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9. Quantum Chromodynamics

Revised September 2017 by S. Bethke (Max-Planck-Institute of Physics, Munich),
G. Dissertori (ETH Zurich), and G.P. Salam (CERN).!

This update retains the 2016 summary of ag values, as few new results were available
at the deadline for this Review. Those and further new results will be included in the
next update.

9.1. Basics

Quantum Chromodynamics (QCD), the gauge field theory that describes the
strong interactions of colored quarks and gluons, is the SU(3) component of the
SU(3)xSU(2)xU(1) Standard Model of Particle Physics.

The Lagrangian of QCD is given by
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where repeated indices are summed over. The v# are the Dirac y-matrices. The v, are
quark-field spinors for a quark of flavor ¢ and mass mg, with a color-index a that runs
from a = 1 to N, = 3, i.e. quarks come in three “colors.” Quarks are said to be in the
fundamental representation of the SU(3) color group.

The Ag correspond to the gluon fields, with C' running from 1 to NC2 —1=28, ie.
there are eight kinds of gluon. Gluons transform under the adjoint representation of the
SU(3) color group. The tg’;) correspond to eight 3 x 3 matrices and are the generators of
the SU(3) group (cf. the section on “SU(3) isoscalar factors and representation matrices”
in this Review, with t% = )\g’;) /2). They encode the fact that a gluon’s interaction with
a quark rotates the quark’s color in SU(3) space. The quantity gs is the QCD coupling
constant. Finally, the field tensor F f,/ is given by

Fi, = 0 A — 0, A8 — g5 fapc ABAS [t 8] = ifapct® (9.2)

where the f4pc are the structure constants of the SU(3) group.

Neither quarks nor gluons are observed as free particles. Hadrons are color-singlet (i.e.
color-neutral) combinations of quarks, anti-quarks, and gluons.

Ab-initio predictive methods for QCD include lattice gauge theory and perturbative
expansions in the coupling. The Feynman rules of QCD involve a quark-antiquark-
gluon (qgqg) vertex, a 3-gluon vertex (both proportional to gs), and a 4-gluon vertex
(proportional to g2). A full set of Feynman rules is to be found for example in Ref. 1.

Useful color-algebra relations include: tfbtfc = Cpbgae, where Cp = (N2 —1)/(2N,) =
4/3 is the color-factor (“Casimir”) associated with gluon emission from a quark;
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facpfBecp = Cadap Where Cyq = N, = 3 is the color-factor associated with gluon
emission from a gluon; ¢ bt o = TrROARB, where Tg = 1/2 is the color-factor for a gluon to
split to a g pair.
2
The fundamental parameters of QCD are the coupling gs (or as = j—s) and the quark
7r

masses M.
There is freedom for an additional CP-violating term to be present in the QCD
o ~ ~ 1
Lagrangian, ¢9£F;‘VFA 1Y where FAHY is the dual of the gluon field tensor, §GWJPFA TP,
where €0, is the fully antisymmetric Levi-Cevita symbol. Experimental limits on the
neutron electric dipole moment [2] constrain the coefficient of this contribution to satisfy

10| < 10710, Further discussion is to be found in Ref. 3 and in the Axions section in the
Listings of this Review.

This section will concentrate mainly on perturbative aspects of QCD as they relate
to collider physics. Related textbooks and reviews include Refs. 1,4-8. Aspects specific
to Monte Carlo event generators are reviewed in the dedicated section 41. Lattice QCD
is also reviewed in a section of its own, Sec. 17, with further discussion of perturbative
and non-perturbative aspects to be found in the sections on “Quark Masses”, “The
CKM quark-mixing matrix”, “Structure Functions”, “Fragmentation Functions”, and
“Heavy-Quark and Soft-Collinear Effective Theory” in this Review. For an overview
of some of the QCD issues and recent results in heavy-ion physics, see for example
Refs. [9-11].

9.1.1. Running coupling :

In the framework of perturbative QCD (pQCD), predictions for observables are
expressed in terms of the renormalized coupling as(p%), a function of an (unphysical)
renormalization scale pur. When one takes pup close to the scale of the momentum
transfer () in a given process, then OCS(IUQR ~ Q2) is indicative of the effective strength of
the strong interaction in that process.

The coupling satisfies the following renormalization group equation (RGE):

da
H—a = Blas) = —(boa? +bial + boag + ) (9.3)

dug
where by = (1104 — 4nfTR)/(127) = (33 — 2ny)/(127) is referred to as the 1-loop (-
function coefficient, the 2-loop coefficient is b = (17C% — nrTR(10C 4 + 6CF))/(24n%) =
(153 — 19n¢)/(247%), and the 3-loop coefficient is by = (2857 — Mnf + 32275 %)/(1287?3)
for the SU(3) values of C 4 and Cr. The 4-loop coefficient, b3, is to be found in Refs. 12,
13, while the 5-loop coefficient, by, is in Refs. 14-16. The coefficients by and b3 (and
beyond) are renormalization-scheme-dependent, and given here in the modified minimal
subtraction (MS) scheme [17], by far the most widely used scheme in QCD.

The minus sign in Eq. (9.3) is the origin of Asymptotic Freedom [18,19], i.e. the fact
that the strong coupling becomes weak for processes involving large momentum transfers
(“hard processes”). For momentum transfers in the 100 GeV — TeV range, as ~ 0.1,
while the theory is strongly interacting for scales around and below 1 GeV.
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The B-function coefficients, the b;, are given for the coupling of an effective theory in
which n; of the quark flavors are considered light (mq < p1r), and in which the remaining
heavier quark flavors decouple from the theory. One may relate the coupling for the
theory with ny + 1 light flavors to that with ny flavors through an equation of the form

n=1¢=0 mh

where my, is the mass of the (nf—l—l)th flavor, and the first few c,, coefficients are

cl1 = 6%, cio0 =0, co9 = c%l, co1 = 211—92’ and cog = —# when my, is the MS mass at
scale my, (cop = 47 > when my, is the pole mass — mass definitions are discussed below

and in the review on “Quark Masses”). Terms up to cyy are to be found in Refs. 20, 21.

Numerically, when one chooses prp = my, the matching is a modest effect, owing to the
zero value for the c1g coefficient. Relations between ny and (ny+2) flavors where the two
heavy flavors are close in mass are given to three loops in Ref. 22.

Working in an energy range where the number of flavors is taken constant, a simple
exact analytic solution exists for Eq. (9.3) only if one neglects all but the by term, giving
as(,uR) (bo ln(u /A%))~1. Here A is a constant of integration, which corresponds to the
scale where the perturbatively-defined coupling would diverge. Its value is indicative of
the energy range where non-perturbative dynamics dominates. A convenient approximate
analytic solution to the RGE that includes the terms up to b4 is given by the iterative
solution of Eq. (9.3)

1 b2(0%2 — 0 — 1) + bgb
2\ (1 bl bi( ) +boba

W (1-py

as(lu 5 ]
by t byt?

b3 (=203 + 502 + 40 — 1) — 6bobab1 ¢ + b3bs
+ 5 +
200t3

+1gbobgb§ (202—€—1)+0b] (601 —2603—90%+240+7)
6b5t

—b0b3b1(12£+1)+2b0 (5b2+bob4)> 05)

b5t

—= and ¢ = Int, again parametrized in terms of a constant A. Note that

Eq. (9.5) is one of several possible approximate 4-loop solutions for as(p%), and that a
value for A only defines o (,u%%) once one knows which particular approximation is being
used. An alternative to the use of formulas such as Eq. (9.5) is to solve the RGE exactly,
numerically (including the discontinuities, Eq. (9.4), at flavor thresholds). In such cases
the quantity A does directly arise (though it can be defined, cf. Eqs. (1-3) of Ref.24).

For these reasons, in determinations of the coupling, it has become standard practice to
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quote the value of as at a given scale (typically the mass of the Z boson, M) rather
than to quote a value for A.

The value of the coupling, as well as the exact forms of the b, ¢19 (and higher-order)
coefficients, depend on the renormalization scheme in which the coupling is defined,
i.e. the convention used to subtract infinities in the context of renormalization. The
coefficients given above hold for a coupling defined in the MS scheme.

A discussion of determinations of the coupling and a graph illustrating its scale
dependence (“running”) are to be found in Section 9.4. The RunDec package [25,26,27]
is often used to calculate the evolution of the coupling. For a discussion of electroweak
effects in the evolution of the QCD coupling, see Ref. 28 and references therein.

9.1.2. Quark masses:

Free quarks have never been observed, which is understood as a result of a long-
distance, confining property of the strong QCD force: up, down, strange, charm, and
bottom quarks all hadronize, i.e. become part of a meson or baryon, on a timescale
~ 1/A; the top quark instead decays before it has time to hadronize. This means that
the question of what one means by the quark mass is a complex one, which requires that
one adopts a specific prescription. A perturbatively defined prescription is the pole mass,
mg, which corresponds to the position of the divergence of the propagator. This is close
to one’s physical picture of mass. However, when relating it to observable quantities, it
suffers from substantial non-perturbative ambiguities (see e.g. Ref. 29). An alternative is
the MS mass, mq(;ﬁ%), which depends on the renormalization scale up.

Results for the masses of heavier quarks are often quoted either as the pole mass or as
the MS mass evaluated at a scale equal to the mass, myq (mg); light quark masses are often

quoted in the MS scheme at a scale up ~ 2 GeV. The pole and MS masses are related

. . __ 9 Qs (mg) 2 .
by a slowly converging series that starts mq = mg(m;)(1 + —a + O(a%)), while the
S ™
scale-dependence of MS masses is given by
dimg (%) as(ip) _
MR g = | m o+ 0(ed) | Mg (9.6)
) T

More detailed discussion is to be found in a dedicated section of the Review, “Quark
Masses.”, with detailed formulas also in Ref. 30 and references therein.

In perturbative QCD calculations of scattering processes, it is common to work in an
approximation in which one neglects (i.e. sets to zero) the masses of all quarks whose
mass is significantly smaller than the momentum transfer in the process.
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9.2. Structure of QCD predictions

9.2.1. Fully inclusive cross sections :

The simplest observables in perturbative QCD are those that do not involve initial-state
hadrons and that are fully inclusive with respect to details of the final state. One example
is the total cross section for ete™ — hadrons at center-of-mass energy @, for which one
can write

o(eTe™ — hadrons, Q)

olete” = ptp=,Q)
where Rpw(Q) is the purely electroweak prediction for the ratio and dqcp(Q) is the
correction due to QCD effects. To keep the discussion simple, we can restrict our

attention to energies () < My, where the process is dominated by photon exchange
(Rew = 3Zq eg, neglecting finite-quark-mass corrections, where the e, are the electric

R(Q) = Rew(Q)(1 +dqcp(Q)), (9.7)

charges of the quarks),

dQep(Q) = 3 Cn, - (QS(QQ))R +0 (A—4> . (9.8)

T Q4

n=1

The first four terms in the ag series expansion are then to be found in Ref. 31,

a=1, co = 1.9857 — 0.1152n;, (9.9q)
cg = —6.63694 — 1.20013n — 0.00518n% — 1.2407, (9.95)
¢y = —156.61 + 18.775m 7 — 0.7974n% + 0.0215n% — (17.828 — 0.575np)y,  (9.9¢)

with n = (Y eq)?/(33 eg). For corresponding expressions including also Z exchange and
finite-quark-mass effects, see Refs. [32-34].

A related series holds also for the QCD corrections to the hadronic decay width of the
7 lepton, which essentially involves an integral of R(Q) over the allowed range of invariant
masses of the hadronic part of the 7 decay (see e.g. Ref. 35). The series expansions for
QCD corrections to Higgs-boson hadronic (partial) decay widths are summarized in Refs.
36, 37, 38.

One characteristic feature of Egs. (9.8) and (9.9) is that the coefficients of aff increase
order by order: calculations in perturbative QCD tend to converge more slowly than
would be expected based just on the size of aT. Another feature is the existence of an
extra “power-correction” term O(A%/Q%) in Eq. (9.8), which accounts for contributions
that are fundamentally non-perturbative. All high-energy QCD predictions involve such
corrections, though the exact power of A/Q depends on the observable. For many

T The situation is significantly worse near thresholds, e.g. the ¢t production threshold.
An overview of some of the methods used in such cases is to be found for example in
Ref. 39.
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processes and observables, it is possible to introduce an operator product expansion
and associate power suppressed terms with specific higher-dimension (non-perturbative)
operators.

Scale dependence. In Eq. (9.8) the renormalization scale for ag has been chosen
equal to Q). The result can also be expressed in terms of the coupling at an arbitrary
renormalization scale up,

00 2 v (142 n 4
dqcp(Q) = Z%(%) : <¥) +0 (%) , (9.10)

n=1

where 61(/L2R/Q2) =1, EQ(/,LQR/QQ) = ¢ + whpcy ln(,uQR/QQ), 53(M2R/Q2) = c3 + (2bgcom +
breim?) In(u%/Q?) + bier w2 ln2(,u%%/Q2), etc. Given an infinite number of terms in the ag
expansion, the ur dependence of the En(p% /Q?) coefficients will exactly cancel that of
« s(,u%%), and the final result will be independent of the choice of ur: physical observables
do not depend on unphysical scales.**

With just terms up to some finite n = N, a residual ur dependence will remain, which
implies an uncertainty on the prediction of R(Q) due to the arbitrariness of the scale
choice. This uncertainty will be O(aN*1), i.e. of the same order as the neglected terms.
For this reason it is customary to use QCD predictions’ scale dependence as an estimate
of the uncertainties due to neglected terms. One usually takes a central value for up ~ @,
in order to avoid the poor convergence of the perturbative series that results from the
large lnn_l(/ﬂR/QQ) terms in the ¢, coefficients when pp < @ or pp > (). Uncertainties
are then commonly determined by varying pr by a factor of two up and down around the
central scale choice, as discussed in more detail below in Section 9.2.4.

9.2.2. Processes with initial-state hadrons :

Deep Inelastic Scattering. To illustrate the key features of QCD cross sections in
processes with initial-state hadrons, let us consider deep-inelastic scattering (DIS),
ep — e + X, where an electron e with four-momentum k emits a highly off-shell photon
(momentum ¢) that interacts with the proton (momentum p). For photon virtualities
Q? = —¢? far above the squared proton mass (but far below the Z mass), the differential
cross section in terms of the kinematic variables Q2, = Q%/(2p-¢) and y = (¢-p)/(k-p)
is
d%o _ 4o
dzdQ?  2xQ4

[+ (1= ) Pale, Q%) — y*Fr (2, Q%)) | (9.11)

** There is an important caveat to this statement: at sufficiently high orders, perturba-
tive series generally suffer from “renormalon” divergences a'n! (reviewed in Ref. 29). This
phenomenon is not usually visible with the limited number of perturbative terms available
today. However it is closely connected with non-perturbative contributions and sets a limit
on the possible precision of perturbative predictions. The cancellation of scale dependence
will also ultimately be affected by this renormalon-induced breakdown of perturbation
theory.



9. Quantum chromodynamsics 7

where « is the electromagnetic coupling and Fy(x, Q%) and Fy (x, Q?) are proton structure
functions, which encode the interaction between the photon (in given polarization states)
and the proton. In the presence of parity-violating interactions (e.g. vp scattering) an

additional F3 structure function is present. For an extended review, including equations
for the full electroweak and polarized cases, see Sec. 18 of this Review.

Structure functions are not calculable in perturbative QCD, nor is any other cross
section that involves initial-state hadrons. To zeroth order in ag, the structure functions
are given directly in terms of non-perturbative parton (quark or gluon) distribution
functions (PDFs),

Fy(w,Q*) =) eifyp(®),  Fr(z,Q%) =0, (9.12)
q

where fq /p(a:) is the PDF for quarks of type ¢ inside the proton, ¢.e. the number density
of quarks of type ¢ inside a fast-moving proton that carry a fraction z of its longitudinal
momentum (the quark flavor index ¢, here, is not to be confused with the photon

momentum ¢ in the lines preceding Eq. (9.11)). PDFs are non-perturbative, and only
just starting to be extracted in lattice QCD in a phenomenologically relevant way [40]
and there is also some debate about the underlying methods [41]. Accordingly, for all
practical uses, they are determined from data (cf. Sec. 18 of this Review and also Ref. 42).

The above result, with PDFs f, /p(:l;) that are independent of the scale (), corresponds
to the “quark-parton model” picture in which the photon interacts with point-like free
quarks, or equivalently, one has incoherent elastic scattering between the electron and
individual constituents of the proton. As a consequence, in this picture also F» and FT,
are independent of @) [43]. When including higher orders in pQCD, Eq. (9.12) becomes

Fy(z,Q%) = Z Z / Cg? (2, Q. i 1) fz/p( n“F)

n=0 1=q,9

+ O(é\;) (9.13)

Just as in Eq. (9.10), we have a series in powers of ag(u R) each term involving a

coefficient Cs (n ) that can be calculated using Feynman graphs. An important difference is
the addltlonal integral over z. The parton that comes from the proton can emit a gluon

before it interacts with the photon. As a result, the C( n) coefficients are functions that
depend on the ratio, z, of the parton’s momentum before and after the gluon emission,
and one must integrate over that ratio. For the electromagnetic component of DIS with

light quarks and gluons, the zeroth order coefficient functions are C’; 3 = ey 26(1 — 2) and

ci)

g = 0. Corrections are known up to O(a2) (next-to-next-next-to-leading order, N3LO)
for both electromagnetic [44] and weak currents [45,46]. For heavy-quark production
they are known to O(a?) [47] (next-to-leading order, NLO, insofar as the series starts at
O(as)), with ongoing work towards NNLO summarized in Ref. 48.
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The majority of the emissions that modify a parton’s momentum are collinear (parallel)
to that parton, and don’t depend on the fact that the parton is destined to interact
with a photon. It is natural to view these emissions as modifying the proton’s structure
rather than being part of the coefficient function for the parton’s interaction with the
photon. Technically, one uses a procedure known as collinear factorization to give a
well-defined meaning to this distinction, most commonly through the MS factorization
scheme, defined in the context of dimensional regularization. The MS factorization
scheme involves an arbitrary choice of factorization scale, pp, whose meaning can be
understood roughly as follows: emissions with transverse momenta above pup are included

in the C’( )(z, Q?, ,u%%, ,u%); emissions with transverse momenta below pp are accounted

for Within the PDFs, f; /p(:z:, u%) While collinear factorization is generally believed to be
valid for suitable (sufficiently inclusive) observables in processes with hard scales, Ref. 49,
which reviews the factorization proofs in detail, is cautious in the statements it makes

about their exhaustivity, notably for the hadron-collider processes that we shall discuss

below. Further discussion is to be found in Refs. 50,51.

The PDFSs’ resulting dependence on pp is described by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equations [52], which to leading order (LO) read*

8fi/ (l’a/ﬂ) as(/ﬂ) 1
“%gu—%F :;TF/JC . ZQ]( )fj/p< ,uF> (9.14)

with, for example, Pq(<_)g( ) = Tgr(2? + (1 — 2)?). The other LO splitting functions
are listed in Sec. 18 of this Rewview, while results up to NLO, a , and NNLO, ag’,
are given in Refs. 53 and 54 respectively. A significant part ( non-singlet”) of the
N3LO results is given in Ref. 55. Splitting functions for polarized PDFs are given
in Ref. 56. Beyond LO, the coefficient functions are also pup dependent, for example

1 1 1 0 1 .
Cé,i)(x»Q27N%%aﬂ%) = Cé,i)(fl% Q27M%, Q?) — ln(uF) > I dZC’( )(z )PJ(<_)Z( ). In certain
contexts, higher-order QED and mixed QED- QCD corrections to the splitting functions
are also needed [57].

As with the renormalization scale, the choice of factorization scale is arbitrary, but
if one has an infinite number of terms in the perturbative series, the pup-dependences
of the coefficient functions and PDFs will compensate each other fully. Given only N
terms of the series, a residual O(aY+1) uncertainty is associated with the ambiguity in

* LO is generally taken to mean the lowest order at which a quantity is non-zero. This
definition is nearly always unambiguous, the one major exception being for the case of the
hadronic branching ratio of virtual photons, Z, 7, etc., for which two conventions exist:
LO can either mean the lowest order that contributes to the hadronic branching fraction,
i.e. the term “1” in Eq. (9.7); or it can mean the lowest order at which the hadronic
branching ratio becomes sensitive to the coupling, n = 1 in Eq. (9.8), as is relevant when
extracting the value of the coupling from a measurement of the branching ratio. Because
of this ambiguity, we avoid use of the term “LO” in that context.
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the choice of up. As with pup, varying pp provides an input in estimating uncertainties
on predictions. In inclusive DIS predictions, the default choice for the scales is usually
HR = pr = Q.

As is the case for the running coupling, in DGLAP evolution one can introduce flavor
thresholds near the heavy quark masses: below a given heavy quark’s mass, that quark
is not considered to be part of the proton’s structure, while above it is considered to
be part of the proton’s structure and evolves with massless DGLAP splitting kernels.
With appropriate parton distribution matching terms at threshold, such a variable flavor
number scheme (VENS), when used with massless coefficient functions, gives the full
heavy-quark contributions at high Q2 scales. For scales near the threshold, it is instead
necessary to appropriately adapt the standard massive coefficient functions to account for
the heavy-quark contribution already included in the PDFs [58,59,60].

Hadron-hadron collisions. The extension to processes with two initial-state hadrons
can be illustrated with the example of the total (inclusive) cross section for W boson
production in collisions of hadrons hi and hso, which can be written as

o
o(hihy =W+ X)=>_ al(up) Z/dflfldflfz fisny (5151, M%) fi/hy (1152,/@?)
n=0 1,7

R A
X O-z(‘?LW—I—X (37137237”%?,7“%’) + O (M—4> ) (915)
w

where s is the squared center-of-mass energy of the collision. At LO, n = 0, the

hard (partonic) cross section &z(;))—ﬂ/[/ +X(x1x23,u%%,u%) is simply proportional to

d(x1wo8 — M%,), in the narrow W-boson width approximation (see Sec. 49 of this Review
for detailed expressions for this and other hard scattering cross sections). It is non-zero
only for choices of 4, that can directly give a W, such as i = u, j = d. At higher
orders, n > 1, new partonic channels contribute, such as gq, and there is no restriction
T1x9S = MI%V

Equation (9.15) involves a collinear factorization between the hard cross section and
the PDFs, just like Eq. (9.13). As long as the same factorization scheme is used in DIS
and pp or pp (usually the MS scheme), then PDFs extracted in DIS can be directly used
in pp and pp predictions [61,49] (with the anti-quark distributions in an anti-proton being
the same as the quark distributions in a proton).

Fully inclusive hard cross sections are known to NNLO, i.e. corrections up to
relative order a2, for Drell-Yan (DY) lepton-pair and vector-boson production [62,63],
Higgs-boson production in association with a vector boson [64], Higgs-boson production
via vector-boson fusion [65] (in an approximation that factorizes the production of the two
vector bosons), Higgs-pair production [66], top-antitop production [67] and vector-boson
pair production [68,69]. T Recently, inclusive Higgs production through gluon fusion and

T Processes with jets or photons in the final state have divergent cross sections unless
one places cut on the jet or photon momentum. Accordingly they are discussed below in
Section 9.2.3.2.
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vector-boson fusion were calculated at N3LO [70,71]. A discussion of many other Higgs
results is to be found in Ref. 72.

Photoproduction. p (and ~7) collisions are similar to pp collisions, with the subtlety
that the photon can behave in two ways: there is “direct” photoproduction, in which

the photon behaves as a point-like particle and takes part directly in the hard collision,
with hard subprocesses such as vg — q@; there is also resolved photoproduction, in which
the photon behaves like a hadron, with non-perturbative partonic substructure and a

corresponding PDF for its quark and gluon content, f; /7(:1:, Q?).

While useful to understand the general structure of yp collisions, the distinction
between direct and resolved photoproduction is not well defined beyond leading order, as
discussed for example in Ref. 73.

The high-energy (BFKL) limit. In situations in which the total center-of-mass energy
/s is much larger than all other momentum-transfer scales in the problem (e.g. @ in
DIS, my, for bb production in pp collisions, etc.), each power of as beyond LO can be
accompanied by a power of In(s/Q?) (or In(s /m%), etc.). This is variously referred to
as the high-energy, small-z or Balitsky-Fadin-Kuraev-Lipatov (BFKL) limit [74-76].
Currently it is possible to account for the dominant and first subdominant [77,78] power
of Ins at each order of ag, and also to estimate further subdominant contributions that
are numerically large (see Refs. 79-82 and references therein). Progress towards NNLO
is discussed in Ref. 83.

Physically, the summation of all orders in ag can be understood as leading to a growth
with s of the gluon density in the proton. At sufficiently high energies this implies
non-linear effects (commonly referred to as parton saturation), whose treatment has been
the subject of intense study (see for example Refs. 84, 85 and references thereto). Note
that it is not straightforward to relate these results to the genuinely non-perturbative
total, elastic and diffractive cross sections for hadron-hadron scattering (experimental
results for which are summarized in section 51 of this Review).

9.2.3. Non fully inclusive cross sections :

QCD final states always consist of hadrons, while perturbative QCD calculations
deal with partons. Physically, an energetic parton fragments (“showers”) into many
further partons, which then, on later timescales, undergo a transition to hadrons
(“hadronization”). Fixed-order perturbation theory captures only a small part of these
dynamics.

This does not matter for the fully inclusive cross sections discussed above: the
showering and hadronization stages are approximately unitary, i.e. they do not
substantially change the overall probability of hard scattering, because they occur long
after it has taken place (they introduce at most a correction proportional to a power
of the ratio of timescales involved, i.e. a power of A/Q, where @ is the hard scattering
scale).

Less inclusive measurements, in contrast, may be affected by the extra dynamics. For
those sensitive just to the main directions of energy flow (jet rates, event shapes, cf.
Sec. 9.3.1) fixed order perturbation theory is often still adequate, because showering and
hadronization don’t substantially change the overall energy flow. This means that one
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can make a prediction using just a small number of partons, which should correspond

well to a measurement of the same observable carried out on hadrons. For observables

that instead depend on distributions of individual hadrons (which, e.g., are the inputs

to detector simulations), it is mandatory to account for showering and hadronization.

The range of predictive techniques available for QCD final states reflects this diversity of
needs of different measurements.

While illustrating the different methods, we shall for simplicity mainly use expressions
that hold for eTe™ scattering. The extension to cases with initial-state partons will
be mostly straightforward (space constraints unfortunately prevent us from addressing
diffraction and exclusive hadron-production processes; extensive discussion is to be found
in Refs. 86, 87).

9.2.3.1. Soft and collinear limits:

Before examining specific predictive methods, it is useful to be aware of a general
property of QCD matrix elements in the soft and collinear limits. Consider a squared
tree-level matrix element |M?2(py,...,pn)| for the process ete™ — n partons with
momenta pi,...,pn, and a corresponding phase-space integration measure d®,,. If
particle n is a gluon, and additionally it becomes collinear (parallel) to another particle
i and its momentum tends to zero (it becomes “soft”), the matrix element simplifies as
follows,

2 Y
T Gm E,

:ch)n—l’M%—l(plw--vpn—l)’ (9'16)

where C; = Cp (C4) if i is a quark (gluon). This formula has non-integrable divergences
both for the inter-parton angle 6;, — 0 and for the gluon energy FE,, — 0, which are
mirrored also in the structure of divergences in loop diagrams. These divergences are
important for at least two reasons: firstly, they govern the typical structure of events
(inducing many emissions either with low energy or at small angle with respect to
hard partons); secondly, they will determine which observables can be calculated within
perturbative QCD.

9.2.3.2. Fixed-order predictions:

Let us consider an observable O that is a function Oy (p1, ..., pn) of the four-momenta
of the n final-state particles in an event (whether partons or hadrons). In what follows,
we shall consider the cross section for events weighted with the value of the observable,
oco. As examples, if O, = 1 for all n, then op is just the total cross section; if
On = 7(p1,...,pn) where 7 is the value of the Thrust for that event (see Sec. 9.3.1.2),
then the average value of the Thrust is (1) = op/0tot; if Op = (7 — 7(p1,...,pn)) then
one gets the differential cross section as a function of the Thrust, op = do/dT.

In the expressions below, we shall omit to write the non-perturbative power correction
term, which for most common observables is proportional to a single power of A/Q.
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LO. If the observable O is non-zero only for events with at least n final-state particles,
then the LO QCD prediction for the weighted cross section in eTe™ annihilation is

00,LO = 04?_2(,“%%) /dq)n‘Mg(pla cosPn)| On(p1, - - pn) (9.17)

where the squared tree-level matrix element, |M?2(p1, ..., pn)|, includes relevant symmetry
factors, has been summed over all subprocesses (e.g. eTe™ — qqqq, eTe™ — qggg) and
has had all factors of a extracted in front. In processes other than eTe™ collisions, the
center-of-mass energy of the LO process is generally not fixed, and so the powers of the
coupling are often brought inside the integrals, with the scale pur chosen event by event,
as a function of the event kinematics.

Other than in the simplest cases (see the review on Cross Sections in this Review),
the matrix elements in Eq. (9.17) are usually calculated automatically with programs
such as CompHEP [88], MadGraph [89], Alpgen [90], Comix/Sherpa [91], and
Helac/Phegas [92]. Some of these (CompHEP, MadGraph) use formulas obtained
from direct evaluations of Feynman diagrams. Others (Alpgen, Helac/Phegas and
Comix/Sherpa) use methods designed to be particularly efficient at high multiplicities,
such as Berends-Giele recursion [93], which builds up amplitudes for complex processes
from simpler ones (see also the reviews and discussion in Refs. [94-96]).

The phase-space integration is usually carried out by Monte Carlo sampling, in order
to deal with the sometimes complicated cuts that are used in corresponding experimental
measurements. Because of the divergences in the matrix element, Eq. (9.16), the integral
converges only if the observable vanishes for kinematic configurations in which one of the
n particles is arbitrarily soft or it is collinear to another particle. As an example, the
cross section for producing any configuration of n partons will lead to an infinite integral,
whereas a finite result will be obtained for the cross section for producing n deposits of
energy (or jets, see Sec. 9.3.1.1), each above some energy threshold and well separated
from each other in angle.

LO calculations can be carried out for 2 — n processes with n < 6 — 10. The exact
upper limit depends on the process, the method used to evaluate the matrix elements
(recursive methods are more efficient), and the extent to which the phase-space integration
can be optimized to work around the large variations in the values of the matrix elements.

NLO. Given an observable that is non-zero starting from n final-state particles,
its prediction at NLO involves supplementing the LO result, Eq. (9.17), with the

2 — (n + 1)-particle squared tree-level matrix element (|2 +11), and the interference of
an 2 — n tree-level and 2 — n 1-loop amplitude (2Re(MnM*’1_loop)),

n

o0 = ok0 + a7 (u%) /dq’n+1|M¢2l+1(p17 o3 Pnt1)| Ong1 (P, - -+ Pnt1)

+oan () /d%QRe[Mnm,...,pn)

M:,l_loop(pla coyPn) ] On(p1,- .. pn) - (9-18)
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Relative to LO calculations, two important issues appear in the NLO calculations.
Firstly, the extra complexity of loop-calculations relative to tree-level calculations means
that their automation has been achieved only in recent years (see below). Secondly, loop
amplitudes are infinite in 4 dimensions, while tree-level amplitudes are finite, but their
integrals are infinite, due to the divergences of Eq. (9.16). These two sources of infinities
have the same soft and collinear origins and cancel after the integration only if the
observable O satisfies the property of infrared and collinear safety,

On+1(p17-~->ps>~-~apn) _>On(p17>pn) 1fp8_>0
On—i—l(pl» ---3yDa,Ppby - - - 7pn) - On(p17 .o yPa T Dby -- 7pn)
if pa || b - (9.19)

Examples of infrared-safe quantities include event-shape distributions and jet cross
sections (with appropriate jet algorithms, see below). Unsafe quantities include the
distribution of the momentum of the hardest QCD particle (which is not conserved under
collinear splitting), observables that require the complete absence of radiation in some
region of phase space (e.g. rapidity gaps or 100% isolation cuts, which are affected by soft
emissions), or the particle multiplicity (affected by both soft and collinear emissions). The
non-cancellation of divergences at NLO due to infrared or collinear unsafety compromises
the usefulness not only of the NLO calculation, but also that of a LO calculation, since
LO is only an acceptable approximation if one can prove that higher-order terms are
smaller. Infrared and collinear unsafety usually also imply large non-perturbative effects.

As with LO calculations, the phase-space integrals in Eq. (9.18) are usually carried out
by Monte Carlo integration, so as to facilitate the study of arbitrary observables. Various
methods exist to obtain numerically efficient cancellation among the different infinities.
These include notably dipole [97], FKS [98] and antenna [99] subtraction.

NLO calculations exist for a wide range of processes. Historically, many calculations
have been performed process by process and are available in dedicated packages, among
them NLOJet++ [100] for eTe™, DIS, and hadron-hadron processes involving just light
partons in the final state, MCFM [101] for hadron-hadron processes with Higgs or vector
bosons and/or heavy quarks in the final state, VBFNLO for vector-boson fusion, di- and
tri-boson processes [102], and the Phox family [103] for processes with photons in the
final state. Many of these programs are still widely used today.

Recent years have seen very active development of automated NLO calculational
tools, and a number of programs are available publicly: Madgraph5_aMC@QNLO [89] and
Helac-NLO [104] provide full frameworks for NLO calculations; GoSam [105], Njet [106],
OpenLoops [107] and Recola [108] calculate just the 1-loop part and are typically
interfaced with an external tool such as Sherpa [109] for combination with the appropriate
tree-level amplitudes. Another tool, BlackHat [110] is available publicly in a pre-release
form, and many of its results can be accessed in the form of ntuples [111] to which a range
of cuts, and histogramming options, as well as PDF and scale-changes, can be applied «a
posteriori; an alternative approach for a posteriori PDF and scale change represents NLO
(or NNLO) results, for a given set of cuts and binning, as an effective coefficient function
on a grid in parton momentum fractions and factorization scales [112-115].
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In some cases the above programs (or development versions of them) can be used
to calculate also NLO electroweak or beyond-standard-model corrections [116-119].
Electroweak corrections are especially important for transverse momenta significantly
above the W and Z masses, because they are enhanced by two powers of Inp; /My for
each power of the electroweak coupling.

The above tools rely in part on a wide array of developments reviewed in Refs. 95,120.
Examples of the most complex processes for which NLO QCD corrections have been
obtained so far include eTe™ — 7 jets [121], pp — W +5 jets [122] and pp — 5 jets [123].

NNLO. Conceptually, NNLO and NLO calculations are similar, except that one must

add a further order in ag, consisting of: the squared (n + 2)-parton tree-level amplitude,
the interference of the (n 4 1)-parton tree-level and 1-loop amplitudes, the interference of
the n-parton tree-level and 2-loop amplitudes, and the squared n-parton 1-loop amplitude.

Each of these elements involves large numbers of soft and collinear divergences,
satisfying relations analogous to Eq. (9.16) that now involve multiple collinear or soft
particles and higher loop orders (see e.g. Refs. [124-126]). Arranging for the cancellation
of the divergences after numerical Monte Carlo integration has been one of the significant
challenges of NNLO calculations, as has the determination of the relevant 2-loop
amplitudes. For the cancellations of divergences a wide range of methods has been
developed. Some of them [127-131] retain the approach, inherent in NLO methods, of
directly combining the separate loop and tree-level amplitudes. Others combine a suitably
chosen, partially inclusive 2 — n NNLO calculation with a fully differential 2 — n + 1
NLO calculation [132-135].

Quite a number of processes have been calculated differentially at NNLO so
far. The state of the art for ete™ collisions is eTe™ — 3jets [136-138]. For Deep
Inelastic Scattering, dijet production is known at NNLO [139]. For hadron colliders,
all 2 — 1 processes are known, specifically vector boson [140,141] and Higgs boson
production [142,132]. For most of the above calculations there exist public codes
(EERADS for ete™, DYNNLO and FEWZ for W and Z production, fehipro and HNNLO
for Higgs production), links to which are to be found among the above references.
Substantial progress has been made in the past couple of years for hadron-collider 2 — 2
processes, with calculations having been performed for nearly all relevant processes:
HH [66] (in large-top-mass approximation, see also the exact (two-loop) NLO result [143])
, WH [144] and ZH [145], ZZ [69] WW [68] and W Z [146], v~ [147,148], Z~ [149] and
W~ [150] (many of these colour singlet processes are available also in MCFM [151]),
H+jet [152,153,154,155], W+jet [133], Z+jet [156,157] and v+ jet [158], t-channel
single-top [159,160], ¢t production [161], and dijet production [162]. One 2 — 3 process is
known at NNLO, Higgs production through vector-boson fusion, using an approximation
in which the two underlying DIS-like ¢ — ¢V scatterings are factorised [135].
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9.2.3.3. Resummation:

Many experimental measurements place tight constraints on emissions in the final
state. For example, in eTe™ events, that (one minus) the Thrust should be less than
some value 7 < 1, or in pp — Z events that the Z-boson transverse momentum should
be much smaller than its mass, ptZ <K My. A further example is the production of heavy
particles or jets near threshold (so that little energy is left over for real emissions) in DIS
and pp collisions.

In such cases, the constraint vetoes a significant part of the integral over the soft
and collinear divergence of Eq. (9.16). As a result, there is only a partial cancellation
between real emission terms (subject to the constraint) and loop (virtual) contributions
(not subject to the constraint), causing each order of ags to be accompanied by a large
coefficient ~ L2, where e.q. L =InT or L = ln(MZ/ptZ). One ends up with a perturbative
series whose terms go as ~ (asL?)™. It is not uncommon that asL? > 1, so that the
perturbative series converges very poorly if at all.** In such cases one may carry out a
“resummation,” which accounts for the dominant logarithmically enhanced terms to all
orders in ag, by making use of known properties of matrix elements for multiple soft
and collinear emissions, and of the all-orders properties of the divergent parts of virtual
corrections, following original works such as Refs. 163-172 and also through soft-collinear
effective theory [173,174] (cf. also the section on “Heavy-Quark and Soft-Collinear
Effective Theory” in this Review, as well as Ref. 175).

For cases with double logarithmic enhancements (two powers of logarithm per power
of ay), there are two classification schemes for resummation accuracy. Writing the cross
section including the constraint as o(L) and the unconstrained (total) cross section as
Otot, the series expansion takes the form

oo 2n

o(L) ~ oot Y Y Rapab(pR)LF,  L>1 (9.20)
n=0 k=0

and leading log (LL) resummation means that one accounts for all terms with k& = 2n,
next-to-leading-log (NLL) includes additionally all terms with k = 2n — 1, etc. Often o (L)
(or its Fourier or Mellin transform) ezponentiates ¥,

oo n+l

0(L) =~ oot €Xp Z Z Gnka?(/ﬁ%)Lk ) L>1, (9.21)
n=1 k=0

** To be precise one should be aware of two causes of the divergence of perturbative series.
That which interests us here is associated with the presence of a new large parameter (e.g.
ratio of scales). It is distinct from the “renormalon” induced factorial divergences of
perturbation theory that were discussed above.

I Whether or not this happens depends on the quantity being resummed. A classic
example involves jet rates in eTe™ collisions as a function of a jet-resolution parameter
Yeut- The logarithms of 1/ycyut exponentiate for the k¢ (Durham) jet algorithm [176], but
not [177] for the JADE algorithm [178] (both are discussed below in Sec. 9.3.1.1).
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where one notes the different upper limit on k£ (< n + 1) compared to Eq. (9.20). This is
a more powerful form of resummation: the G159 term alone reproduces the full LL series
in Eq. (9.20). With the form Eq. (9.21) one still uses the nomenclature LL, but this now
means that all terms with £ = n 4 1 are included, and NLL implies all terms with k£ = n,
etc.

For a large number of observables, NLL resummations are available in the sense
of Eq. (9.21) (see Refs. 179-181 and references therein). NNLL has been achieved for
the DY and Higgs-boson p; distributions [182-185] (also available in the CuTe [186],
HRes [187] and ResBos [188] families of programs and also differentially in vector-boson
decay products [189]) and related variables [190], for the p; of vector-boson pairs [191],
for the back-to-back energy-energy correlation in eTe™ [192], the jet broadening in eTe™
collisions [193], the jet-veto survival probability in Higgs and Z boson production in
pp collisions [194], an event-shape type observable known as the beam Thrust [195],
hadron-collider jet masses in specific limits [196] (see also Ref. 197), the production
of top anti-top pairs near threshold [198-200] (and references therein), and high-p;
W and Z production [201]. Automation of NNLL jet-veto resummations for different
processes has been achieved in Ref. 202 (¢f. also the NLL automation in Ref. 203), while
automation for a certain class of eTe™ observables has been achieved in Ref. 204. N3LL
resummations are available for the Thrust variable, C-parameter and heavy-jet mass in
eTe™ annihilations [205-207] (confirmed for Thrust at NNLL in Ref. 208), for the Higgs
pt distribution [209] and for for Higgs- and vector-boson production near threshold [210].
An extensive discussion of jet masses for heavy-quark induced jets has been given
in Ref. 211 (see also Ref. 212). Recently, there has also been progress in resummed
calculations for jet substructure, whose observables involve more complicated definitions
than is the case for standard resummations [213-217]. The inputs and methods involved
in these various calculations are somewhat too diverse to discuss in detail here, so we
recommend that the interested reader consult the original references for further details.

9.2.3.4. Fragmentation functions:

Since the parton-hadron transition is non-perturbative, it is not possible to
perturbatively calculate quantities such as the energy-spectra of specific hadrons in
high-energy collisions. However, one can factorize perturbative and non-perturbative
contributions via the concept of fragmentation functions. These are the final-state
analogue of the parton distribution functions that are used for initial-state hadrons. Like
parton distribution functions, they depend on a (fragmentation) factorization scale and
satisfy a DGLAP evolution equation.

It should be added that if one ignores the non-perturbative difficulties and just
calculates the energy and angular spectrum of partons in perturbative QCD with some
low cutoff scale ~ A (using resummation to sum large logarithms of /s/A), then this
reproduces many features of the corresponding hadron spectra [218]. This is often taken
to suggest that hadronization is “local”, in the sense it mainly involves partons that are
close both in position and in momentum.

Section 19 of this Review provides further information (and references) on these topics,
including also the question of heavy-quark fragmentation.
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9.2.3.5. Parton-shower Monte Carlo generators:

Parton-shower Monte Carlo (MC) event generators like PYTHIA [219-221],
HERWIG [222-224] and SHERPA [109] provide fully exclusive simulations of QCD
events. Because they provide access to “hadron-level” events, they are a crucial tool for
all applications that involve simulating the response of detectors to QCD events. Here we
give only a brief outline of how they work and refer the reader to Sec. 41 and Ref. 226 for
a full overview.

The MC generation of an event involves several stages. It starts with the random
generation of the kinematics and partonic channels of whatever hard scattering process
the user has requested at some high scale Qg (for complex processes, this may be
carried out by an external program). This is followed by a parton shower, usually
based on the successive random generation of gluon emissions (or g — ¢g splittings).
Each is generated at a scale lower than the previous emission, following a (soft and
collinear resummed) perturbative QCD distribution that depends on the momenta of all
previous emissions. Common choices of scale for the ordering of emissions are virtuality,
transverse momentum or angle. Parton showering stops at a scale of order 1 GeV, at
which point a hadronization model is used to convert the resulting partons into hadrons.
One widely-used model involves stretching a color “string” across quarks and gluons,
and breaking it up into hadrons [227,228]. Another breaks each gluon into a ¢¢ pair
and then groups quarks and anti-quarks into colorless “clusters”, which then give the
hadrons [222]. For pp and yp processes, modeling is also needed to treat the collision
between the two hadron remnants, which generates an underlying event (UE), usually
implemented via additional 2 — 2 scatterings (“multiple parton interactions”) at a scale
of a few GeV, following Ref. 229.

A deficiency of the soft and collinear approximations that underlie parton showers is
that they may fail to reproduce the full pattern of hard wide-angle emissions, important,
for example, in many new physics searches. It is therefore common to use LO multi-parton
matrix elements to generate hard high-multiplicity partonic configurations as additional
starting points for the showering, supplemented with some prescription (CKKW [230],
MLM ([231]) for consistently merging samples with different initial multiplicities.

MCs, as described above, generate cross sections for the requested hard process that
are correct at LO. A wide variety of processes are available in MC implementations that
are correct to NLO, using the MCQNLO [232] or POWHEG [233] prescriptions, notably
through the Madgraph5_.aMC@QNLO [89], POWHEGBox [234] and Sherpa [91,235]
programs. Techniques have also been developed recently to combine NLO plus shower
accuracy for different multiplicities of final-state jets [236]. Building in part on some of
that work, several groups have also obtained NNLO plus shower accuracy for Drell-Yan
and Higgs production [237] as well as a handful of other processes.

t The program ARTADNE [225] has also been widely used for simulating e™e™ and DIS
collisions.
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9.2.4. Accuracy of predictions :

Estimating the accuracy of perturbative QCD predictions is not an exact science. It
is often said that LO calculations are accurate to within a factor of two. This is based
on experience with NLO corrections in the cases where these are available. In processes
involving new partonic scattering channels at NLO and/or large ratios of scales (such
as jet observables in processes with vector bosons, or the production of high-p; jets
containing B-hadrons), the ratio of the NLO to LO predictions, commonly called the
“K-factor”, can be substantially larger than 2.

For calculations beyond LO, a conservative approach to estimate the perturbative
uncertainty is to take it to be the last known perturbative order; a more widely
used method is to estimate it from the change in the prediction when varying the
renormalization and factorization scales around a central value () that is taken close to
the physical scale of the process. A conventional range of variation is Q/2 < ugr, up < 2Q.
This should not be assumed to always estimate the full uncertainty from missing higher
orders, but it does indicate the size of one important known source of higher-order
ambiguity. ™

There does not seem to be a broad consensus on whether yr and pp should be kept
identical or varied independently. One common option is to vary them independently
with the restriction %u R < pp < 2upR [245]. This limits the risk of misleadingly small
uncertainties due to fortuitous cancellations between the pup and pur dependence when
both are varied together, while avoiding the appearance of large logarithms of ,qu/ /L%
when both are varied completely independently.

Calculations that involve resummations usually have an additional source of uncertainty

Z
associated with the choice of argument of the logarithms being resummed, e.g. ln(2]@—tz)

Z
as opposed to ln(%]@—tz). In addition to varying renormalization and factorization scales,

it is therefore also advisable to vary the argument of the logarithm by a suitable factor in
either direction with respect to the “natural” argument.

The accuracy of QCD predictions is limited also by non-perturbative corrections,
which typically scale as a power of A/Q. For measurements that are directly sensitive
to the structure of the hadronic final state, the corrections are usually linear in A/Q.
The non-perturbative corrections are further enhanced in processes with a significant
underlying event (i.e. in pp and pp collisions) and in cases where the perturbative cross
sections fall steeply as a function of p; or some other kinematic variable, for example in
inclusive jet spectra or dijet mass spectra.

Non-perturbative corrections are commonly estimated from the difference between
Monte Carlo events at the parton level and after hadronization. An issue to be aware of
with this procedure is that “parton level” is not a uniquely defined concept. For example,

A number of prescriptions also exist for setting the scale automatically, e.g. Refs.
238-241, eliminating uncertainties from scale variation, though not from the truncation
of the perturbative series itself. Recently, there have also been studies of how to estimate
uncertainties from missing higher orders that go beyond scale variations [242,243,244].
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in an event generator it depends on a (somewhat arbitrary and tunable) internal cutoff
scale that separates the parton showering from the hadronization. In contrast no such

cutoff scale exists in a NLO or NNLO partonic calculation. For this reason there are

widespread reservations as to the appropriateness of deriving hadronization corrections
from a Monte Carlo program and then applying them to NLO or NNLO predictions.

There exist alternative methods for estimating hadronization corrections, which attempt
to analytically deduce non-perturbative effects in one observable based on measurements
of other observables (see the reviews [29,246]). While they directly address the problem
of different possible definitions of parton level, it should also be said that they are far
less flexible than Monte Carlo programs and not always able to provide equally good

descriptions of the data.

9.3. Experimental studies of QCD

Since we are not able to directly measure partons (quarks or gluons), but only hadrons
and their decay products, a central issue for every experimental study of perturbative
QCD is establishing a correspondence between observables obtained at the partonic and
the hadronic level. The only theoretically sound correspondence is achieved by means of
infrared and collinear safe quantities, which allow one to obtain finite predictions at any
order of perturbative QCD.

As stated above, the simplest case of infrared- and collinear-safe observables are total
cross sections. More generally, when measuring fully inclusive observables, the final state
is not analyzed at all regarding its (topological, kinematical) structure or its composition.
Basically the relevant information consists in the rate of a process ending up in a partonic
or hadronic final state. In eTe™ annihilation, widely used examples are the ratios of
partial widths or branching ratios for the electroweak decay of particles into hadrons
or leptons, such as Z or 7 decays, (c¢f. Sec. 9.2.1). Such ratios are often favored over
absolute cross sections or partial widths because of large cancellations of experimental
and theoretical systematic uncertainties. The strong suppression of non-perturbative
effects, (’)(A4 / Q4), is one of the attractive features of such observables, however, at the
same time the sensitivity to radiative QCD corrections is small, which for example affects
the statistical uncertainty when using them for the determination of the strong coupling
constant. In the case of 7 decays not only the hadronic branching ratio is of interest, but
also moments of the spectral functions of hadronic tau decays, which sample different
parts of the decay spectrum and thus provide additional information. Other examples of
fully inclusive observables are structure functions (and related sum rules) in DIS. These
are extensively discussed in Sec. 18 of this Review.

On the other hand, often the structure or composition of the final state are analyzed
and cross sections differential in one or more variables characterizing this structure are of
interest. Examples are jet rates, jet substructure, event shapes or transverse momentum
distributions of jets or vector bosons in hadron collisions. The case of fragmentation
functions, i.e. the measurement of hadron production as a function of the hadron
momentum relative to some hard scattering scale, is discussed in Sec. 19 of this Review.

It is worth mentioning that, besides the correspondence between the parton and hadron
level, also a correspondence between the hadron level and the actually measured quantities
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in the detector has to be established. The simplest examples are corrections for finite
experimental acceptance and efficiencies. Whereas acceptance corrections essentially are
of theoretical nature, since they involve extrapolations from the measurable (partial) to
the full phase space, other corrections such as for efficiency, resolution and response, are
of experimental nature. For example, measurements of differential cross sections such as
jet rates require corrections in order to relate, e.g. the energy deposits in a calorimeter to
the jets at the hadron level. Typically detector simulations and/or data-driven methods
are used in order to obtain these corrections. Care should be taken here in order
to have a clear separation between the parton-to-hadron level and hadron-to-detector
level corrections. Finally, for the sake of an easy comparison to the results of other
experiments and/or theoretical calculations, it is suggested to provide, whenever possible,
measurements corrected for detector effects and/or all necessary information related to
the detector response (e.g. the detector response matrix).

9.3.1. Hadronic final-state observables :

9.3.1.1. Jets:

In hard interactions, final-state partons and hadrons appear predominantly in
collimated bunches, which are generically called jets. To a first approximation, a jet can
be thought of as a hard parton that has undergone soft and collinear showering and
then hadronization. Jets are used both for testing our understanding and predictions of
high-energy QCD processes, and also for identifying the hard partonic structure of decays
of massive particles like top quarks.

In order to map observed hadrons onto a set of jets, one uses a jet definition. The
mapping involves explicit choices: for example when a gluon is radiated from a quark,
for what range of kinematics should the gluon be part of the quark jet, or instead form
a separate jet? Good jet definitions are infrared and collinear safe, simple to use in
theoretical and experimental contexts, applicable to any type of inputs (parton or hadron
momenta, charged particle tracks, and/or energy deposits in the detectors) and lead to
jets that are not too sensitive to non-perturbative effects.

An extensive treatment of the topic of jet definitions is given in Ref. 247 (for ete™
collisions) and Refs. [248-250]. Here we briefly review the two main classes: cone
algorithms, extensively used at older hadron colliders, and sequential recombination
algorithms, more widespread in ete™ and ep colliders and at the LHC.

Very generically, most (iterative) cone algorithms start with some seed particle i, sum
the momenta of all particles 7 within a cone of opening-angle R, typically defined in terms
of (pseudo-)rapidity and azimuthal angle. They then take the direction of this sum as a
new seed and repeat until the cone is stable, and call the contents of the resulting stable
cone a jet if its transverse momentum is above some threshold p; yin. The parameters R
and p; min should be chosen according to the needs of a given analysis.

There are many variants of cone algorithm, and they differ in the set of seeds they
use and the manner in which they ensure a one-to-one mapping of particles to jets,
given that two stable cones may share particles (“overlap”). The use of seed particles
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is a problem w.r.t. infrared and collinear safety, and seeded algorithms are generally

not compatible with higher-order (or sometimes even leading-order) QCD calculations,
especially in multi-jet contexts, as well as potentially subject to large non-perturbative
corrections and instabilities. Seeded algorithms (JetCLU, MidPoint, and various other
experiment-specific iterative cone algorithms) are therefore to be deprecated. A modern
alternative is to use a seedless variant, SISCone [251].

Sequential recombination algorithms at hadron colliders (and in DIS) are characterized
by a distance d;; = min(k?lz , k2p )A2 /R? between all pairs of particles i, j, where Agj is
their separation in the rapldlty aznnuthal plane, k; ; is the transverse momentum w.r.t.
the incoming beams, and R is a free parameter. They also involve a “beam” distance
d;g = k?f; . One identifies the smallest of all the d;; and d;p, and if it is a d;;, then ¢ and

j are merged into a new pseudo-particle (with some prescription, a recombination scheme,
for the definition of the merged four-momentum). If the smallest distance is a d;g, then 4
is removed from the list of particles and called a jet. As with cone algorithms, one usually
considers only jets above some transverse-momentum threshold p; min. The parameter
p determines the kind of algorithm: p = 1 corresponds to the (inclusive-)k; algorithm
[176,252,253], p = 0 defines the Cambridge-Aachen algorithm [254,255], while for p = —1
we have the anti-k; algorithm [256]. All these variants are infrared and collinear safe to
all orders of perturbation theory. Whereas the former two lead to irregularly shaped jet
boundaries, the latter results in cone-like boundaries. The anti-k; algorithm has become
the de-facto standard for the LHC experiments.

In e*e™ annihilations the k¢ algorithm [176] uses y;; = 2 min(E2, E?)(l—cos 0:5)/Q? as
distance measure and repeatedly merges the pair with smallest y;;, until all y;; distances
are above some threshold ycyt, the jet resolution parameter. The (pseudo)-particles that
remain at this point are called the jets. Here it is ycyut (rather than R and p; min)
that should be chosen according to the needs of the analysis. As mentioned earlier, the
k¢ algorithm has the property that logarithms In(1/ycyt) exponentiate in resummation
calculations. This is one reason why it is preferred over the earlier JADE algorithm [178],
which uses the distance measure y;; = 2 E; E; (1 — cos 6;;)/ Q2. Note that other variants
of sequential recombination algorithms for eTe™ annhilations, using different definitions
of the resolution measure y;;, exhibit much larger sensitivities to fragmentation and
hadronization effects than the k; and JADE algorithms [257].

Efficient implementations of the above algorithms are available through the FuastJet
package [258].

9.3.1.2. FEvent Shapes:

Event-shape variables are functions of the four momenta of the particles in the final
state and characterize the topology of an event’s energy flow. They are sensitive to QCD
radiation (and correspondingly to the strong coupling) insofar as gluon emission changes
the shape of the energy flow.

The classic example of an event shape is the Thrust [259,260] in eTe™ annihilations,

defined as
~ Z |p2 n7—| (9.22)

T = ImMa y

. 7N
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where p; are the momenta of the particles or the jets in the final-state and the
maximum is obtained for the Thrust axis 7i;. In the Born limit of the production of a
perfect back-to-back gq pair the limit 7 — 1 is obtained, whereas a perfectly spherical
many-particle configuration leads to 7 — 1/2. Further event shapes of similar nature
have been extensively measured at LEP and at HERA, and for their definitions and
reviews we refer to Refs. 1,4,246,261,262. The energy-energy correlation function [263],
namely the energy-weighted angular distribution of produced hadron pairs, and its
associated asymmetry are further shape variables that have been studied in detail at
ete™ colliders. For hadron colliders the appropriate modification consists in only taking
the transverse momentum component [264]. More recently, the event shape N-jettiness
has been proposed [265], that measures the degree to which the hadrons in the final state
are aligned along N jet axes or the beam direction. It vanishes in the limit of exactly N
infinitely narrow jets.

Phenomenological discussions of event shapes at hadron colliders can be found
in Refs. [265-267]. Measurements of hadronic event-shape distributions have been
published by CDF [268], ATLAS [269-273] and CMS [274-276].

Event shapes are used for many purposes. These include measuring the strong
coupling, tuning the parameters of Monte Carlo programs, investigating analytical models
of hadronization and distinguishing QCD events from events that might involve decays of
new particles (giving event-shape values closer to the spherical limit).

9.3.1.3. Jet substructure, quark vs. gluon jets:

Jet substructure, which can be resolved by finding subjets or by measuring jet shapes,
is sensitive to the details of QCD radiation in the shower development inside a jet and
has been extensively used to study differences in the properties of quark and gluon
induced jets, strongly related to their different color charges. In general there is clear
experimental evidence that gluon jets have a softer particle spectrum and are “broader”
than (light-) quark jets, when looking at observables such as the jet shape W(r/R). This
is the fractional transverse momentum contained within a sub-cone of cone-size r for
jets of cone-size R. It is sensitive to the relative fractions of quark and gluon jets in
an inclusive jet sample and receives contributions from soft-gluon initial-state radiation
and the underlying event. Therefore, it has been widely employed for validation and
tuning of Monte Carlo models. Furthermore, this quantity turns out to be sensitive to
the modification of the gluon radiation pattern in heavy ion collisions (see e.g. Ref. 277).

The most recent jet shape measurements using proton-proton collision data have been
presented for inclusive jet samples [278-280] and for top-quark production [281]. Further
discussions, references and recent summaries can be found in Refs. 262, 282, 283 and Sec.
4 of Ref. 284.

The use of jet substructure has also been investigated in order to distinguish QCD
jets from jets that originate from hadronic decays of boosted massive particles (high-p;
electroweak bosons, top quarks and hypothesized new particles). Recently, a considerable
number of experimental studies have been carried out with Tevatron and LHC data,
in order to investigate on the performance of the proposed algorithms for resolving
jet substructure and to apply them to searches for new physics, as well as to the
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reconstruction of boosted top quarks, vector bosons and the Higgs boson. For reviews of
this rapidly growing field, see sec. 5.3 of Ref. 248, Ref. 250 and Refs. [284-289)].

9.3.2. QCD measurements at colliders :

There exists a wealth of data on QCD-related measurements in eTe™, ep, pp, and
pp collisions, to which a short overview like this would not be able to do any justice.
Extensive reviews of the subject have been published in Refs. 261, 262 for eTe™ colliders
and in Ref. 290 for ep scattering, whereas for hadron colliders comprehensive overviews
are given in, e.g., Refs. 249, 283 and Refs. [291-293].

Below we concentrate our discussion on measurements that are most sensitive to hard
QCD processes, with focus on jet production.

9.3.2.1. ete™ colliders: Analyses of jet production in ete™ collisions are mostly based
on data from the JADE experiment at center-of-mass energies between 14 and 44 GeV,
as well as on LEP collider data at the Z resonance and up to 209 GeV. They cover the
measurements of (differential or exclusive) jet rates (with multiplicities typically up to 4,
5 or 6 jets), the study of 3-jet events and particle production between the jets as a tool
for testing hadronization models, as well as 4-jet production and angular correlations in
4-jet events.

Event-shape distributions from eTe™ data have been an important input to the tuning
of parton shower MC models, typically matched to matrix elements for 3-jet production.
In general these models provide good descriptions of the available, highly precise data.
Especially for the large LEP data sample at the Z peak, the statistical uncertainties are
mostly negligible and the experimental systematic uncertainties are at the percent level or
even below. These are usually dominated by the uncertainties related to the MC model
dependence of the efficiency and acceptance corrections (often referred to as “detector
corrections”).

Observables measured in eTe™ collisions have been used for determinations of the
strong coupling constant (c¢f. Section 9.4 below) and for putting constraints on the QCD
color factors (cf. Sec. 9.1 for their definitions), thus probing the non-abelian nature
of QCD. Typically, cross sections can be expressed as functions of these color factors,
for example 0 = f(asCr,Ca/Cp,nyTR/CF). Angular correlations in 4-jet events give
sensitivity at leading order. Some sensitivity to these color factors, although only at
NLO, is also obtained from event-shape distributions. Scaling violations of fragmentation
functions and the different subjet structure in quark and gluon induced jets also give
access to these color factors. In order to extract absolute values, e.g. for Cr and Cy,
certain assumptions have to be made for other parameters, such as Tr,ns or as, since
typically only combinations (ratios, products) of all the relevant parameters appear
in the perturbative predictions. A compilation of results [262] quotes world average
values of C'4 = 2.89 + 0.03(stat) + 0.21(syst) and Cr = 1.30 &+ 0.01(stat) 4+ 0.09(syst),
with a correlation coefficient of 82%. These results are in perfect agreement with the
expectations from SU(3) of Cy =3 and Cp = 4/3.
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9.3.2.2. DIS and photoproduction: Multi-jet production in ep collisions at HERA, both
in the DIS and photoproduction regime, allows for tests of QCD factorization (one
initial-state proton and its associated PDF versus the hard scattering which leads to
high-p; jets) and NLO calculations which exist for 2- and 3-jet final states. Sensitivity is
also obtained to the product of the coupling constant and the gluon PDF. Experimental
uncertainties of the order of 5-10% have been achieved, mostly dominated by the
jet energy scale, whereas statistical uncertainties are negligible to a large extent. For
comparison to theoretical predictions, at large jet p; the PDF uncertainty dominates the
theoretical uncertainty (typically of order 5-10%, in some regions of phase space up to
20%), therefore jet observables become useful inputs for PDF fits.

In general, the data are well described by NLO matrix-element calculations, combined
with DGLAP evolution equations, in particular at large Q2 and central values of jet
pseudo-rapidity. At low values of Q% and z, in particular for large jet pseudo-rapidities,
certain features of the data have been interpreted as requiring BFKL-type evolution,
though the predictions for such schemes are still limited. It is worth noting that there
is lack of consensus throughout the community regarding this need of BFKL-evolution
at currently probed z, Q? values, and an alternative approach [294] that implements the
merging of LO matrix-element based event generation with a parton shower (using the
SHERPA framework) successfully describes the data in all kinematical regions, including
the low Q2, low = domain. At moderately small z values, it should perhaps not be
surprising that the BFKL approach and fixed-order matrix-element merging with parton
showers may both provide adequate descriptions of the data, because some part of the
multi-parton phase space that they model is common to both approaches.

In the case of photoproduction, a wealth of measurements with low p; jets were
performed in order to constrain the photon PDFs. The uncertainties related to these
photon PDFs play a minor role at high jet p;, which has allowed for precise tests of
pQCD calculations.

A few examples of recent measurements can be found in Refs. 295-303 for DIS and in
Refs. 304-308 for photoproduction.

9.3.2.3. Hadron colliders: The spectrum of observables and the number of measurements
performed at hadron colliders is enormous, probing many regions of phase space and
covering a huge range of cross sections, as illustrated in Fig. 9.1 for the case of the
ATLAS and CMS experiments at the LHC. For the sake of brevity, in the following only
certain classes of those measurements will be discussed, that allow addressing particular
aspects of the various QCD studies performed. Most of our discussion will focus on recent
LHC results, which are available for center-of-mass energies of 2.76, 5, 7, 8 and 13 TeV
with integrated luminosities of up to 36fb~1. Generally speaking, besides representing
a general test of the standard model and QCD in particular, these measurements
serve several purposes, such as: (i) probing pQCD and its various approximations and
implementations in MC models, in order to quantify the order of magnitude of not
yet calculated contributions and to gauge their precision when used as background
predictions, or (ii) extracting/constraining model parameters such as the strong coupling
constant or PDF's.
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Figure 9.1:

Th. Aoy, in exp. Ao

Overview of cross section measurements for a wide class of processes

and observables, as obtained by the ATLAS [309] and CMS [310] experiments at the
LHC, for centre-of-mass energies of 7, 8 and 13 TeV. Also shown are the theoretical

predictions and their uncertainties.
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Among the most important cross sections measured is the inclusive jet spectrum as a
function of the jet transverse energy (E) or the jet transverse momentum (p;), for several
rapidity regions and for p; up to 700 GeV at the Tevatron and ~ 2 TeV at the LHC. It
is worth noting that this upper limit in p; corresponds to a distance scale of ~ 10719 m:
no other experiment so far is able to directly probe smaller distance scales of nature than
this measurement. Whereas the Tevatron measurements (Refs. 311-313) were based on
the infrared- and collinear-safe k; algorithm in addition to the more widely used Midpoint
and JetCLU algorithms of the past, the LHC experiments focus on the anti-k; algorithm
using various radius parameters. Measurements by ALICE, ATLAS and CMS have been
published in Refs. 314-321. Reviews can be found in, e.g., Refs. 283,322,323.

In general we observe a good description of the data by the NLO QCD predictions, over
about 11 orders of magnitude in cross section. The experimental systematic uncertainties
are dominated by the jet energy scale uncertainty, quoted to be in the range of a few
percent (see for instance the review in Ref. 324), leading to uncertainties of ~ 5 — 30% on
the cross section, increasing with p; and rapidity. The PDF uncertainties dominate the
theoretical uncertainty at large p; and rapidity. In fact, inclusive jet data are important
inputs to global PDF fits (see [325] for a recent review). Constraints on the PDFs
can also be obtained from ratios of inclusive cross sections at different center-of-mass
energies [315,320]. In general, ratios of jet cross sections are a means to (at least
partially) cancel the jet energy scale uncertainties and thus provide jet observables with
significantly improved precision.

Dijet events are analyzed in terms of their invariant mass and angular distributions,
which allows for tests of NLO QCD predictions (see e.g. Refs. [319,326,327] for recent
LHC results), and setting stringent limits on deviations from the Standard Model,
such as quark compositeness or contact interactions (some examples can be found
in Refs. 328-334). Furthermore, dijet azimuthal correlations between the two leading
jets, normalized to the total dijet cross section, are an extremely valuable tool for
studying the spectrum of gluon radiation in the event. The azimuthal separation of the
two leading jets is sensitive to multi-jet production, avoiding at the same time large
systematic uncertainties from the jet energy calibration. For example, results from the
Tevatron [335,336] and the LHC [337-339] show that the LO (non-trivial) prediction for
this observable, with at most three partons in the final state, is not able to describe the
data for an azimuthal separation below 27/3, where NLO contributions (with 4 partons)
restore the agreement with data. In addition, this observable can be employed to tune
Monte Carlo predictions of soft gluon radiation.

Further examples of dijet observables that probe special corners of phase space are those
which involve forward (large rapidity) jets and where a large rapidity separation, possibly
also a rapidity gap, is required between the two jets. Reviews of such measurements can
be found in Refs. [283,340], showing that no single prediction is capable of describing the
data in all phase-space regions. In particular, no conclusive evidence for BFKL effects in
these observables has been established so far.

Beyond dijet final states, measurements of the production of three or more jets,
including cross section ratios, have been performed (see Refs. [283,341] for recent reviews),
as a means of testing perturbative QCD predictions, determining the strong coupling
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constant (at NLO precision so far), and probing/tuning MC models, in particular those
combining multi-parton matrix elements with parton showers.

In terms of precision achieved, measurements of inclusive vector boson (W, Z)
production outperform the jet studies described above and provide the most precisely
determined observables at hadron colliders so far. This is because the experimental
signatures are based on leptons that are measured much more accurately than jets. At
the LHC [342-348], the dominant uncertainty stems from the luminosity determination
(~2-4%), while other uncertainties (e.g. statistics, lepton efficiencies) are controlled at
the 1-3% level. The uncertainty from the acceptance correction of about 1-2% can be
reduced by measuring so-called fiducial cross sections, ie. by applying kinematic cuts also
to the particle level of the theoretical predictions. A further reduction or even complete
elimination of particular uncertainties (e.g. luminosity) is achieved by measuring cross
section ratios (W/Z or W+ /W) or differential distributions that are normalised to
the inclusive cross section. On the theory side, as discussed earlier in this review, the
production of these color-singlet states has been calculated up to NNLO accuracy. Since
the dominant theoretical uncertainty is related to the choice of PDFs, these high-precision
data provide useful handles for PDF determinations.

Further insights are obtained from measurements of differential vector boson
production, as a function of the invariant dilepton mass, the boson’s rapidity or its
transverse momentum. For example, the dilepton invariant mass distribution has been
measured [349-353] for masses between 15 and 2000 GeV, covering more than 8 orders of
magnitude in cross section. NNLO QCD predictions, together with modern PDF sets and
including higher-order electroweak and QED final-state radiation corrections, describe
the data to within 5-10% over this large range, whereas NLO predictions show larger
deviations, unless matched to a parton shower.

Similar conclusions can be drawn from the observed rapidity distribution of the dilepton
system (see e.g. [342,350]) or, in the case of W production, from the observed charged
lepton rapidity distribution and its charge asymmetry. The latter is particularly sensitive
to differences among PDF sets [342,354,355], also thanks to the high precision achieved
by the ATLAS and CMS experiments for central rapidity ranges. These measurements
are nicely extended to the very forward region, up to 4.5 in lepton rapidity, by the LHCb
experiment.

An overview of this kind of measurements can be found in Ref. 283. There one
can also find a discussion of and references to LHC results from studies of the vector
boson’s transverse momentum distribution, py (see also Refs. 356,357). This observable
probes different aspects of higher-order QCD effects and is sensitive to jet production
in association to the vector boson, without suffering from the large jet energy scale
uncertainties since there is no explicit jet reconstruction. Whereas in the py region of
several tens to hundreds of GeV the NNLO predictions (that effectively are of NLO
accuracy for this variable) agree with the data to within about 10%, at transverse
momentum below ~5-10 GeV the fixed order predictions fail and soft-gluon resummation
is needed to restore the agreement with data. Correspondingly, MC models implementing
parton shower matching to LO or NLO matrix elements provide good predictions at low
and intermediate py , but deviate up to 40% at high py .
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While in principle inclusive and differential photon production represents a similar
tool for studying effects as described above, the experimental results are less precise
than for W and Z production, related to the greater challenges encountered in photon
reconstruction and purity determination compared to lepton final states.

In terms of complexity, probably the most challenging class of processes is vector boson
(photon, W, Z) production together with jets. By now the amount of results obtained
both at the Tevatron and at the LHC is so extensive that a comprehensive discussion
with a complete citation list would go much beyond the scope of this Review. We rather
refer to recent summaries in Refs. 283,358 and to previous versions of this Review.

The measurements cover a very large phase space, e.g. with jet transverse momenta
between 30 GeV and ~ 800 GeV and jet rapidities up to |y| < 4.4. Jet multiplicities as
high as seven jets accompanying the vector boson have already been probed at the LHC,
together with a substantial number of other kinematical observables, such as angular
correlations among the various jets or among the jets and the vector boson, or the sum
of jet transverse momenta, Hp. Whereas the jet p; and Hp distributions are dominated
by jet energy scale uncertainties at levels similar to those discussed above for inclusive jet
production, angular correlations and jet multiplicity ratios have been measured with a
precision of ~ 10%, see e.g. Refs. 359,275.

A general observation is that MC models, which implement a matching of matrix-
element calculations with parton showers, provide a good description of the data within
uncertainties. Also NLO calculations for up to five jets [122] in addition to the vector
boson are in good agreement with the data over that phase space, where the calculations
are applicable; that is, one can not expect such predictions to work for, eg., the p¢
distribution of the n 4 1st jet with V + n jets calculated at NLO. However, with the high
statistics available to and the high precision achieved by the LHC experiments, some more
detailed observations can be made. MC models that implement parton shower matching
to LO matrix elements (LO+PS) tend to overpredict the data at large jet and/or boson
pt, while parton shower matching to NLO matrix elements gives better agreement. These
problems of LO+PS models are less acute when looking at angular correlations.

Also, electroweak corrections are expected to become more and more relevant now
that the TeV energy range starts to be explored. For example, such corrections were
found [360] to be sizeable (tens of percent) when studying the ratio (do” /dp;)/(do? /dpy)
in v (Z)+jet production, p; being the boson’s transverse momentum, and might account
for (some of) the differences observed in a CMS measurement [361] of this quantity.

The challenges get even more severe in the case of vector boson plus heavy quark
(b, ¢) production, both because of theoretical issues (an additional scale is introduced by
the heavy quark mass and different schemes exist for the handling of heavy quarks and
their mass effects in the initial and/or final state) and because of additional experimental
uncertainties related to the heavy-flavour tagging. A review of heavy quark production
at the LHC can be found in Ref. 362. There it is stated that studies of b-jet production
with or without associated W and Z bosons reveal the di-b-jet p; and mass spectra to be
well modelled, within experimental and theoretical uncertainties, by most generators on
the market. However, sizeable differences between data and predictions are seen in the
modelling of events with single b jets, particularly at large b-jet p;, where gluon splitting
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processes become dominant, as also confirmed by studies of b-hadron and b-jet angular
correlations.

A number of interesting developments, in terms of probing higher-order QCD effects,
have occurred in the sector of diboson production, in particular for the WW and
~vv cases. Regarding the former, an early disagreement of about 10% between the
LHC measurements and the NLO predictions had led to a number of speculations of
possible new physics effects in this channel. However, more recent ATLAS and CMS
measurements [363-365] are in agreement with the NNLO prediction [68].

In the case of diphoton production, ATLAS [366,367] and CMS [368] have provided
accurate measurements, in particular for phase-space regions that are sensitive to radiative
QCD corrections (multi-jet production), such as small azimuthal photon separation.
While there are large deviations between data and NLO predictions in this region, a
calculation [147] at NNLO accuracy manages to mostly fill this gap. This is an interesting
example where scale variations can not provide a reliable estimate of missing contributions
beyond NLO, since at NNLO new channels appear in the initial state (gluon fusion in
this case).

In terms of heaviest particle involved, top-quark production at the LHC has become
an important tool for probing higher-order QCD calculations, thanks to very impressive
achievements both on the experimental and theoretical side, as extensively summarised in
Ref. 369. Regarding ¢t production, the most precise inclusive cross section measurements
are achieved using the dilepton (e u) final state, with a total uncertainty of 4%. This is of
about the same size as the uncertainty on the most advanced theoretical prediction [67],
obtained at NNLO with additional soft-gluon resummation at NNLL accuracy. There is
excellent agreement between data and QCD prediction.

A large number of differential cross section measurements have been performed at
7, 8 and 13 TeV centre-of-mass energy, studying distributions such as the top-quark p;
and rapidity, the transverse momentum and invariant mass of the ¢t system (probing
scales up to the TeV range), or the number of additional jets. These measurements have
been compared to a wide range of predictions, at fixed order up to NNLO as well as
using LO or NLO matrix elements matched to parton showers. While in general there
is good agreement observed with data, most MC simulations predict a somewhat harder
top-quark p; distribution than seen in data.

Thanks to both the precise measurements of and predictions for the inclusive top-pair
cross section, that is sensitive to the strong coupling constant and the top-quark mass,
this observable has been used to measure the strong coupling constant at NNLO accuracy
from hadron collider data [370,371] (cf. Section 9.4 below), as well as to obtain a
measurement of the top-quark’s pole mass without employing direct reconstruction
methods [370,372,373].

Finally, it is worth mentioning that steps are being undertaken towards using the newly
found Higgs boson as a new tool for QCD studies, since Higgs production, dominated
by the gluon fusion process, is subject to very large QCD corrections. First studies of
fiducial and differential cross sections, using the ZZ, vy and WW decay channels, have
already been performed [374-380], and the current experimental precision of ~ 20% or
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more is expected to be substantially reduced with the future LHC data.

9.4. Determinations of the strong coupling constant

Beside the quark masses, the only free parameter in the QCD Lagrangian is the strong
coupling constant ag. The coupling constant in itself is not a physical observable, but
rather a quantity defined in the context of perturbation theory, which enters predictions
for experimentally measurable observables, such as R in Eq. (9.7).

Here, we retain the 2016 summary [381] of measurements of o and extraction of the
world average value of as(M%), and leave an update of this section to a later version

of this Review #. This is done because only very few new results satisfying the selection
criteria defined below were available at the deadline for this Review, while further new
results are expected to arrive (and actually have arrived) past-deadline.

Many experimental observables are used to determine ag. Considerations in such
determinations include:

e The observable’s sensitivity to as as compared to the experimental precision.
For example, for the eTe™ cross section to hadrons (c¢f. R in Sec. 9.2.1), QCD
effects are only a small correction, since the perturbative series starts at order
ag; 3-jet production or event shapes in eTe™ annihilations are directly sensitive
to ag since they start at order ag; the hadronic decay width of heavy quarkonia,
I'(Y — hadrons), is very sensitive to as since its leading order term is oc as3.

e The accuracy of the perturbative prediction, or equivalently of the relation between
as and the value of the observable. The minimal requirement is generally considered
to be an NLO prediction. Some observables are predicted to NNLO (many inclusive
observables, 3-jet rates and event shapes in ete™ collisions) or even N3LO (ete™
hadronic cross section and 7 branching fraction to hadrons). In certain cases,
fixed-order predictions are supplemented with resummation. The precise magnitude
of theory uncertainties is usually estimated as discussed in Sec. 9.2.4.

e The size of non-perturbative effects. Sufficiently inclusive quantities, like the eTe™
cross section to hadrons, have small non-perturbative contributions ~ A% / Q2.
Others, such as event-shape distributions, have contributions ~ A/Q.

e The scale at which the measurement is performed. An uncertainty  on a measurement
of as(Q?), at a scale Q, translates to an uncertainty &' = (a2(M2)/a2(Q?)) - 6 on
ozs(M%). For example, this enhances the already important impact of precise low-Q)
measurements, such as from 7 decays, in combinations performed at the M, scale.

The selection of results from which to determine the world average value of aS(M%) is

restricted to those which are

- published in a peer-reviewed journal,

- based on the most complete perturbative QCD predictions, i.e. to those using NNLO
or higher-order expansions.

% The time evolution of as combinations can be followed by consulting Refs. [383-385]
as well as earlier editions of this Review.
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This excludes e.g. results from jet production in DIS at HERA and at hadron colliders
which are based on calculations at NLO only. These will nevertheless be discussed in this
review, as they are important ingredients for the experimental evidence of the energy
dependence of ag, i.e. for Asymptotic Freedom, one of the key features of QCD. Note
that results which do not include reliable estimates of experimental, systematic and
theoretical uncertainties, which are based on not commonly accepted procedures like scale
optimization, or which omit discussion or accounting of non-perturbative corrections and
effects, will not be referenced at all in this review.

In order to calculate the world average value of aS(M%), we apply an intermediate
step of pre-averaging results within certain sub-fields like eTe™ annihilation, DIS and
hadronic 7-decays, and calculate the overall world average from those pre-averages rather
than from individual measurements. This is done because in most sub-fields one observes
that different determinations of the strong coupling from substantially similar datasets
lead to values of ag that are only marginally compatible with each other, or with the final
world average value, which presumably is a reflection of the challenges of evaluating and
including appropriate systematic uncertainties.

So for each sub-field, the unweighted average of all selected results is taken as the
pre-average value of as(M%), and the unweighted average of the quoted uncertainties
is assigned to be the respective overall error of this pre-average. However, if this error
appears to be smaller than the unweighted standard deviation - i.e. the spread - of the
results, the standard deviation is taken as the overall uncertainty instead. This is done
in order to arrive at an unbiased estimator of the average value of aS(M%) from this
sub-field, and to avoid that singular, optimistic estimates of systematic uncertainties
dominate the field if these are not backed up by a broader consensus .

Assuming that the resulting pre-averages are largely independent of each other, we
determine the final world average value using the method of ‘x? averaging’, as proposed,
e.g., in Ref. 386, in order to treat cases of possible (unknown) correlations as well
as possibly underestimated systematic uncertainties in a meaningful and well defined
manner: the central value is determined as the weighted average of the different input
values. An initial uncertainty of the central value is determined treating the uncertainties
of all individual measurements as being uncorrelated and of Gaussian nature, and the
overall y2 to the central value is calculated. If this initial x2 is larger than the number
of degrees of freedom, then all individual uncertainties are enlarged by a common factor
such that y?2 /d.o.f. equals unity. If the initial value of x? is smaller than the number
of degrees of freedom, an overall correlation coefficient is introduced and determined
by requiring that the total x?2 /d.o.f. equals unity. In both cases, the resulting overall
uncertainty of ay is larger than the initial estimate of the uncertainty.

T In most practical cases, this procedure arrives at similar values as obtained from the
‘range averaging’ method which we used in previous Reviews, while it avoids potential
shortcomings and biases of the latter.
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9.4.1. Hadronic T decays :

Based on complete N3LO predictions [35], analyses of the 7 hadronic decay width and
spectral functions have been performed, leading to precise determinations of ag at the
energy scale of MT2 [35,387-393]. They are based on different approaches to treat
perturbative and non-perturbative contributions, the impacts of which are a matter of
intense discussions, see e.g. [391] and [394].

In particular, there is a significant difference between results obtained using fixed-order
(FOPT) or contour improved perturbation theory (CIPT), such that analyses based on
CIPT generally arrive at about 7% larger values of as(M2) than those based on FOPT.
When converted to as(MZ), the difference is about 2%. This uncertainty is about 5 times
larger than the typically achieved experimental precision. In addition, most recent results
show differences of up to 10% in as(M2) (3% at My), between different groups using the
same data sets and perturbative calculations, most likely due to different treatments of
the non-perturbative contributions, c.f. Ref. [393] with Refs. [391,392].

We determine the pre-average value of aS(M%) for this sub-field from studies which
employ both, FOPT and CIPT expansions, and which include the difference among these in
the quoted overall uncertainty: as(M2) = 0.120240.0019 [35], as(MZ) = 0.1200£0.0015
391], as(M2)=0.1199+ 0.0015 [392], and as(M2) = 0.1165 4+ 0.0019 [393].

We also include the result from 7 decay and lifetime measurements, obtained in
Sec. Electroweak Model and constraints on New Physics of the 2013 edition of this
Review, ag(M%) = 0.1193 £ 0.0023. All these are summarised in Fig. 9.2. Determining
the unweighted average of the central values and their overall uncertainties, we arrive at
as(MZ) = 0.1192 £ 0.0018 which we will use as the first input for determining the world
average value of ozs(M%). This corresponds to as(M2) = 0.325 & 0.015 at the scale of the
T-mass.

9.4.2. Lattice QCD :

There are several current results on ag from lattice QCD, see also Sec. Lattice QQCD
in this Review. The HPQCD collaboration [395] computes Wilson loops and similar
short-distance quantities with lattice QCD and analyzes them with NNLO perturbative
QCD. This yields a value for ag, but the lattice scale must be related to a physical
energy /momentum scale. This is achieved with the Y/-T mass difference, however, many
other quantities could be used as well [396]. HPQCD obtains as(M%) = 0.1184 +0.0006,
where the uncertainty includes effects from truncating perturbation theory, finite lattice
spacing and extrapolation of lattice data. An independent perturbative analysis of a
subset of the same lattice-QCD data yields as(MZ) = 0.1192 & 0.0011 [397]. Using
another, independent methodology, the current-current correlator method, HPQCD
obtains as(M%) = 0.1182 £+ 0.0007 [395,398]. The analysis of Ref. 399, which uses
the Schroedinger functional scheme and avoids the staggered fermion treatment of
Ref. 395, finds as(M2) = 0.1205 % 0.0008 £ 0.0005 T0-00%2, where the first uncertainty
is statistical and the others are from systematics. Since this approach uses a different
discretization of lattice fermions and a different general methodology, it provides
an independent cross check of other lattice extractions of ag. A study of the ETM
collaboration [400] used lattice data with u,d, s and ¢ quarks in the sea and examined the
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ghost-gluon coupling, obtaining ozs(M%) = 0.1196 + 0.0012. Finally, a determination of
as from the QCD static potential [401] results in as(M2) = 0.1166J_r8:88(1)§. The JLQCD
collaboration, in an analysis of Adler functions, has recently corrected their initial result
of ozs(M%) = 0.1181f8:88%§ downwards, by more than 5 standard deviations of their

assigned uncertainty, to as(M2) = 0.11181'8:88%? [402]. For this and other reasons
discussed in [403], we do not include this result in our determination of the average
lattice result.

A summary of the results discussed above is given in Fig. 9.2. They average, applying
the method of taking the unweighted averages of the central values and their quoted
uncertainties at face value, to as(M%) = 0.1188 £ 0.0011, which we take as our second
result for the determination of the world average value of ag. This compares well
to a similar compilation and summary provided by the FLAG Working Group [403],
suggesting aS(M%) = 0.1184 + 0.0012 as the overall average of lattice determinations of
as. Both these error estimates are more conservative than the one (£0.0005) we used in
our previous Review where we applied the y?2 averaging method.

9.4.3. Deep inelastic lepton-nucleon scattering (DIS) :

Studies of DIS final states have led to a number of precise determinations of ag: a
combination [404] of precision measurements at HERA, based on NLO fits to inclusive
jet cross sections in neutral current DIS at high Q2, provides combined values of a
at different energy scales @), as shown in Fig. 9.3, and quotes a combined result of
as(MZ) = 0.1198 £ 0.0032. A more recent study of multijet production [405], based on
improved reconstruction and data calibration, confirms the general picture, albeit with
a somewhat smaller value of as(MZ) = 0.1165 £ 0.0039, still in NLO. An evaluation of
inclusive jet production, including approzimate NNLO contributions [406], reduces the
theoretical prediction for jet production in DIS, improves the description of the final
HERA data in particular at high photon virtuality Q? and increases the central fit value
of the strong coupling constant.

Another class of studies, analyzing structure functions in NNLO QCD (and partly
beyond), provide results which serve as relevant inputs for the world average of ag. Most
of these studies do not, however, explicitly include estimates of theoretical uncertainties
when quoting fit results of as. In such cases we add, in quadrature, half of the difference
between the results obtained in NNLO and NLO to the quoted errors: A combined
analysis of non-singlet structure functions from DIS [407], based on QCD predictions
up to N3LO in some of its parts, results in ozs(M%) = 0.1141 + 0.0022 (BBG). Studies
of singlet and non-singlet structure functions, based on NNLO predictions, result in
as(M%) = 0.1134 + 0.0025 [408] (ABM) and in aS(M%) = 0.1158 £ 0.0036 [409] (JR).
The MSTW group [410], also including data on jet production at the Tevatron,
obtains, at NNLO%, as(M%) = 0.1171 + 0.0024. A recent update of this analysis,
also including hadron collider data, determined a new set of parton density functions
(MMHT?2014) [411], together with as(MZ) = 0.1172 £ 0.0013. The NNPDF group [412)]

8% Note that for jet production at a hadron collider, only NLO predictions are available,
while for the structure functions full NNLO was utilized.
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presented a result, ozs(M%) = 0.1173 + 0.0011, which is in line with the one from the
MMHT group, including rather small experimental and theoretical uncertainties of only
6 and 9 per-mille, respectively.

We note that criticism has been expressed on some of the above extractions. Among
the issues raised, we mention the neglect of singlet contributions at x > 0.3 in pure
non-singlet fits [413], the impact and detailed treatment of particular classes of data in
the fits [413,414], possible biases due to insufficiently flexible parametrizations of the
PDFs [415] and the use of a fixed-flavor number scheme [416,417].

Summarizing the results from world data on structure functions, taking the unweighted
average of the central values and errors of all selected results, leads to a pre-average value
of ozs(M%) = 0.1156 £ 0.0021, see Fig. 9.2.

9.4.4. Heavy quarkonia decays :

The latest extraction of the strong coupling constant from an analysis of radiative T

decays [418] resulted in as(MZ) = 0.119J_r8:88§. This determination is based on QCD

at NLO only, so it will not be considered for the final extraction of the world average
value of «ay; it is, however, an important ingredient for the demonstration of Asymptotic
Freedom as given in Fig. 9.3.

9.4.5. Hadronic final states of et e~ annihilations :

Re-analyses of event shapes in eTe™ annihilation, measured around the Z peak and
at LEP2 center-of-mass energies up to 209 GeV, using NNLO predictions matched
to NLL resummation and Monte Carlo models to correct for hadronization effects,
resulted in as(MZ) = 0.1224 + 0.0039 (ALEPH) [419], with a dominant theoretical
uncertainty of 0.0035, and in ag(MZ) = 0.1189 & 0.0043 (OPAL) [420]. Similarly,
an analysis of JADE data [421] at center-of-mass energies between 14 and 46 GeV
gives ag(M%) = 0.1172 £ 0.0051, with contributions from hadronization model and from
perturbative QCD uncertainties of 0.0035 and 0.0030, respectively. Precise determinations
of a5 from 3-jet production alone, in NNLO, resulted in as(M2) = 0.1175 £ 0.0025 [422]
from ALEPH data and in ag(M2) = 0.1199 & 0.0059 [423] from JADE. These results are
summarized in the upper half of the eTe™ sector of Fig. 9.2.

Another class of ag determinations is based on analytic calculations of non-perturbative
and hadronization effects, rather than on Monte Carlo models [424-427], using methods
like power corrections, factorization of soft-collinear effective field theory, dispersive
models and low scale QCD effective couplings. In these studies, the world data on Thrust
distributions, or - most recently - C-parameter distributions, are analysed and fitted
to perturbative QCD predictions in NNLO matched with resummation of leading logs
up to N®LL accuracy, see Sec. 9.2.3.3. The results are ag(Mz) = 0.1164J_r8:8(£§1 [424],

as(M%) = 0.1135 4 0.0011 [425] and as(M%) = 0.113770:0952 [426] from Thrust, and
as(MZ) = 0.1123 4 0.0015 [427] from C-parameter. They are also displayed in Fig. 9.2.

Not to be included in the computation of the world average but worth mentioning
are a computation of the NLO corrections to 5-jet production and comparison to
: . 0.0041
the measured 5-jet rates at LEP [428], giving as(MZ) = 0.1156J_r0.0034, and a
computation of non-perturbative and perturbative QCD contributions to the scale
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evolution of quark and gluon jet multiplicities, including resummation, resulting in
as(MZ) = 0.1199 £ 0.0026 [429).

We note that there is criticism on both classes of as extractions described above:
those based on corrections of non-perturbative hadronization effects using QCD-inspired
Monte Carlo generators (since the parton level of a Monte Carlo simulation is not defined
in a manner equivalent to that of a fixed-order calculation), as well as studies based
on non-perturbative analytic calculations, as their systematics have not yet been fully
verified. In particular, quoting rather small overall experimental, hadronization and
theoretical uncertainties of only 2, 5 and 9 per-mille, respectively [425,427], seems
unrealistic and has neither been met nor supported by other authors or groups.

In view of these open questions, the determination of the unweighted average and

uncertainties is supposed to provide the most appropriate and unbiased estimate of the
average value of as(M%) for this sub-field, which results in ag(M%) = 0.1169 & 0.0034.

9.4.6. Hadron collider results :
Significant determinations of ag from data at hadron colliders, ¢.e. the Tevatron and the
LHC, are obtained, however mostly still limited to QCD at NLO. At /s = 1.96 TeV,

as(M%) = 0.116170-501 and

as(M) = 0.1191 4407

result from studies of inclusive jet cross sections [430] and from jet angular correla-
tions [431], respectively. ATLAS data on inclusive jet production at /s = 7 TeV [432]
lead to [433]

as(M%) = 0.1151706093 .

Here, experimental systematics, the choice of jet scale and the use of different PDFs
dominate the large overall uncertainties. Determinations of ag from CMS data on the
ratio of inclusive 3-jet to 2-jet cross sections [434], from inclusive jet production [435]
and from the 3-jet differential cross section [436] quoted values of

as(M%) = 0.1148 £ 0.0014(exp.) ) 5055 (theo.)
as(M%) = 0.1185 4 0.0019(exp.) 70 0oan (theo.) and

as(M2) = 0.1171 % 0.0013(exp.) 735072 (theo.)
respectively. Most recently, the ATLAS collaboration reported

as(M%) = 0.1173 4 0.0010(exp.) 70 00oa (theo.) and
as(M%) = 0.1195 + 0.0018(exp.) T Hoo3 (theo.)

using the transverse energy-energy correlation function (TEEC) and its associated
azimuthal asymmetry (ATEEC), respectively [271]. All these results are at NLO only,
however they provide valuable new values of ag at energy scales now extending up to
1.4 TeV. Although not contributing to the overall world average of g which we determine
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Figure 9.2: Summary of determinations of as(M%) from the six sub-fields
discussed in the text. The yellow (light shaded) bands and dashed lines indicate the
pre-average values of each sub-field. The dotted line and grey (dark shaded) band
represent the final world average value of aS(M%).

below, it may be worth mentioning that the collider results listed above average to a
value of ag(M%) = 0.1172 & 0.0059.

So far, only one analysis is available which involves the determination of ag from
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hadron collider data in NNLO of QCD: from a measurement of the ¢t cross section at
Vs =7 TeV, CMS [370] determined

as(MZ) = 0.1151 50057

whereby the dominating contributions to the overall error are experimental (fg:gg%g), from

parton density functions (fgggﬁ’) and the value of the top quark pole mass (£0.0013).

This latter result will enter our determination of the new world average of ag, and
will thereby open a new sub-field of oy determinations in this Review. We note, however,
that so far there is only this one result in this sub-field. While there are more recent
measurements of ¢ cross sections from ATLAS and from CMS, at /s = 7, 8 and at
13 TeV, none quotes further extractions of as. A more reliable result will thus be left to
the next Review, however we note that the most recent measurements of ¢ cross sections
imply larger values of as(M%) than the one which we use, at this time, as result for this
sub-field.

9.4.7. Electroweak precision fit :
The N3LO calculation of the hadronic Z decay width [35] was used in the latest update
of the global fit to electroweak precision data [437], resulting in

as(M%) = 0.1196 + 0.0030 ,

claiming a negligible theoretical uncertainty. We note that results from electroweak
precision data, however, strongly depend on the strict validity of Standard Model
predictions and the existence of the minimal Higgs mechanism to implement electroweak
symmetry breaking. Any - even small - deviation of nature from this model could strongly
influence this extraction of ag.

9.4.8. Determination of the world average value of as(Mg) :

Obtaining a world average value for as(M%) is a non-trivial exercise. A certain
arbitrariness and subjective component is inevitable because of the choice of measurements
to be included in the average, the treatment of (non-Gaussian) systematic uncertainties
of mostly theoretical nature, as well as the treatment of correlations among the various
inputs, of theoretical as well as experimental origin.

We have chosen to determine pre-averages for sub-fields of measurements which are
considered to exhibit a maximum of independence between each other, considering
experimental as well as theoretical issues. The six pre-averages are summarized in
Fig. 9.2. We recall that these are exclusively obtained from extractions which are based
on (at least) full NNLO QCD predictions, and are published in peer-reviewed journals at
the time of completing this Review. These pre-averages are then combined to the final
world average value of aS(M%), using the x2 averaging method and error treatment as
described above. From these, we determine the new world average value of

as(M2%) = 0.1181 +0.0011 , (9.23)
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with an uncertainty of 0.9 %.*** This world average value is in reasonable agreement
with that from the 2013 version of this Review, which was as(M2) = 0.1185 % 0.0006,
however at a somewhat decreased central value and with an overall uncertainty that has
almost doubled. These changes are mainly due to the following developments:

- the uncertainty of the combined lattice result, now using the same averaging
procedure as applied to the other sub-fields, is more conservative than that used in
our previous Review, leading to a larger final uncertainty of the new world average,
and to a reduced fixing power towards the central average value;

- the relatively low value of as from hadron collider results, which currently consists
of only one measurement of the tt cross section at /s =7 TeV [370] that is likely to
be a fluctuation to the low side.

For convenience, we also provide the values for Ag;g which correspond to the new
world average:

A= (89+6) MeV, (9.24a)
A= (210 +14) MeV, (9.24b)
A= (292+16) MeV, (9.24¢)
A= (3324£17) MeV, (9.24d)

for ny =6, 5, 4 and 3 quark flavors, which are determined using the 4-loop expression
for the running of as according to Eq. (9.5) and 3-loop matching at the charm-, bottom-
and top-quark pole masses of 1.3, 4.2 and 173 GeV/ 2, respectively. Note that for scales
below a few GeV, Eq. (9.5) starts to differ significantly from the exact solution of the
renormalization group equation Eq. (9.3) and the latter is then to be preferred.

In order to further test and verify the sensitivity of the new average value of ozs(M%)
to the different pre-averages and fields of ag determinations, we give each of the averages
obtained when leaving out one of the six input values, as well as the respective, initial
value of x2 :

Qg M%

0.1179 + 0.0011
as(M%) = 0.1174 4 0.0016
s(M%) = 0.1185 4+ 0.0013

(M7) w/o T results; X%/d.o.f. = 3.3/4), (9.25a
(MZz)
(MZz)

as(M%) = 0.1182 4 0.0010
(MZz)
(Mz)

)

w/o lattice results; x3/d.o.f. = 2.9/4), ( )
w/o DIS results; x3/d.o.f. = 2.0/4), ( )
w/o et e results; x3/d.o.f. = 3.5/4), (9.25d)
(9-25¢)

)

Q

A~~~ I/~ N N

as(MZ) = 0.1184 4 0.0012 (w/o hadron collider; x2/d.o.f. = 2.4/4) and (9.25¢
as(M%) = 0.1180 4 0.0010 (w/o e.w. precision fit; x3/d.o.f. = 3.4/4).  (9.25f

*** The weighted average, treating all inputs as uncorrelated measurements with Gaussian
uncertainties, results in as(M%) = 0.11810 & 0.00078 with x*/d.o.f. = 3.7/5. Requiring
x2/d.o.f. to reach unity calls for an overall correlation factor of 0.28, which increases the
overall uncertainty to +0.00114.
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They are well within the uncertainty of the overall world average quoted above. Note,
however, that the average excluding the lattice result is no longer as close to the value
obtained from lattice alone as was the case in the 2013 Review, but is now smaller by
almost one standard deviation of its assigned uncertainty.

Notwithstanding the many open issues still present within each of the sub-fields
summarised in this Review, the wealth of available results provides a rather precise and
reasonably stable world average value of « S(M%), as well as a clear signature and proof of
the energy dependence of ag, in full agreement with the QCD prediction of Asymptotic
Freedom. This is demonstrated in Fig. 9.3, where results of as(Q?) obtained at discrete
energy scales ), now also including those based just on NLO QCD, are summarized.
Thanks to the results from the Tevatron and from the LHC, the energy scales at which
g is determined now extend up to more than 1 TeV?.

April 2016
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DIS jets(NLO)
Heavy QuarkonianLo)
€'e jets & shapeges. NNLO) 1
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Figure 9.3: Summary of measurements of ag as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of ay is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).

¢ We note, however, that in many such studies, like those based on exclusive states of
jet multiplicities, the relevant energy scale of the measurement is not uniquely defined.
For instance, in studies of the ratio of 3- to 2-jet cross sections at the LHC, the relevant
scale was taken to be the average of the transverse momenta of the two leading jets [434],
but could alternatively have been chosen to be the transverse momentum of the 37 jet.
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