SEARCHES NOT IN OTHER SECTIONS

Magnetic Monopole Searches

Isolated supermassive monopole candidate events have not been confirmed. The most sensitive experiments obtain negative results.

Best cosmic-ray supermassive monopole flux limit:

 $< 1.4 imes 10^{-16}
m \ cm^{-2} sr^{-1} s^{-1}$ for $1.1 imes 10^{-4} < eta < 1$

Supersymmetric Particle Searches

All supersymmetric mass bounds here are model dependent.

The limits assume:

1) $\tilde{\chi}_1^0$ is the lightest supersymmetric particle; 2) *R*-parity is conserved; See the Particle Listings for a Note giving details of supersymmetry.

$$\begin{split} \widetilde{\chi}_{i}^{0} & - \text{ neutralinos (mixtures of } \widetilde{\gamma}, \ \widetilde{Z}^{0}, \text{ and } \ \widetilde{H}_{i}^{0}) \\ \text{Mass } m_{\widetilde{\chi}_{1}^{0}} > 0 \text{ GeV, CL} = 95\% \\ & [\text{general MSSM, non-universal gaugino masses}] \\ \text{Mass } m_{\widetilde{\chi}_{1}^{0}} > 46 \text{ GeV, CL} = 95\% \\ & [\text{all } \tan\beta, \text{ all } m_{0}, \text{ all } m_{\widetilde{\chi}_{2}^{0}} - m_{\widetilde{\chi}_{1}^{0}}] \\ \text{Mass } m_{\widetilde{\chi}_{2}^{0}} > 670 \text{ GeV, CL} = 95\% \\ & [3/4\ell + \not{E}_{T}, \text{ Tn2n3B, } m_{\widetilde{\chi}_{1}^{0}} < 200\text{GeV}] \\ \text{Mass } m_{\widetilde{\chi}_{3}^{0}} > 670 \text{ GeV, CL} = 95\% \\ & [3/4\ell + \not{E}_{T}, \text{ Tn2n3B, } m_{\widetilde{\chi}_{1}^{0}} < 200\text{GeV}] \\ \text{Mass } m_{\widetilde{\chi}_{4}^{0}} > 116 \text{ GeV, CL} = 95\% \\ & [1 < \tan\beta < 40, \text{ all } m_{0}, \text{ all } m_{\widetilde{\chi}_{2}^{0}} - m_{\widetilde{\chi}_{1}^{0}}] \\ \widetilde{\chi}_{i}^{\pm} & - \text{ charginos (mixtures of } \widetilde{W}^{\pm} \text{ and } \widetilde{H}_{i}^{\pm}) \\ \text{Mass } m_{\widetilde{\chi}_{1}^{\pm}} > 94 \text{ GeV, CL} = 95\% \\ & [1 \tan\beta < 40, m_{\widetilde{\chi}_{1}^{\pm}} - m_{\widetilde{\chi}_{1}^{0}} > 3 \text{ GeV, all } m_{0}] \\ \text{Mass } m_{\widetilde{\chi}_{1}^{\pm}} > 500 \text{ GeV, CL} = 95\% \\ & [2\ell^{\pm} + \not{E}_{T}, \text{ Tchi1chi1B, } m_{\widetilde{\chi}_{1}^{0}} = 0 \text{ GeV}] \\ \widetilde{\chi}^{\pm} & - \text{ long-lived chargino} \\ \text{Mass } m_{\widetilde{\chi}^{\pm}} > 620 \text{ GeV, CL} = 95\% \\ & [\text{stable } \widetilde{\chi}^{\pm}] \end{split}$$

 $\widetilde{\nu}$ — sneutrino Mass m > 41 GeV, CL = 95% [model independent] Mass m > 94 GeV, CL = 95% $[\mathsf{CMSSM}, \ 1 \leq {\sf tan}\beta \leq {\sf 40}, \ m_{\widetilde{e}_{\mathcal{R}}}\!-m_{\widetilde{\chi}_1^0}\!>\!\!10 \ \, \mathsf{GeV}]$ Mass m > 2300 GeV, CL = 95%[RPV, $\widetilde{\nu}_{\tau} \rightarrow e \mu, \lambda'_{311} = 0.11$] \tilde{e} — scalar electron (selectron) Mass $m(\widetilde{e}_L) > 107$ GeV, CL = 95% [all $m_{\widetilde{e}_L} - m_{\widetilde{\chi}_1^0}$] Mass m > 410 GeV, CL = 95% $[\mathsf{RPV}, \geq 4\ell^{\pm}, \, \widetilde{\ell} \rightarrow \ / \, \widetilde{\chi}_1^0, \, \widetilde{\chi}_1^0 \rightarrow \ \ell^{\pm} \ell^{\mp} \nu]$ $\widetilde{\mu}$ — scalar muon (smuon) Mass m > 94 GeV, CL = 95% $[\mathsf{CMSSM},\,1\le {\sf tan}\beta\le {\sf 40},\,m_{\widetilde{\mu}_R}\text{-}m_{\widetilde{\chi}^0_1}\ > 10\,{\sf GeV}]$ Mass m > 410 GeV, CL = 95% $[\mathsf{RPV}, \geq 4\ell^{\pm}, \tilde{\ell} \rightarrow I \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \ell^{\pm} \ell^{\mp} \nu]$ $\widetilde{\tau}$ — scalar tau (stau) Mass m > 81.9 GeV, CL = 95% $[m_{\widetilde{ au}_R} - m_{\widetilde{\chi}^0_1} > 15$ GeV, all $heta_{ au}$, B $(\widetilde{ au} o \ au \widetilde{\chi}^0_1) = 100\%$] Mass m > 286 GeV, CL = 95% [long-lived $\tilde{\tau}$] \tilde{q} – squarks of the first two quark generations Mass m > 1450 GeV, CL = 95%[CMSSM, tan β = 30, A_0 = -2max(m_0 , $m_{1/2}$), μ > 0] Mass m > 1550 GeV, CL = 95%[mass degenerate squarks] Mass m > 1050 GeV, CL = 95%[single light squark bounds] \tilde{q} — long-lived squark Mass m > 1000, CL = 95% $[\tilde{t}, \text{ charge-suppressed interaction model}]$ Mass m > 845, CL = 95% [\tilde{b} , stable, Regge model] \tilde{b} — scalar bottom (sbottom) Mass m > 1230 GeV, CL = 95%

$$\begin{split} \widetilde{t} & - \text{ scalar top (stop)} \\ & \text{Mass } m > \ 1120 \text{ GeV, } \text{CL} = 95\% \\ & [1\ell + \text{jets} + \not\!\!\!E_T, \text{ Tstop1, } m_{\widetilde{\chi}^0_1} = 0 \text{ GeV}] \\ & \widetilde{g} & - \text{gluino} \\ & \text{Mass } m > \ 1860 \text{ GeV, } \text{CL} = 95\% \\ & [\geq 1 \text{ jets} + \not\!\!E_T, \text{ Tglu1A, } m_{\widetilde{\chi}^0_1} = 0 \text{ GeV}] \end{split}$$

Technicolor

The limits for technicolor (and top-color) particles are quite varied depending on assumptions. See the Technicolor section of the full *Review* (the data listings).

Quark and Lepton Compositeness, Searches for

Scale Limits Λ for Contact Interactions (the lowest dimensional interactions with four fermions)

If the Lagrangian has the form

$$\pm \frac{g^2}{2\Lambda^2} \,\overline{\psi}_L \gamma_\mu \psi_L \overline{\psi}_L \gamma^\mu \psi_L$$

(with $g^2/4\pi$ set equal to 1), then we define $\Lambda \equiv \Lambda_{LL}^{\pm}$. For the full definitions and for other forms, see the Note in the Listings on Searches for Quark and Lepton Compositeness in the full *Review* and the original literature.

$\Lambda_{LL}^+(eeee)$	>	8.3 TeV, $CL = 95\%$
$\Lambda_{LL}^{-}(eeee)$	>	10.3 TeV, $CL=95\%$
$\Lambda^+_{LL}(ee\mu\mu)$	>	8.5 TeV, $CL = 95\%$
$\Lambda_{LL}^{-}(ee\mu\mu)$	>	9.5 TeV, $CL=95\%$
$\Lambda^+_{LL}(ee au au)$	>	7.9 TeV, $CL=95\%$
$\Lambda_{LL}^{-}(ee au au)$	>	7.2 TeV, $CL=95\%$
$\Lambda^+_{LL}(\ell\ell\ell\ell)$	>	9.1 TeV, $CL=95\%$
$\Lambda^{LL}(\ell\ell\ell\ell)$	>	10.3 TeV, $CL=95\%$
$\Lambda_{LL}^+(eeqq)$	>	24 TeV, $CL = 95\%$
$\Lambda_{LL}^{-}(eeqq)$	>	37 TeV, $CL = 95\%$

Excited Leptons

The limits from $\ell^{*+}\ell^{*-}$ do not depend on λ (where λ is the $\ell\ell^{*}$ transition coupling). The λ -dependent limits assume chiral coupling.

 $e^{*\pm}$ — excited electron

 $\mu^{*\pm}$ — excited muon

 $\tau^{*\pm}$ — excited tau

Mass m > 103.2 GeV, CL = 95% (from $\tau^* \tau^*$) Mass $m > 2.500 \times 10^3$ GeV, CL = 95% (from $\tau \tau^*$)

 ν^* — excited neutrino

Mass $m > 1.600 \times 10^3$ GeV, CL = 95% (from $\nu^* \nu^*$) Mass m > 213 GeV, CL = 95% (from $\nu^* X$) $\begin{array}{l} q^{*} - \operatorname{excited quark} \\ \operatorname{Mass} m > \ 338 \ \mathrm{GeV}, \ \mathrm{CL} = 95\% \quad (\mathrm{from} \ q^{*} \ q^{*}) \\ \operatorname{Mass} m > \ 6.000 \times 10^{3} \ \mathrm{GeV}, \ \mathrm{CL} = 95\% \quad (\mathrm{from} \ q^{*} \ X) \end{array}$ $\begin{array}{l} \textbf{Color Sextet and Octet Particles} \\ \textbf{Color Sextet Quarks} \ (q_{6}) \\ \operatorname{Mass} m > \ 84 \ \mathrm{GeV}, \ \mathrm{CL} = 95\% \quad (\mathrm{Stable} \ q_{6}) \\ \textbf{Color Octet Charged Leptons} \ (\ell_{8}) \\ \operatorname{Mass} m > \ 86 \ \mathrm{GeV}, \ \mathrm{CL} = 95\% \quad (\mathrm{Stable} \ \ell_{8}) \\ \textbf{Color Octet Neutrinos} \ (\nu_{8}) \\ \operatorname{Mass} m > \ 110 \ \mathrm{GeV}, \ \mathrm{CL} = 90\% \quad (\nu_{8} \rightarrow \ \nu g) \end{array}$

Extra Dimensions

Please refer to the Extra Dimensions section of the full *Review* for a discussion of the model-dependence of these bounds, and further constraints.

Constraints on the radius of the extra dimensions, for the case of two-flat dimensions of equal radii

 $R < 30 \ \mu m$, CL = 95% (direct tests of Newton's law) $R < 10.9 \ \mu m$, CL = 95% ($pp \rightarrow jG$) $R < 0.16-916 \ nm$ (astrophysics; limits depend on technique and assumptions)

Constraints on the fundamental gravity scale

 M_{TT} > 8.4 TeV, CL = 95% (pp \rightarrow dijet, angular distribution) M_c > 4.16 TeV, CL = 95% (pp $\rightarrow \ell \overline{\ell}$)

Constraints on the Kaluza-Klein graviton in warped extra dimensions

 $M_G > 4.1 \; {
m TeV}$, CL = 95% $(p \, p
ightarrow \gamma \gamma)$

Constraints on the Kaluza-Klein gluon in warped extra dimensions

 $M_{g_{KK}} > 2.5 \text{ TeV}, \text{ CL} = 95\% \quad (g_{KK} \rightarrow t \overline{t})$