70. $\rho(770)$

Updated May 2012 by S. Eidelman (Novosibirsk) and G. Venanzoni (Frascati).

The determination of the parameters of the $\rho(770)$ is beset with many difficulties because of its large width. In physical region fits, the line shape does not correspond to a relativistic Breit-Wigner function with a *P*-wave width, but requires some additional shape parameter. This dependence on parameterization was demonstrated long ago [1]. Bose-Einstein correlations are another source of shifts in the $\rho(770)$ line shape, particularly in multiparticle final state systems [2].

The same model-dependence afflicts any other source of resonance parameters, such as the energy-dependence of the phase shift δ_1^1 , or the pole position. It is, therefore, not surprising that a study of $\rho(770)$ dominance in the decays of the η and η' reveals the need for specific dynamical effects, in addition to the $\rho(770)$ pole [3,4].

The cleanest determination of the $\rho(770)$ mass and width comes from e^+e^- annihilation and τ -lepton decays. Analysis of ALEPH [5] showed that the charged $\rho(770)$ parameters measured from τ -lepton decays are consistent with those of the neutral one determined from e^+e^- data [6]. This conclusion is qualitatively supported by the later studies of CLEO [7] and Belle [8]. However, model-independent comparison of the two-pion mass spectrum in τ decays, and the $e^+e^- \rightarrow \pi^+\pi^-$ cross section, gave indications of discrepancies between the overall normalization: τ data are about 3% higher than $e^+e^$ data [7,9]. A detailed analysis using such two-pion mass spectra from τ decays measured by OPAL [10], CLEO [7], and ALEPH [11,12], as well as recent pion form factor measurements in e^+e^- annihilation by CMD-2 [13,14], showed that the discrepancy can be as high as 10% above the ρ meson [15,16]. This discrepancy remains after recent measurements of the two-pion cross section in e^+e^- annihilation at KLOE [17,18] and SND [19,20]. This effect is not accounted for by isospin breaking [21–24], but the accuracy of its calculation may be overestimated [25,26].

This problem seems to be solved after a recent analysis in [27] which showed that after correcting the τ data for the missing ρ - γ mixing contribution, besides the other known isospin symmetry violating corrections, the $\pi\pi$ I=1 part of the hadronic vacuum polarization contribution to the muon g - 2 is fully compatible between τ based and $e^+e^$ based evaluations including more recent BaBar [28] and KLOE [29] data. Further proof of the consistency of the data on τ decays to two pions and e^+e^- annihilation is given by the global fit of the whole set of the ρ , ω , and ϕ decays, taking into account mixing effects in the hidden local symmetry model [30].

References:

- 1. J. Pisut and M. Roos, Nucl. Phys. B6, 325 (1968).
- 2. G.D. Lafferty, Z. Phys. C60, 659 (1993).
- 3. A. Abele *et al.*, Phys. Lett. **B402**, 195 (1997).
- 4. M. Benayoun *et al.*, Eur. Phys. J. C31, 525 (2003).
- 5. R. Barate *et al.*, Z. Phys. **C76**, 15 (1997).
- 6. L.M. Barkov *et al.*, Nucl. Phys. **B256**, 365 (1985).
- 7. S. Anderson *et al.*, Phys. Rev. **D61**, 112002 (2000).
- 8. M. Fujikawa *et al.*, Phys. Rev. **D78**, 072006 (2008).

M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

2 70. $\rho(770)$

- 9. S. Eidelman and V. Ivanchenko, Nucl. Phys. (Proc. Supp.) B76, 319 (1999).
- 10. K. Ackerstaff *et al.*, Eur. Phys. J. C7, 571 (1999).
- 11. M. Davier *et al.*, Nucl. Phys. (Proc. Supp.) **B123**, 47 (2003).
- 12. S. Schael *et al.*, Phys. Reports **421**, 191 (2005).
- 13. R.R. Akhmetshin *et al.*, Phys. Lett. **B527**, 161 (2002).
- 14. R.R. Akhmetshin *et al.*, Phys. Lett. **B578**, 285 (2004).
- 15. M. Davier *et al.*, Eur. Phys. J. **C27**, 497 (2003).
- 16. M. Davier *et al.*, Eur. Phys. J. **C31**, 503 (2003).
- 17. A. Aloisio et al., Phys. Lett. B606, 12 (2005).
- 18. F. Ambrosino *et al.*, Phys. Lett. **B670**, 285 (2009).
- 19. M.N. Achasov *et al.*, Sov. Phys. JETP **101**, 1053 (2005).
- 20. M.N. Achasov et al., Sov. Phys. JETP 103, 380 (2006).
- 21. R. Alemany et al., Eur. Phys. J. C2, 123 (1998).
- 22. H. Czyz and J.J. Kuhn, Eur. Phys. J. C18, 497 (2001).
- 23. V. Cirigliano et al., Phys. Lett. B513, 361 (2001).
- 24. V. Cirigliano *et al.*, Eur. Phys. J. **C23**, 121 (2002).
- 25. K. Maltman and C.E. Wolfe, Phys. Rev. D73, 013004 (2006).
- 26. C.E. Wolfe and K. Maltman, Phys. Rev. **D80**, 114024 (2009).
- 27. F. Jegerlehner and R. Szafron, Eur. Phys. J. C71, 1632 (2011).
- 28. B. Aubert *et al.*, Phys. Rev. Lett. **103**, 231801 (2009).
- 29. F. Ambrosino *et al.*, Phys. Lett. **B700**, 102 (2011).
- 30. M. Benayoun *et al.*, Eur. Phys. J. C72, 1848 (2012).