\(\Lambda_c(2595)^+ \)

\[I(\mathcal{J}^P) = 0(\frac{1}{2}^-) \] Status: ***

The \(\Lambda_c^+ \pi^+ \pi^- \) mode is largely, and perhaps entirely, \(\Sigma_c \pi \), which is just at threshold; since the \(\Sigma_c \) has \(\mathcal{J}^P = 1/2^+ \), the \(\mathcal{J}^P \) here is almost certainly \(1/2^- \). This result is in accord with the theoretical expectation that this is the charm counterpart of the strange \(\Lambda(1405) \).

\(\Lambda_c(2595)^+ \) MASS

The mass is obtained from the \(\Lambda_c(2595)^+-\Lambda_c^+ \) mass-difference measurements below.

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>2592.25\pm0.28 OUR FIT</td>
<td></td>
</tr>
</tbody>
</table>

\(\Lambda_c(2595)^+ - \Lambda_c^+ \) MASS DIFFERENCE

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>305.79\pm0.24 OUR FIT</td>
<td></td>
<td>AALTONEN 11H CDF</td>
<td>p\overline{p} at 1.96 TeV</td>
<td></td>
</tr>
<tr>
<td>305.79\pm0.14\pm0.20</td>
<td>3.5k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet \bullet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>305.6 \pm 0.3</td>
<td>1 BLECHMAN 03</td>
<td>Threshold shift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>309.7 \pm 0.9 \pm 0.4</td>
<td>19</td>
<td>ALBRECHT 97 ARG</td>
<td>(e^+ e^- \approx 10 \text{ GeV})</td>
<td></td>
</tr>
<tr>
<td>309.2 \pm 0.7 \pm 0.3</td>
<td>14 \pm 4.5</td>
<td>FRABETTI 96 E687</td>
<td>(\gamma \text{Be}, E\gamma \approx 220 \text{ GeV})</td>
<td></td>
</tr>
<tr>
<td>307.5 \pm 0.4 \pm 1.0</td>
<td>112 \pm 17</td>
<td>EDWARDS 95 CLE2</td>
<td>(e^+ e^- \approx 10.5 \text{ GeV})</td>
<td></td>
</tr>
</tbody>
</table>

\(\Lambda_c(2595)^+ \) WIDTH

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.59\pm0.30\pm0.47</td>
<td>3.5k</td>
<td>2 AALTONEN 11H CDF</td>
<td>p\overline{p} at 1.96 TeV</td>
<td></td>
</tr>
<tr>
<td>\bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet \bullet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.9 \pm 2.9^{+1.8}_{-2.1} \pm 1.4</td>
<td>19</td>
<td>ALBRECHT 97 ARG</td>
<td>(e^+ e^- \approx 10 \text{ GeV})</td>
<td></td>
</tr>
<tr>
<td>3.9 \pm 1.4^{+2.0}_{-1.2} \pm 1.0</td>
<td>112 \pm 17</td>
<td>EDWARDS 95 CLE2</td>
<td>(e^+ e^- \approx 10.5 \text{ GeV})</td>
<td></td>
</tr>
</tbody>
</table>

\(\Lambda_c(2595)^+ \) treats the three charged modes \(\Lambda_c(2595)^+ \rightarrow \Sigma_c(2455)^{++} \pi^- \), \(\Sigma_c(2455)^{++} \pi^0 \), \(\Sigma_c(2455)^0 \pi^+ \) separately in terms of a common coupling constant \(h_2 \) and obtains \(h_2^2 = 0.36 \pm 0.08 \). From this the width is determined.
\(\Lambda_c(2595)^+ \) DECAY MODES

\(\Lambda_c^+ \pi \pi \) and its submode \(\Sigma_c(2455) \pi \) — the latter just barely — are the only strong decays allowed to an excited \(\Lambda_c^+ \) having this mass; and the submode seems to dominate.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Fraction ((\Gamma_f/\Gamma))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma_1)</td>
<td>(\Lambda_c^+ \pi^+\pi^-)</td>
</tr>
<tr>
<td>(\Gamma_2)</td>
<td>(\Sigma_c(2455)^{++} \pi^-)</td>
</tr>
<tr>
<td>(\Gamma_3)</td>
<td>(\Sigma_c(2455)^0 \pi^+)</td>
</tr>
<tr>
<td>(\Gamma_4)</td>
<td>(\Lambda_c^+ \pi^+\pi^-) 3-body</td>
</tr>
<tr>
<td>(\Gamma_5)</td>
<td>(\Lambda_c^+ \pi^0)</td>
</tr>
<tr>
<td>(\Gamma_6)</td>
<td>(\Lambda_c^+ \gamma)</td>
</tr>
</tbody>
</table>

[a] See AALTONEN 11H, Fig. 8, for the calculated ratio of \(\Lambda_c^+ \pi^0 \pi^0 \) and \(\Lambda_c^+ \pi^+\pi^- \) partial widths as a function of the \(\Lambda_c(2595)^+ - \Lambda_c^+ \) mass difference. At our value of the mass difference, the ratio is about 4.

[b] A test that the isospin is indeed 0, so that the particle is indeed a \(\Lambda_c^+ \).

\(\Lambda_c(2595)^+ \) BRANCHING RATIOS

\(\Gamma(\Sigma_c(2455)^{++}\pi^-)/\Gamma(\Lambda_c^+\pi^+\pi^-) \)

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.36 ± 0.10 OUR AVERAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.37 ± 0.12 ± 0.13</td>
<td>ALBRECHT 97</td>
<td>ARG</td>
<td>(e^+ e^- \approx 10 \text{ GeV})</td>
</tr>
<tr>
<td>0.36 ± 0.09 ± 0.09</td>
<td>EDWARDS 95</td>
<td>CLE2</td>
<td>(e^+ e^- \approx 10.5 \text{ GeV})</td>
</tr>
</tbody>
</table>

\(\Gamma(\Sigma_c(2455)^0\pi^+)/\Gamma(\Lambda_c^+\pi^+\pi^-) \)

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.37 ± 0.10 OUR AVERAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.29 ± 0.10 ± 0.11</td>
<td>ALBRECHT 97</td>
<td>ARG</td>
<td>(e^+ e^- \approx 10 \text{ GeV})</td>
</tr>
<tr>
<td>0.42 ± 0.09 ± 0.09</td>
<td>EDWARDS 95</td>
<td>CLE2</td>
<td>(e^+ e^- \approx 10.5 \text{ GeV})</td>
</tr>
</tbody>
</table>

\[\left[\Gamma(\Sigma_c(2455)^{++}\pi^-) + \Gamma(\Sigma_c(2455)^0\pi^+ \right] / \Gamma(\Lambda_c^+\pi^+\pi^-) \]

\((\Gamma_2 + \Gamma_3)/\Gamma_1 \)

<table>
<thead>
<tr>
<th>VALUE</th>
<th>CL %</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.66 ± 0.13 ± 0.07</td>
<td>ALBRECHT 97</td>
<td>ARG</td>
<td>(e^+ e^- \approx 10 \text{ GeV})</td>
<td></td>
</tr>
<tr>
<td>>0.51</td>
<td>90</td>
<td>3 FRABETTI 96</td>
<td>E687</td>
<td>(e^+ e^- \approx 220 \text{ GeV})</td>
</tr>
</tbody>
</table>

\[\Gamma(\Lambda_c^+\pi^0)/\Gamma(\Lambda_c^+\pi^+\pi^-) \]

\(\Lambda_c^+ \pi^0 \) decay is forbidden by isospin conservation if this state is in fact a \(\Lambda_c^+ \).

<table>
<thead>
<tr>
<th>VALUE</th>
<th>CL %</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td><3.53</td>
<td>90</td>
<td>EDWARDS 95</td>
<td>CLE2</td>
<td>(e^+ e^- \approx 10.5 \text{ GeV})</td>
</tr>
</tbody>
</table>
\[\Gamma(\Lambda_c^+ \gamma)/\Gamma(\Lambda_c^+ \pi^+ \pi^-) \quad \Gamma_6/\Gamma_1 \]

<table>
<thead>
<tr>
<th>Value</th>
<th>CL%</th>
<th>Document ID</th>
<th>TECN</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.98</td>
<td>90</td>
<td>EDWARDS 95</td>
<td>CLE2</td>
<td>(e^+ e^- \approx 10.5 \text{ GeV})</td>
</tr>
</tbody>
</table>

\(\Lambda_c(2595)^+ \) References

AALTONEN	11H	PR D84 012003	T. Aaltonen et al.	(CDF Collab.)
BLECHMAN	03	PR D67 074033	A.E. Blechman et al.	(JHU, FLOR)
ALBRECHT	97	PL B402 207	H. Albrecht et al.	(ARGUS Collab.)
FRABETTI	96	PL B365 461	P.L. Frabetti et al.	(FNAL E687 Collab.)
EDWARDS	95	PRL 74 3331	K.W. Edwards et al.	(CLEO Collab.)