$h_c(1P)$

$$j^G(j^{PC}) = 0^- (1^-)$$

Quantum numbers are quark model prediction, $C = -$ established by $\eta_c \gamma$ decay.

$h_c(1P)$ Mass

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3525.38 \pm 0.11 OUR AVERAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3525.31 \pm 0.11 \pm 0.14</td>
<td>832</td>
<td>ABLIKIM 12n BES3</td>
<td></td>
<td>$\psi(2S) \rightarrow \pi^0 \gamma$ hadrons</td>
</tr>
<tr>
<td>3525.40 \pm 0.13 \pm 0.18</td>
<td>3679</td>
<td>ABLIKIM 10B BES3</td>
<td></td>
<td>$\psi(2S) \rightarrow \pi^0 \eta_c$</td>
</tr>
<tr>
<td>3525.20 \pm 0.18 \pm 0.12</td>
<td>1282</td>
<td>2 DOBBS 08A CLEO</td>
<td></td>
<td>$\psi(2S) \rightarrow \pi^0 \eta_c \gamma$</td>
</tr>
<tr>
<td>3525.8 \pm 0.2 \pm 0.2</td>
<td>13</td>
<td>ANDREOTTI 05B E835</td>
<td></td>
<td>$\pi p \rightarrow \eta_c \gamma$</td>
</tr>
</tbody>
</table>

- **1** With floating width.
- **2** Combination of exclusive and inclusive analyses for the reaction $\psi(2S) \rightarrow \pi^0 h_c \rightarrow \pi^0 \eta_c \gamma$. This result is the average of DOBBS 08A and ROSNER 05.
- **3** Superseded by DOBBS 08A.
- **4** Mass central value and systematic error recalculated by us according to Eq. (16) in ARMSTRONG 93B, using the value for the $\psi(2S)$ mass from AULCHENKO 03.

$h_c(1P)$ Width

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>CL%</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.70 \pm 0.28 \pm 0.22</td>
<td>832</td>
<td>ABLIKIM 12n BES3</td>
<td></td>
<td>$\psi(2S) \rightarrow \pi^0 \gamma$ hadrons</td>
<td></td>
</tr>
</tbody>
</table>

- **1** With floating mass.
- **2** The central value is $\Gamma = 0.73 \pm 0.45 \pm 0.28$ MeV.

$h_c(1P)$ Decay Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Fraction (Γ_j/Γ)</th>
<th>Confidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_1</td>
<td>$J/\psi(1S) \pi^0$</td>
<td>not seen</td>
</tr>
<tr>
<td>Γ_2</td>
<td>$J/\psi(1S) \pi \pi$</td>
<td>not seen</td>
</tr>
<tr>
<td>Γ_3</td>
<td>$J/\psi(1S) \pi^+ \pi^-$</td>
<td>$< 2.3 \times 10^{-3}$</td>
</tr>
</tbody>
</table>

HTTP://PDG.LBL.GOV Page 1 Created: 8/2/2019 16:42
\[\Gamma_4 \quad \rho \bar{\rho} \quad < 1.5 \times 10^{-4} \quad 90\% \]
\[\Gamma_5 \quad \pi^+ \pi^- \pi^0 \quad < 2.2 \times 10^{-3} \]
\[\Gamma_6 \quad 2\pi^+ 2\pi^- \pi^0 \quad (2.2 \pm 0.8) \% \]
\[\Gamma_7 \quad 3\pi^+ 3\pi^- \pi^0 \quad < 2.9 \% \]

Radiative decays

\[\Gamma_8 \quad \gamma \eta \quad (4.7 \pm 2.1) \times 10^{-4} \]
\[\Gamma_9 \quad \gamma \eta' (958) \quad (1.5 \pm 0.4) \times 10^{-3} \]
\[\Gamma_{10} \quad \gamma \eta_c (1S) \quad (51 \pm 6) \% \]

h_c(1P) PARTIAL WIDTHS

\[\Gamma_c(1P) \frac{\Gamma(i)\Gamma(\bar{p}p)/\Gamma(\text{total})}{\Gamma(\gamma \eta_c (1S)) \times \Gamma(\rho \bar{\rho})/\Gamma(\text{total})} \]

<table>
<thead>
<tr>
<th>(\Gamma(\gamma \eta_c (1S)) \times \Gamma(\rho \bar{\rho})/\Gamma(\text{total}))</th>
<th>(\Gamma_4/\Gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE (eV)</td>
<td>EVTS</td>
</tr>
<tr>
<td>dot</td>
<td>dot</td>
</tr>
<tr>
<td>dot</td>
<td>dot</td>
</tr>
</tbody>
</table>

1 Assuming \(\Gamma = 1\) MeV.

h_c(1P) BRANCHING RATIOS

\[\frac{\Gamma(J/\psi (1S) \pi \pi)}{\Gamma(J/\psi (1S) \pi^0)} \quad \frac{\Gamma_2}{\Gamma_1} \]

\[\frac{\Gamma(J/\psi (1S) \pi^+ \pi^-)}{\Gamma(\text{total})} \quad \frac{\Gamma_3}{\Gamma} \]

\[\Gamma(J/\psi (1S) \pi^+ \pi^-) \]

\[\text{VALUE (units of } 10^{-3}) \]

1 ABLIKIM 18M reports \([\Gamma(h_c(1P) \rightarrow J/\psi (1S) \pi^+ \pi^-)/\Gamma(\text{total})\] \times [B(\psi(2S) \rightarrow \pi^0 h_c(1P))] < 2.0 \times 10^{-6} \) which we divide by our best value \(B(\psi(2S) \rightarrow \pi^0 h_c(1P)) = 8.6 \times 10^{-4} \).

\[\frac{\Gamma(\pi^+ \pi^- \pi^0)}{\Gamma(\text{total})} \quad \frac{\Gamma_5}{\Gamma} \]

\[\text{VALUE (units of } 10^{-3}) \]

1 ADAMS 09 reports \([\Gamma(h_c(1P) \rightarrow \pi^+ \pi^- \pi^0)/\Gamma(\text{total})\] \times [B(\psi(2S) \rightarrow \pi^0 h_c(1P))] < 0.19 \times 10^{-5} \) which we divide by our best value \(B(\psi(2S) \rightarrow \pi^0 h_c(1P)) = 8.6 \times 10^{-4} \).

\[\frac{\Gamma(2\pi^+ 2\pi^-)}{\Gamma(\text{total})} \quad \frac{\Gamma_6}{\Gamma} \]

\[\text{VALUE (units of } 10^{-2}) \]

1 ADAMS 09 reports \([\Gamma(h_c(1P) \rightarrow 2\pi^+ 2\pi^- \pi^0)/\Gamma(\text{total})\] \times [B(\psi(2S) \rightarrow \pi^0 h_c(1P))] = (1.88 \pm 0.48 \pm 0.47) \times 10^{-5} \) which we divide by our best value \(B(\psi(2S) \rightarrow \pi^0 h_c(1P)) = (8.6 \pm 1.3) \times 10^{-4} \). Our first error is their experiment’s error and our second error is the systematic error from using our best value.
\[\Gamma(3\pi^+3\pi^-\pi^0)/\Gamma_{\text{total}} \]

\[\Gamma_7/\Gamma \]

<table>
<thead>
<tr>
<th>VALUE (units 10^{-2})</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td><2.9</td>
<td>1</td>
<td>ADAMS 09 CLEO</td>
<td>(\psi(2S) \rightarrow \pi^0\gamma\eta_c)</td>
</tr>
</tbody>
</table>

1 ADAMS 09 reports \([\Gamma(h_c(1P) \rightarrow 3\pi^+3\pi^-\pi^0)/\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow \pi^0 h_c(1P))] < 2.5 \times 10^{-5}\) which we divide by our best value \(B(\psi(2S) \rightarrow \pi^0 h_c(1P)) = 8.6 \times 10^{-4}\).

RADIATIVE DECAYS

\[\Gamma(\gamma\eta)/\Gamma_{\text{total}} \]

\[\Gamma_8/\Gamma \]

<table>
<thead>
<tr>
<th>VALUE (units 10^{-4})</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7±1.5±1.4</td>
<td>18</td>
<td>ABLIKIM 16i BES3</td>
<td>(\psi(2S) \rightarrow \pi^0\gamma\eta)</td>
<td></td>
</tr>
</tbody>
</table>

\[\Gamma(\gamma\eta(958))/\Gamma_{\text{total}} \]

\[\Gamma_9/\Gamma \]

<table>
<thead>
<tr>
<th>VALUE (units 10^{-3})</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.52±0.27±0.29</td>
<td>44</td>
<td>ABLIKIM 16i BES3</td>
<td>(\psi(2S) \rightarrow \pi^0\gamma\eta(958))</td>
<td></td>
</tr>
</tbody>
</table>

\[\Gamma(\gamma\eta_c(1S))/\Gamma_{\text{total}} \]

\[\Gamma_{10}/\Gamma \]

<table>
<thead>
<tr>
<th>VALUE (units 10^{-2})</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>51 ± 6</td>
<td>OUR AVERAGE</td>
<td>3679</td>
<td>ABLIKIM 10B BES3</td>
<td>(\psi(2S) \rightarrow \pi^0\gamma\eta_c)</td>
</tr>
<tr>
<td>48 ± 6 ± 7</td>
<td>3679</td>
<td>ABLIKIM 10B BES3</td>
<td>(\psi(2S) \rightarrow \pi^0\eta_c \gamma)</td>
<td></td>
</tr>
</tbody>
</table>

1 Average of DOBBS 08A and ROSNER 05. DOBBS 08A reports \([\Gamma(h_c(1P) \rightarrow \gamma\eta_c(1S))/\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow \pi^0 h_c(1P))] = (4.16 ± 0.30 ± 0.37) \times 10^{-4}\) which we divide by our best value \(B(\psi(2S) \rightarrow \pi^0 h_c(1P)) = (8.6 ± 1.3) \times 10^{-4}\). Our first error is their experiment’s error and our second error is the systematic error from using our best value.

2 DOBBS 08A reports \([\Gamma(h_c(1P) \rightarrow \gamma\eta_c(1S))/\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow \pi^0 h_c(1P))] = (4.19 ± 0.32 ± 0.45) \times 10^{-4}\) which we divide by our best value \(B(\psi(2S) \rightarrow \pi^0 h_c(1P)) = (8.6 ± 1.3) \times 10^{-4}\). Our first error is their experiment’s error and our second error is the systematic error from using our best value.

3 ROSNER 05 reports \([\Gamma(h_c(1P) \rightarrow \gamma\eta_c(1S))/\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow \pi^0 h_c(1P))] = (4.0 ± 0.8 ± 0.7) \times 10^{-4}\) which we divide by our best value \(B(\psi(2S) \rightarrow \pi^0 h_c(1P)) = (8.6 ± 1.3) \times 10^{-4}\). Our first error is their experiment’s error and our second error is the systematic error from using our best value.

CROSS-PARTICLE BRANCHING RATIOS

\[\Gamma(h_c(1P) \rightarrow p\bar{p})/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \rightarrow \pi^0 h_c(1P))/\Gamma_{\text{total}} \]

\[\Gamma_4/\Gamma \times \Gamma_{15}^{\psi(2S)}/\Gamma_{\psi(2S)} \]

<table>
<thead>
<tr>
<th>VALUE (<1.3 \times 10^{-7})</th>
<th>CL%</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td><1.3 \times 10^{-7}</td>
<td>90</td>
<td>ABLIKIM 13v BES3</td>
<td>(\psi(2S) \rightarrow \gamma p\bar{p})</td>
<td></td>
</tr>
</tbody>
</table>

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update

HTTP://PDG.LBL.GOV Page 3 Created: 8/2/2019 16:42
\[
\frac{\Gamma(h_c(1P) \to \gamma \eta_c(1S))}{\Gamma_{\text{total}}} \times \frac{\Gamma(\psi(2S) \to \pi^0 h_c(1P))}{\Gamma_{\text{total}}} = \frac{\Gamma_{10}}{\Gamma} \times \frac{\Gamma_{\psi(2S)}}{\Gamma_{\psi(2S)}}
\]

<table>
<thead>
<tr>
<th>VALUE (units 10^{-4})</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.58 ± 0.40 ± 0.50</td>
<td>3679</td>
<td>ABLIKIM 10B</td>
<td>BES3</td>
<td>ψ(2S) → π^0 γ X</td>
</tr>
<tr>
<td>4.16 ± 0.30 ± 0.37</td>
<td>1430</td>
<td>DOBBS 08A</td>
<td>CLEO</td>
<td>ψ(2S) → π^0 γ η_c</td>
</tr>
</tbody>
</table>

1 Not independent of other branching fractions in ABLIKIM 10B.
2 Not independent of other branching fractions in DOBBS 08A.

\[h_c(1P)\] REFERENCES

ABLIKIM 18M	PR D97 052008	M. Ablikim et al.	(BES III Collab.)
ABLIKIM 16I	PRL 116 251802	M. Ablikim et al.	(BES III Collab.)
ABLIKIM 13V	PR D88 112001	M. Ablikim et al.	(BES III Collab.)
ABLIKIM 12N	PR D86 092009	M. Ablikim et al.	(BES III Collab.)
ABLIKIM 10B	PRL 104 132002	M. Ablikim et al.	(BES III Collab.)
ADAMS 09	PR D80 051106	G.S. Adams et al.	(CLEO Collab.)
DOBBS 08A	PRL 101 182003	S. Dobbs et al.	(CLEO Collab.)
ANDREOTTI 05B	PR D72 032001	M. Andreotti et al.	(FNAL E835 Collab.)
ROSNER 05	PRL 95 102003	J.L. Rosner et al.	(CLEO Collab.)
AULCHENKO 03	PL B573 63	V.M. Aulchenko et al.	(KEDR Collab.)
ANTONIAZZI 94	PR D50 4258	L. Antoniazzi et al.	(E705 Collab.)
ARMSTRONG 93B	PR D47 772	T.A. Armstrong et al.	(FNAL E760 Collab.)
ARMSTRONG 92D	PRL 69 2337	T.A. Armstrong et al.	(FNAL, FERR, GENO+)
BAGLIN 86	PL B171 135	C. Baglin et al.	(LAPP, CERN, TORI, STRB+)