$\Lambda(2020)$ 7/2$^+$

$I(J^P) = 0(7^+)$ Status: *

Omitted from summary table

In Litchfield 71, need for the state rests solely on a possibly inconsistent polarization measurement at 1.784 GeV/c. HEMINGWAY 75 does not require this state. GOPAL 77 does not need it in either $N\bar{K}$ or $\Sigma\pi$. With new K^-n angular distributions included, Declais 77 sees it. However, this and other new data are included in GOPAL 80 and the state is not required. Baccari 77 weakly supports it.

$\Lambda(2020)$ Pole Position

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1757</td>
<td>1 KAMANO</td>
<td>15 DPWA Multichannel</td>
<td></td>
</tr>
</tbody>
</table>

1 From the preferred solution A in KAMANO 15. Solution B reports $M = 2041^{+80}_{-82}$ MeV.

$-2\times$ Imaginary Part

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>146</td>
<td>1 KAMANO</td>
<td>15 DPWA Multichannel</td>
<td></td>
</tr>
</tbody>
</table>

1 From the preferred solution A in KAMANO 15. Solution B reports $M = 238^{+114}_{-34}$ MeV.

$\Lambda(2020)$ Pole Residues

The normalized residue is the residue divided by $\Gamma_{pole}/2$.

Normalized residue in $N\bar{K} \rightarrow \Lambda(2020) \rightarrow N\bar{K}$

<table>
<thead>
<tr>
<th>MODULUS</th>
<th>PHASE (°)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000145</td>
<td>77</td>
<td>1 KAMANO</td>
<td>15 DPWA Multichannel</td>
<td></td>
</tr>
</tbody>
</table>

1 From the preferred solution A in KAMANO 15.

Normalized residue in $N\bar{K} \rightarrow \Lambda(2020) \rightarrow \Sigma\pi$

<table>
<thead>
<tr>
<th>MODULUS</th>
<th>PHASE (°)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0112</td>
<td>120</td>
<td>1 KAMANO</td>
<td>15 DPWA Multichannel</td>
<td></td>
</tr>
</tbody>
</table>

1 From the preferred solution A in KAMANO 15.

Normalized residue in $N\bar{K} \rightarrow \Lambda(2020) \rightarrow \Lambda\eta$

<table>
<thead>
<tr>
<th>MODULUS</th>
<th>PHASE (°)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000786</td>
<td>100</td>
<td>1 KAMANO</td>
<td>15 DPWA Multichannel</td>
<td></td>
</tr>
</tbody>
</table>

1 From the preferred solution A in KAMANO 15.
Normalized residue in $NK \rightarrow \Lambda(2020) \rightarrow \Sigma(1385)\pi$, F-wave

<table>
<thead>
<tr>
<th>MODULUS</th>
<th>PHASE (°)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00451</td>
<td>−82</td>
<td>1 KAMANO 15</td>
<td>DPWA</td>
<td>Multichannel</td>
</tr>
</tbody>
</table>

1 From the preferred solution A in KAMANO 15.

Normalized residue in $NK \rightarrow \Lambda(2020) \rightarrow \Sigma(1385)\pi$, H-wave

<table>
<thead>
<tr>
<th>MODULUS</th>
<th>PHASE (°)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000298</td>
<td>−128</td>
<td>1 KAMANO 15</td>
<td>DPWA</td>
<td>Multichannel</td>
</tr>
</tbody>
</table>

1 From the preferred solution A in KAMANO 15.

$\Lambda(2020)$ MASS

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>≈ 2020 OUR ESTIMATE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2043±22</td>
<td>ZHANG 13A</td>
<td>DPWA</td>
<td>Multichannel</td>
</tr>
<tr>
<td>2140</td>
<td>BACCARI 77</td>
<td>DPWA</td>
<td>$K^- p \rightarrow \Lambda \omega$</td>
</tr>
<tr>
<td>2117</td>
<td>DECLAIS 77</td>
<td>DPWA</td>
<td>$KN \rightarrow \bar{KN}$</td>
</tr>
<tr>
<td>2100±30</td>
<td>LITCHFIELD 71</td>
<td>DPWA</td>
<td>$K^- p \rightarrow \bar{KN}$</td>
</tr>
<tr>
<td>2020±20</td>
<td>BARBARO-... 70</td>
<td>DPWA</td>
<td>$K^- p \rightarrow \Sigma \pi$</td>
</tr>
</tbody>
</table>

$\Lambda(2020)$ WIDTH

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>200±75</td>
<td>ZHANG 13A</td>
<td>DPWA</td>
<td>Multichannel</td>
</tr>
<tr>
<td>128</td>
<td>BACCARI 77</td>
<td>DPWA</td>
<td>$K^- p \rightarrow \Lambda \omega$</td>
</tr>
<tr>
<td>167</td>
<td>DECLAIS 77</td>
<td>DPWA</td>
<td>$KN \rightarrow \bar{KN}$</td>
</tr>
<tr>
<td>120±30</td>
<td>LITCHFIELD 71</td>
<td>DPWA</td>
<td>$K^- p \rightarrow \bar{KN}$</td>
</tr>
<tr>
<td>160±30</td>
<td>BARBARO-... 70</td>
<td>DPWA</td>
<td>$K^- p \rightarrow \Sigma \pi$</td>
</tr>
</tbody>
</table>

$\Lambda(2020)$ DECAY MODES

<table>
<thead>
<tr>
<th>Mode</th>
<th>Fraction (Γ_i/Γ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_1</td>
<td>NK</td>
</tr>
<tr>
<td>Γ_2</td>
<td>$\Sigma \pi$</td>
</tr>
<tr>
<td>Γ_3</td>
<td>$\Lambda \eta$</td>
</tr>
<tr>
<td>Γ_4</td>
<td>$\Sigma(1385)\pi$, F-wave</td>
</tr>
<tr>
<td>Γ_5</td>
<td>$\Sigma(1385)\pi$, H-wave</td>
</tr>
<tr>
<td>Γ_6</td>
<td>$NK^*(892)$, $S=1/2$, F-wave</td>
</tr>
<tr>
<td>Γ_7</td>
<td>$NK^*(892)$, $S=3/2$, F-wave</td>
</tr>
<tr>
<td>Γ_8</td>
<td>$NK^*(892)$, $S=3/2$, H-wave</td>
</tr>
<tr>
<td>Γ_9</td>
<td>$\Lambda \omega$</td>
</tr>
<tr>
<td>Γ_{10}</td>
<td>$NK^*(892)$, $S=1/2$ (30±9) %</td>
</tr>
</tbody>
</table>
$\Lambda(2020)$ Branching Ratios

See “Sign conventions for resonance couplings” in the Note on Λ and Σ Resonances.

<table>
<thead>
<tr>
<th>$\Gamma(N\bar{K})/\Gamma_{total}$</th>
<th>Γ_1/Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>DOCUMENT ID</td>
</tr>
<tr>
<td>0.028 ± 0.005</td>
<td>ZHANG</td>
</tr>
<tr>
<td>0.05</td>
<td>DECLAIS</td>
</tr>
<tr>
<td>0.05 ± 0.02</td>
<td>LITCHFIELD</td>
</tr>
<tr>
<td>• • • We do not use the following data for averages, fits, limits, etc. • • •</td>
<td>1 KAMANO</td>
</tr>
<tr>
<td>not seen</td>
<td></td>
</tr>
<tr>
<td>1 From the preferred solution A in KAMANO 15.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\Gamma(\Sigma \pi)/\Gamma_{total}$</th>
<th>Γ_2/Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>DOCUMENT ID</td>
</tr>
<tr>
<td>0.891</td>
<td>1 KAMANO</td>
</tr>
<tr>
<td>• • • We do not use the following data for averages, fits, limits, etc. • • •</td>
<td></td>
</tr>
<tr>
<td>1 From the preferred solution A in KAMANO 15.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\Gamma(\Lambda \eta)/\Gamma_{total}$</th>
<th>Γ_3/Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>DOCUMENT ID</td>
</tr>
<tr>
<td>0.002</td>
<td>1 KAMANO</td>
</tr>
<tr>
<td>• • • We do not use the following data for averages, fits, limits, etc. • • •</td>
<td></td>
</tr>
<tr>
<td>1 From the preferred solution A in KAMANO 15.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\Gamma(\Sigma(1385) \pi, F\text{-wave})/\Gamma_{total}$</th>
<th>Γ_4/Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>DOCUMENT ID</td>
</tr>
<tr>
<td>0.105</td>
<td>1 KAMANO</td>
</tr>
<tr>
<td>• • • We do not use the following data for averages, fits, limits, etc. • • •</td>
<td></td>
</tr>
<tr>
<td>1 From the preferred solution A in KAMANO 15.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\Gamma(\Sigma(1385) \pi, H\text{-wave})/\Gamma_{total}$</th>
<th>Γ_5/Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>DOCUMENT ID</td>
</tr>
<tr>
<td>not seen</td>
<td></td>
</tr>
<tr>
<td>1 From the preferred solution A in KAMANO 15.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\Gamma(N\bar{K}^*(892), S=1/2, F\text{-wave})/\Gamma_{total}$</th>
<th>Γ_6/Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>DOCUMENT ID</td>
</tr>
<tr>
<td>not seen</td>
<td></td>
</tr>
<tr>
<td>1 From the preferred solution A in KAMANO 15.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\Gamma(N\bar{K}^*(892), S=3/2, F\text{-wave})/\Gamma_{total}$</th>
<th>Γ_7/Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>DOCUMENT ID</td>
</tr>
<tr>
<td>0.001</td>
<td>1 KAMANO</td>
</tr>
<tr>
<td>• • • We do not use the following data for averages, fits, limits, etc. • • •</td>
<td></td>
</tr>
<tr>
<td>1 From the preferred solution A in KAMANO 15.</td>
<td></td>
</tr>
</tbody>
</table>

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update

HTTP://PDG.LBL.GOV Page 3 Created: 5/22/2019 10:04
We do not use the following data for averages, fits, limits, etc.

1 From the preferred solution A in KAMANO 15.

\(\Gamma(NK^*(892), S=3/2, H\text{-wave}) / \Gamma_{\text{total}} \)

\(\Gamma / \Gamma \)

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30 ± 0.09</td>
<td>ZHANG 13A</td>
<td>DPWA Multichannel</td>
<td></td>
</tr>
</tbody>
</table>

\((\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \) in \(NK \rightarrow \Lambda(2020) \rightarrow \Sigma \pi \)

\((\Gamma_1 \Gamma_2)^{1/2} / \Gamma \)

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 0.02 ± 0.01</td>
<td>ZHANG 13A</td>
<td>DPWA Multichannel</td>
<td></td>
</tr>
<tr>
<td>− 0.15 ± 0.02</td>
<td>BARBARO-... 70</td>
<td>DPWA (K^- p \rightarrow \Sigma \pi)</td>
<td></td>
</tr>
</tbody>
</table>

\((\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \) in \(NK \rightarrow \Lambda(2020) \rightarrow \Lambda \omega \)

\((\Gamma_1 \Gamma_9)^{1/2} / \Gamma \)

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.05</td>
<td>BACCARI 77</td>
<td>DPWA (K^- p \rightarrow \Lambda \omega)</td>
<td></td>
</tr>
</tbody>
</table>

\(\Lambda(2020) \) REFERENCES

KAMANO	PR C92 025205	H. Kamano et al.	(ANL, OSAK)
ZHANG	PR C88 035205	H. Zhang et al.	(KSU)
GOPAL	Toronto Conf. 159	G.P. Gopal	(RHEL)
BACCARI	NC 41A 96	B. Baccari et al.	(SACL, CDEF) IJP
DECLAI	CERN 77-16	Y. Declais et al.	(CAEN, CERN) IJP
GOPAL	NP B119 362	G.P. Gopal et al.	(LOIC, RHEL)
HEMINGWAY	NP B91 12	R.J. Hemingway et al.	(CERN, HEIDH, MPIM) IJP
LITCHFIELD	NP B30 125	P.J. Litchfield et al.	(RHEL, CDEF, SACL) IJP
BARBARO-...	Duke Conf. 173	A. Barbaro-Galtieri	(LRL) IJP

Hyperon Resonances, 1970

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update