the potentially complex

June 5, 2018 19:58

40. Monte Carlo techniques 9

density f(x). The input layer corresponds to the components of the random vector z

and the multidimensional output layer to x. The goal is thus reduced to finding optimal
values of the parameters θg using the training data.

The discriminator function D(x; θd) can also be a DNN containing parameters θd. It
takes as input an event (an instance in x-space) and provides a single scalar output in
[0, 1], which should be as close as possible to zero for generated and one for real events.

The parameters of the generator and discriminator are chosen such that the function

V (θg, θd) = Ex[log(D(x; θd))] + Ez[log(1 − D(G(z; θg); θd))] (40.10)

is minimized with respect to θg and simultaneously maximized with respect to θd. For
the expectation value in the first term, x is sampled from the (real) training data; for the
second term z follows its given distribution, e.g., a multivariate standard Gaussian. That
is, the discriminator is adjusted to maximize the probability that it will correctly identify
an event as real or generated, and simultaneously the generator is tuned such that it
produces events which appear as real as possible when evaluated by the discriminator.

Challenges with GANs such as difficulty training the networks are an active area
of research in Machine Learning. Once an optimal set of parameters is found, the
transformation x = G(z; θg) can be used to generate events in x-space that capture
detailed properties of the training data. Further information on applications, network
architecture and training procedures can be found in, e.g., Ref. [25] and references therein.

References:
1. F. James, Comp. Phys. Comm. 60, 329 (1990).
2. P. L’Ecuyer, Proc. 1997 Winter Simulation Conference, IEEE Press, Dec. 1997,

127–134.
3. Leif Lönnblad, Comp. Phys. Comm. 84, 307 (1994).
4. Rene Brun and Fons Rademakers, Nucl. Inst. Meth. A389, 81 (1997); see also

root.cern.ch.
5. F. James, Comp. Phys. Comm. 79, 111 (1994), based on M. Lüscher, Comp. Phys.

Comm. 79, 100 (1994).
6. P. L’Ecuyer, Mathematics of Computation, 65, 213 (1996) and 65, 225 (1999).
7. M. Matsumoto and T. Nishimura, ACM Transactions on Modeling and Computer

Simulation, Vol. 8, No. 1, January 1998, 3–30.
8. Much of DIEHARD is described in: G. Marsaglia, A Current View of Random

Number Generators, keynote address, Computer Science and Statistics: 16th

Symposium on the Interface, Elsevier (1985).
9. P. L’Ecuyer and R. Simard, ACM Transactions on Mathematical Software 33, 4,

Article 1, December 2007.
10. J. Heinrich, CDF Note CDF/MEMO/STATISTICS/PUBLIC/8032, 2006.
11. UNU.RAN is described at statmath.wu.ac.at/software/unuran; see also

W. Hörmann, J. Leydold, and G. Derflinger, Automatic Nonuniform Random

Variate Generation, (Springer, New York, 2004).
12. W.H. Press et al., Numerical Recipes, 3rd edition, (Cambridge University Press, New

York, 2007).

June 5, 2018 19:58

10 40. Monte Carlo techniques

13. J.H. Ahrens and U. Dieter, Computing 12, 223 (1974).
14. R.Y. Rubinstein, Simulation and the Monte Carlo Method, (John Wiley and Sons,

Inc., New York, 1981).
15. L. Devroye, Non-Uniform Random Variate Generation, (Springer-Verlag, New York,

1986); available online at luc.devroye.org/rnbookindex.html.
16. C. Walck, Handbook on Statistical Distributions for Experimentalists, University of

Stockholm Report SUF-PFY/96-01, available from www.fysik.su.se/~walck.
17. J.E. Gentle, Random Number Generation and Monte Carlo Methods, 2nd ed.,

(Springer, New York, 2003).
18. C.P. Robert and G. Casella, Monte Carlo Statistical Methods, 2nd ed., (Springer,

New York, 2004).
19. J.S. Liu, Monte Carlo Strategies in Scientific Computing, (Springer, New York,

2001).
20. R.M. Neal, Probabilistic Inference Using Markov Chain Monte Carlo Methods,

Technical Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto,
available from www.cs.toronto.edu/~radford/res-mcmc.html.

21. A. Caldwell, D. Kollar, K. Krninger, Comput. Phys. Commun. 180 (2009) pages
2197-2209; e-print: arXiv:0808.2552.

22. D.P. Kingma and M. Welling, Auto-Encoding Variational Bayes, Int. Conf. on
Learning Representations, ICLR, 2014; e-print: arXiv:1312.6114 [stat.ML].

23. D.J. Rezende, S. Mohamed and D. Wierstra, Stochastic Backpropagation and

Approximate Inference in Deep Generative Models, Proc. 31st Int. Conf. on Machine
Learning, Beijing, 2014. JMLR: W&CP vol. 32; e-print: arXiv:1401.4082 [stat.ML].

24. I.J. Goodfellow et al., Generative Adversarial Nets, Proceedings of Advances in
Neural Information Processing Systems 27 (Z. Ghahramani et al., eds., NIPS 2014)
pages 26722680; e-print: arXiv:1406.2661 [stat.ML].

25. M. Paganini, L. de Oliveira and B. Nachman, CaloGAN: Simulating 3D High Energy

Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative

Adversarial Networks e-print: arXiv:1705.02355 [hep-ex].

June 5, 2018 19:58

