QUARKS

The *u*-, *d*-, and *s*-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\text{MS}}$ at a scale $\mu \approx 2$ GeV. The *c*- and *b*-quark masses are the "running" masses in the $\overline{\text{MS}}$ scheme. For the *b*-quark we also quote the 1S mass. These can be different from the heavy quark masses obtained in potential models.

$$\begin{array}{c} \textbf{U} \\ \textbf{U} \\ l(J^{P}) = \frac{1}{2}(\frac{1}{2}^{+}) \\ m_{u} = 2.2 \substack{+0.5 \\ -0.4} \text{ MeV} \\ m_{u}/m_{d} = 0.48 \substack{+0.07 \\ -0.08} \end{array} \quad \text{Charge} = \frac{2}{3} e \quad l_{z} = +\frac{1}{2} \\ m_{u}/m_{d} = 0.48 \substack{+0.07 \\ -0.08} \end{array}$$

$$\begin{array}{c} \textbf{U} \\ \textbf{J}^{P}) = \frac{1}{2}(\frac{1}{2}^{+}) \\ m_{d} = 4.7 \substack{+0.5 \\ -0.2} \text{ MeV} \qquad \text{Charge} = -\frac{1}{3} e \quad l_{z} = -\frac{1}{2} \\ m_{s}/m_{d} = 17 - 22 \\ \overline{m} = (m_{u} + m_{d})/2 = 3.5 \substack{+0.5 \\ -0.2} \text{ MeV} \end{aligned}$$

$$\begin{array}{c} \textbf{J} \\ \textbf{J}^{P}) = 0(\frac{1}{2}^{+}) \\ m_{s} = 95 \substack{+9 \\ -3} \text{ MeV} \qquad \text{Charge} = -\frac{1}{3} e \quad \text{Strangeness} = -1 \\ m_{s} / ((m_{u} + m_{d})/2) = 27.3 \pm 0.7 \end{aligned}$$

$$\begin{array}{c} \textbf{L} \\ \textbf{J}^{P}) = 0(\frac{1}{2}^{+}) \\ m_{c} = 1.275 \substack{+0.025 \\ -0.035} \text{ GeV} \\ m_{b}/m_{c} = 4.53 \pm 0.05 \\ m_{b}/m_{c} = 3.45 \pm 0.05 \text{ GeV} \end{aligned}$$

$$\begin{array}{c} \text{Charge} = \frac{2}{3} e \quad \text{Charm} = +1 \\ m_{c}/m_{s} = 11.72 \pm 0.25 \\ m_{b}/m_{c} = 3.45 \pm 0.05 \text{ GeV} \\ m_{b} = n_{c} = 3.45 \pm 0.05 \text{ GeV} \end{aligned}$$

$$\begin{array}{c} \textbf{L} \\ \textbf{J} \\ \textbf{Mass} m = 4.18 \substack{+0.04 \\ -0.03} \text{ GeV} \qquad \text{Charge} = -\frac{1}{3} e \quad \text{Bottom} = -1 \end{array}$$

HTTP://PDG.LBL.GOV

 $I(J^P) = 0(\frac{1}{2}^+)$ Charge $= \frac{2}{3} e$ Top = +1

Mass (direct measurements) $m = 173.0 \pm 0.4$ GeV ^[a,b] (S = 1.3) Mass (from cross-section measurements) $m = 160^{+5}_{-4}$ GeV ^[a] Mass (Pole from cross-section measurements) $m = 173.1 \pm 0.9$ GeV $m_t - m_{\overline{t}} = -0.16 \pm 0.19$ GeV Full width $\Gamma = 1.41^{+0.19}_{-0.15}$ GeV (S = 1.4) $\Gamma(W b)/\Gamma(W q (q = b, s, d)) = 0.957 \pm 0.034$ (S = 1.5)

t-quark EW Couplings

 $F_0 = 0.687 \pm 0.018$ $F_- = 0.320 \pm 0.013$ $F_+ = 0.002 \pm 0.011$ $F_{V+A} < 0.29, CL = 95\%$

t DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
$\overline{t} ightarrow Wq(q=b, s, d)$			_
$t \rightarrow W b$			_
$t ightarrow e u_e b$	(13.3±0.6) %		_
$t ightarrow \ \mu u_{\mu} b$	(13.4±0.6) %		_
$t ightarrow au u_{ au} b$	(7.1±0.6) %		_
$t ightarrow q \overline{q} b$	(66.5±1.4) %		_
A T 1	(\mathbf{T}_{1})		

$\Delta T = 1$ weak neutral current (T1) modes

$t \rightarrow Zq(q=u,c)$	Τ1	[c] < 5	imes 10 ⁻⁴	95%	_
$t \rightarrow H u$	Τ1	< 2.4	imes 10 ⁻³	95%	_
$t \rightarrow Hc$	Τ1	< 2.2	imes 10 ⁻³	95%	_
$t ightarrow \ell^+ \overline{q} \overline{q}' (q = d, s, b;$	Τ1	< 1.6	imes 10 ⁻³	95%	_
q'=u,c)					

b' (4th Generation) Quark, Searches for

Mass $m >$	190 GeV, $CL=95\%$	$(p\overline{p}, \text{ quasi-stable } b')$
Mass $m >$	755 GeV, $CL = 95\%$	(<i>pp</i> , neutral-current decays)
Mass $m >$	880 GeV, $CL = 95\%$	(<i>pp</i> , charged-current decays)
Mass $m >$	46.0 GeV, $CL=95\%$	$(e^+e^-$, all decays)

HTTP://PDG.LBL.GOV

t' (4th Generation) Quark, Searches for

m(t'(2/3)) > 1160 GeV, CL = 95% (neutral-current decays) m(t'(2/3)) > 770 GeV, CL = 95% (charged-current decays) m(t'(5/3)) > 990 GeV, CL = 95%

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

- [a] A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."
- [b] Based on published top mass measurements using data from Tevatron Run-I and Run-II and LHC at $\sqrt{s} = 7$ TeV. Including the most recent unpublished results from Tevatron Run-II, the Tevatron Electroweak Working Group reports a top mass of 173.2 ± 0.9 GeV. See the note "The Top Quark' in the Quark Particle Listings of this *Review*.
- $[c] \text{ This limit is for } \Gamma(t \rightarrow \ Z \, q) / \Gamma(t \rightarrow \ W \, b).$