# Ζ

J = 1

# See the related review(s): Z Boson

### Z MASS

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). The fit is performed using the Z mass and width, the Z hadronic pole cross section, the ratios of hadronic to leptonic partial widths, and the Z pole forward-backward lepton asymmetries. This set is believed to be most free of correlations.

The Z-boson mass listed here corresponds to the mass parameter in a Breit-Wigner distribution with mass dependent width. The value is 34 MeV greater than the real part of the position of the pole (in the energy-squared plane) in the Z-boson propagator. Also the LEP experiments have generally assumed a fixed value of the  $\gamma-Z$  interferences term based on the standard model. Keeping this term as free parameter leads to a somewhat larger error on the fitted Z mass. See ACCIARRI 00Q and ABBIENDI 04G for a detailed investigation of both these issues.

| VALUE (GeV)                  | EVTS         | DOCUMENT ID                | TECN         | COMMENT                                          |  |  |  |  |
|------------------------------|--------------|----------------------------|--------------|--------------------------------------------------|--|--|--|--|
| 91.1876±0.0021 OUR FIT       |              |                            |              |                                                  |  |  |  |  |
| $91.1852 \pm 0.0030$         | 4.57M        | <sup>1</sup> ABBIENDI 01   | 1A OPAL      | $E_{\rm cm}^{ee}=$ 88–94 GeV                     |  |  |  |  |
| $91.1863 \pm 0.0028$         | 4.08M        | <sup>2</sup> ABREU 00      | OF DLPH      | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |  |  |  |  |
| $91.1898 \pm 0.0031$         | 3.96M        | <sup>3</sup> ACCIARRI 00   | OC L3        | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |  |  |  |  |
| $91.1885 \pm 0.0031$         | 4.57M        | <sup>4</sup> BARATE 00     | OC ALEP      | $E_{\rm cm}^{ee}$ = 88–94 GeV                    |  |  |  |  |
| • • • We do not use t        | he following | data for averages, fits,   | limits, etc. | • • •                                            |  |  |  |  |
| $91.084 \pm 0.107$           |              | <sup>5</sup> ANDREEV 18    | 8a H1        | e <sup>±</sup> p                                 |  |  |  |  |
| $91.1872 \pm 0.0033$         |              | <sup>6</sup> ABBIENDI 04   | 4g OPAL      | $E_{cm}^{ee} = LEP1 +$                           |  |  |  |  |
|                              |              | 7                          |              | 130–209 GeV                                      |  |  |  |  |
| $91.272 \pm 0.032 \pm 0.032$ | 33           | <sup>7</sup> ACHARD 04     | 4C L3        | $E_{Cm}^{ee} = 183209 \; GeV$                    |  |  |  |  |
| $91.1875 \pm 0.0039$         | 3.97M        | <sup>8</sup> ACCIARRI 00   | 0Q L3        | $E_{cm}^{ee} = LEP1 +$                           |  |  |  |  |
|                              |              | 2                          |              | 130–189 GeV                                      |  |  |  |  |
| $91.151 \pm 0.008$           |              | <sup>9</sup> MIYABAYASHI 9 | 5 TOPZ       | $E_{\rm cm}^{ee}$ = 57.8 GeV                     |  |  |  |  |
| $91.74 \pm 0.28 \pm 0.93$    | 3 156        | <sup>10</sup> ALITTI 92    | 2b UA2       | E <sup>pp</sup> <sub>cm</sub> = 630 GeV          |  |  |  |  |
| 90.9 ±0.3 ±0.2               | 188          | <sup>11</sup> ABE 89       | 9c CDF       | $E^{p\overline{p}}_{cm}$ = 1.8 TeV               |  |  |  |  |
| $91.14 \pm 0.12$             | 480          | <sup>12</sup> ABRAMS 89    | 9b MRK2      | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 89–93 GeV |  |  |  |  |
| 93.1 ±1.0 ±3.0               | 24           | <sup>13</sup> ALBAJAR 89   | 9 UA1        | $E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV       |  |  |  |  |

<sup>1</sup> ABBIENDI 01A error includes approximately 2.3 MeV due to statistics and 1.8 MeV due to LEP energy uncertainty.

 $^{2}$  The error includes 1.6 MeV due to LEP energy uncertainty.

<sup>3</sup>The error includes 1.8 MeV due to LEP energy uncertainty.

<sup>4</sup> BARATE 00C error includes approximately 2.4 MeV due to statistics, 0.2 MeV due to experimental systematics, and 1.7 MeV due to LEP energy uncertainty.

- <sup>5</sup> ANDREEV 18A obtain this result in a combined electroweak and QCD analysis using all deep-inelastic  $e^+p$  and  $e^-p$  neutral current and charged current scattering cross sections published by the H1 Collaboration, including data with longitudinally polarized lepton beams.
- <sup>6</sup> ABBIENDI 04G obtain this result using the S-matrix formalism for a combined fit to their cross section and asymmetry data at the Z peak and their data at 130-209 GeV. The authors have corrected the measurement for the 34 MeV shift with respect to the Breit-Wigner fits.
- <sup>7</sup> ACHARD 04C select  $e^+e^- \rightarrow Z\gamma$  events with hard initial-state radiation. Z decays to  $q \overline{q}$  and muon pairs are considered. The fit results obtained in the two samples are found consistent to each other and combined considering the uncertainty due to ISR modelling as fully correlated.
- <sup>8</sup> ACCIARRI 00Q interpret the *s*-dependence of the cross sections and lepton forwardbackward asymmetries in the framework of the S-matrix formalism. They fit to their cross section and asymmetry data at high energies, using the results of S-matrix fits to Z-peak data (ACCIARRI 00C) as constraints. The 130–189 GeV data constrains the  $\gamma/Z$ interference term. The authors have corrected the measurement for the 34.1 MeV shift with respect to the Breit-Wigner fits. The error contains a contribution of  $\pm 2.3$  MeV due to the uncertainty on the  $\gamma Z$  interference.
- <sup>9</sup> MIYABAYASHI 95 combine their low energy total hadronic cross-section measurement with the ACTON 93D data and perform a fit using an S-matrix formalism. As expected, this result is below the mass values obtained with the standard Breit-Wigner parametrization.
- <sup>10</sup> Enters fit through W/Z mass ratio given in the W Particle Listings. The ALITTI 92B systematic error (±0.93) has two contributions: one (±0.92) cancels in  $m_W/m_Z$  and one (±0.12) is noncancelling. These were added in quadrature.

 $^{11}$  First error of ABE 89 is combination of statistical and systematic contributions; second is mass scale uncertainty.

 $^{12}$  ABRAMS 89B uncertainty includes 35 MeV due to the absolute energy measurement.

 $^{13}$ ALBAJAR 89 result is from a total sample of 33  $Z 
ightarrow e^+e^-$  events.

|       |                    |            | ,           |                       |             |                      |                                                             |
|-------|--------------------|------------|-------------|-----------------------|-------------|----------------------|-------------------------------------------------------------|
| VALUE | E (GeV)            |            | EVTS        | DOCUMENT ID           |             | TECN                 | COMMENT                                                     |
| 2.495 | $52 \pm 0.002$     | 3 OUR F    | TIT         |                       |             |                      |                                                             |
| 2.494 | $8 \pm 0.004$      | 1          | 4.57M       | <sup>1</sup> ABBIENDI | 01A         | OPAL                 | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV            |
| 2.487 | $6 \pm 0.004$      | 1          | 4.08M       | <sup>2</sup> ABREU    | 00F         | DLPH                 | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV             |
| 2.502 | $4 \pm 0.004$      | 2          | 3.96M       | <sup>3</sup> ACCIARRI | <b>00</b> C | L3                   | <i>E<sup>ee</sup></i> = 88–94 GeV                           |
| 2.495 | $1 \pm 0.004$      | 3          | 4.57M       | <sup>4</sup> BARATE   | <b>00</b> C | ALEP                 | $E_{\rm cm}^{ee} = 88-94 {\rm GeV}$                         |
| • • • | We do i            | not use t  | he followir | ng data for average   | s, fits,    | limits, e            | etc. • • •                                                  |
| 2.494 | $3 \pm 0.004$      | 1          |             | <sup>5</sup> ABBIENDI | <b>0</b> 4G | OPAL                 | <i>E<sup>ee</sup></i> <sub>cm</sub> = LEP1 +<br>130–209 GeV |
| 2.502 | $25 \pm 0.004$     | 1          | 3.97M       | <sup>6</sup> ACCIARRI | 00Q         | L3                   | $E_{cm}^{ee} = LEP1 +$                                      |
| 2.50  | $\pm 0.21$         | $\pm 0.06$ |             | <sup>7</sup> ABREU    | <b>96</b> R |                      | 130–189 GeV<br>E <sup>ee</sup> = 91.2 GeV                   |
| 3.8   | $\pm 0.8$          | $\pm 1.0$  | 188         | ABE                   | 89C         | CDF                  | $E_{\rm cm}^{p\overline{p}}$ = 1.8 TeV                      |
| 2.42  | $^{+0.45}_{-0.35}$ |            | 480         | <sup>8</sup> ABRAMS   | <b>89</b> B | MRK2                 | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 89–93 GeV            |
| 2.7   | $^{+1.2}_{-1.0}$   | $\pm 1.3$  | 24          | <sup>9</sup> ALBAJAR  | 89          | UA1                  | $E_{\rm cm}^{p\overline{p}}$ = 546,630 GeV                  |
| 2.7   | $\pm 2.0$          | $\pm 1.0$  | 25          | <sup>10</sup> ANSARI  | 87          | UA2                  | E <sup>pp</sup> <sub>cm</sub> = 546,630 GeV                 |
| НТТ   | P://PD             | G.LBL      | Page 2      |                       | Crea        | ated: 8/2/2019 16:43 |                                                             |

## Z WIDTH

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06).

- <sup>1</sup>ABBIENDI 01A error includes approximately 3.6 MeV due to statistics, 1 MeV due to event selection systematics, and 1.3 MeV due to LEP energy uncertainty.
- $^{2}$  The error includes 1.2 MeV due to LEP energy uncertainty.
- <sup>3</sup>The error includes 1.3 MeV due to LEP energy uncertainty.
- <sup>4</sup> BARATE 00C error includes approximately 3.8 MeV due to statistics, 0.9 MeV due to experimental systematics, and 1.3 MeV due to LEP energy uncertainty.
- <sup>5</sup> ABBIENDI 04G obtain this result using the S-matrix formalism for a combined fit to their cross section and asymmetry data at the Z peak and their data at 130–209 GeV. The authors have corrected the measurement for the 1 MeV shift with respect to the Breit-Wigner fits.
- <sup>6</sup> ACCIARRI 00Q interpret the s-dependence of the cross sections and lepton forwardbackward asymmetries in the framework of the S-matrix formalism. They fit to their cross section and asymmetry data at high energies, using the results of S-matrix fits to Z-peak data (ACCIARRI 00C) as constraints. The 130–189 GeV data constrains the  $\gamma/Z$ interference term. The authors have corrected the measurement for the 0.9 MeV shift with respect to the Breit-Wigner fits.
- <sup>7</sup>ABREU 96R obtain this value from a study of the interference between initial and final state radiation in the process  $e^+e^- \rightarrow Z \rightarrow \mu^+\mu^-$ .
- $^{8}$  ABRAMS 89B uncertainty includes 50 MeV due to the miniSAM background subtraction  $_{\circ}$  error.
- <sup>9</sup> ALBAJAR 89 result is from a total sample of 33  $Z \rightarrow e^+e^-$  events.
- <sup>10</sup> Quoted values of ANSARI 87 are from direct fit. Ratio of Z and W production gives either  $\Gamma(Z) < (1.09 \pm 0.07) \times \Gamma(W)$ , CL = 90% or  $\Gamma(Z) = (0.82 + 0.19 \pm 0.06) \times \Gamma(W)$ . Assuming Standard-Model value  $\Gamma(W) = 2.65$  GeV then gives  $\Gamma(Z) < 2.89 \pm 0.19$  or  $= 2.17 + 0.50 \pm 0.16$ .

|                 | Mode                                                | Fraction $(\Gamma_i/\Gamma)$       | Scale factor/<br>Confidence level |
|-----------------|-----------------------------------------------------|------------------------------------|-----------------------------------|
| $\Gamma_1$      | $e^+e^-$                                            | [ <i>a</i> ] ( 3.3632±0.0042) %    |                                   |
| Γ2              | $\mu^+\mu^-$                                        | [ <i>a</i> ] ( 3.3662±0.0066) %    |                                   |
| Γ <sub>3</sub>  | $\tau^+ \tau^-$                                     | [a] ( 3.3696±0.0083) %             |                                   |
| Γ4              | $\ell^+ \ell^-$                                     | [a,b] ( 3.3658±0.0023) %           |                                   |
| $\Gamma_5$      | $\mu^+\mu^-\mu^+\mu^-$                              |                                    |                                   |
| Г <sub>6</sub>  | $\ell^+ \ell^- \ell^+ \ell^-$                       | $[c]$ (4.58 $\pm$ 0.26 ) $	imes$ 1 | 0-6                               |
| Γ <sub>7</sub>  | invisible                                           | $[a]$ (20.000 $\pm 0.055$ )%       |                                   |
| Г <sub>8</sub>  | hadrons                                             | [a] (69.911 $\pm 0.056$ )%         |                                   |
| Г9              | $(u\overline{u}+c\overline{c})/2$                   | (11.6 $\pm$ 0.6 ) %                |                                   |
| $\Gamma_{10}$   | $(d\overline{d} + s\overline{s} + b\overline{b})/3$ | $(15.6 \pm 0.4)$ %                 |                                   |
| $\Gamma_{11}$   | <u>c</u>                                            | (12.03 $\pm$ 0.21 ) %              |                                   |
| $\Gamma_{12}$   | b b                                                 | (15.12 $\pm 0.05$ ) %              |                                   |
| Γ <sub>13</sub> | bbbb                                                | $(3.6 \pm 1.3) 	imes 1$            | 0 <sup>-4</sup>                   |
| $\Gamma_{14}$   | ggg                                                 | < 1.1 %                            | CL=95%                            |
| $\Gamma_{15}$   | $\pi^{0}\gamma$                                     | < 2.01 × 1                         | $0^{-5}$ CL=95%                   |
| $\Gamma_{16}$   | $\eta\gamma$                                        | < 5.1 × 1                          | $0^{-5}$ CL=95%                   |
| $\Gamma_{17}$   | $ ho^{0}\gamma$                                     | < 2.5 × 1                          | $0^{-5}$ CL=95%                   |
| Γ <sub>18</sub> | $\omega \gamma$                                     | < 6.5 × 1                          | $0^{-4}$ CL=95%                   |
| Γ <sub>19</sub> | $\eta^{\prime}(958)\gamma$                          | < 4.2 × 1                          | $0^{-5}$ CL=95%                   |
|                 |                                                     |                                    |                                   |

Z DECAY MODES

| Γ <sub>20</sub><br>Γ <sub>21</sub><br>Γ <sub>22</sub> | $ \phi \gamma \\ \gamma \gamma \\ \pi^0 \pi^0 $         | < 9<br>< 1.46<br>< 1.52                                 | $\begin{array}{c} \times 10^{-7} \\ \times 10^{-5} \\ \times 10^{-5} \end{array}$ | CL=95%<br>CL=95%<br>CL=95% |
|-------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------|
| Γ <sub>23</sub>                                       | $\gamma \gamma \gamma$                                  | < 2.2                                                   | imes 10 <sup>-6</sup>                                                             | CL=95%                     |
| Г <sub>24</sub>                                       | $\pi^{\pm}W^{\mp}$                                      | [d] < 7                                                 | $\times 10^{-5}$                                                                  | CL=95%                     |
| Γ <sub>25</sub>                                       | $ ho^{\pm} W^{\mp}$                                     | [d] < 8.3                                               | imes 10 <sup>-5</sup>                                                             | CL=95%                     |
| Γ <sub>26</sub>                                       | $J/\psi(1S)$ X                                          | $(\begin{array}{cc} 3.51 & +0.23 \\ -0.25 \end{array})$ | ) × 10 <sup>-3</sup>                                                              | S=1.1                      |
| Γ <sub>27</sub>                                       | $J/\psi(1S)\gamma$                                      | < 2.3                                                   | imes 10 <sup>-6</sup>                                                             | CL=95%                     |
| Г <sub>28</sub>                                       | $\psi(2S)X$                                             | ( $1.60$ $\pm 0.29$                                     | $) 	imes 10^{-3}$                                                                 |                            |
| Γ <sub>29</sub>                                       | $\psi(2S)\gamma$                                        | < 4.5                                                   | imes 10 <sup>-6</sup>                                                             | CL=95%                     |
| Г <sub>30</sub>                                       | $J/\psi(1S)\ell^+\ell^-$                                |                                                         |                                                                                   |                            |
| Г <sub>31</sub>                                       | $\chi_{c1}(1P)X$                                        | $(2.9 \pm 0.7)$                                         |                                                                                   |                            |
| Г <sub>32</sub>                                       | $\chi_{c2}(1P)X$                                        | < 3.2                                                   | $\times 10^{-3}$                                                                  | CL=90%                     |
| Г <sub>33</sub>                                       | $arphi(1S) 	imes + arphi(2S) 	imes \ + arphi(3S) 	imes$ | $(1.0 \pm 0.5)$                                         | ) × 10 <sup>-4</sup>                                                              |                            |
| Г <sub>34</sub>                                       | $\Upsilon(1S)X$                                         | < 3.4                                                   | imes 10 <sup>-6</sup>                                                             | CL=95%                     |
| Γ <sub>35</sub>                                       | $\Upsilon(1S)\chi$<br>$\Upsilon(1S)\gamma$              | < 2.8                                                   | $\times 10 \times 10^{-6}$                                                        | CL=95%                     |
| Γ <sub>35</sub>                                       | $\Upsilon(2S) X$                                        | < 6.5                                                   | $\times 10 \times 10^{-6}$                                                        | CL=95%                     |
| Γ <sub>37</sub>                                       | $\Upsilon(2S)\chi$<br>$\Upsilon(2S)\gamma$              | < 1.7                                                   | $\times 10 \times 10^{-6}$                                                        | CL=95%                     |
| Γ <sub>38</sub>                                       | $\Upsilon(3S) X$                                        | < 5.4                                                   | $\times 10 \times 10^{-6}$                                                        | CL=95%                     |
| Γ <sub>38</sub>                                       | $\Upsilon(3S)\gamma$                                    | < 4.8                                                   | $\times 10^{-6}$                                                                  | CL=95%                     |
| Γ <sub>40</sub>                                       | $(D^0/\overline{D}^0)$ X                                | (20.7 ±2.0                                              | )%                                                                                | CL=5570                    |
| Γ <sub>41</sub>                                       | $D^{\pm}X$                                              | $(12.2 \pm 1.7)$                                        | ) %                                                                               |                            |
| $\Gamma_{42}$                                         | $D^{*}(2010)^{\pm}X$                                    | [d] $(11.4 \pm 1.3)$                                    | ) %                                                                               |                            |
| Γ <sub>43</sub>                                       | $D_{s1}(2536)^{\pm}X$                                   | $(3.6 \pm 0.8)$                                         | $) \times 10^{-3}$                                                                |                            |
| Γ <sub>44</sub>                                       |                                                         | $(5.8 \pm 2.2)$                                         | $) \times 10^{-3}$                                                                |                            |
|                                                       | $D^{*'}(2629)^{\pm}X$                                   | searched for                                            | ) / 20                                                                            |                            |
| Γ <sub>46</sub>                                       | BX                                                      |                                                         |                                                                                   |                            |
| Γ <sub>47</sub>                                       | <i>B</i> *X                                             |                                                         |                                                                                   |                            |
| Γ <sub>48</sub>                                       | B <sup>+</sup> X                                        | $[e]$ ( 6.08 $\pm 0.13$                                 | ) %                                                                               |                            |
| Γ <sub>49</sub>                                       | $B_s^0 X$                                               | [e] (1.59 ±0.13                                         |                                                                                   |                            |
| Г <sub>50</sub>                                       | $B_c^+ X$<br>$\Lambda_c^+ X$                            | searched for                                            | ,                                                                                 |                            |
| Γ <sub>51</sub>                                       | Λ <sup>Ť</sup> X                                        | $(1.54 \pm 0.33)$                                       | ) %                                                                               |                            |
| Γ <sub>52</sub>                                       | $\Xi_c^0 X$                                             | seen                                                    | ,                                                                                 |                            |
|                                                       | $= \frac{1}{c}$                                         | seen                                                    |                                                                                   |                            |
|                                                       | <i>b</i> -baryon X                                      | [e] ( $1.38 \pm 0.22$                                   | ) %                                                                               |                            |
|                                                       | anomalous $\gamma$ + hadrons                            | [f] < 3.2                                               | $\times 10^{-3}$                                                                  | CL=95%                     |
|                                                       | $e^+e^-\gamma$                                          | [f] < 5.2<br>[f] < 5.2                                  | $\times$ 10 $\times$ 10 <sup>-4</sup>                                             | CL=95%                     |
| $\Gamma_{57}$                                         | $\mu^+\mu^-\gamma$                                      | [f] < 5.6                                               | $\times 10^{-4}$                                                                  | CL=95%                     |
|                                                       | $\tau^{\mu}$ $\tau^{\mu}$ $\tau^{-}$ $\gamma$           | [f] < 7.3                                               | $\times 10^{-4}$                                                                  | CL=95%                     |
|                                                       | $\ell^+\ell^-\gamma\gamma$                              | [g] < 6.8                                               | $\times 10^{-6}$                                                                  | CL=95%                     |
|                                                       | $q \overline{q} \gamma \gamma$                          | [g] < 5.5                                               | imes 10 <sup>-6</sup>                                                             | CL=95%                     |
|                                                       | $\nu \overline{\nu} \gamma \gamma$                      | [g] < 3.1                                               | imes 10 <sup>-6</sup>                                                             | CL=95%                     |
| <b>J 1</b>                                            |                                                         |                                                         |                                                                                   |                            |

| Г <sub>62</sub> | $e^{\pm}\mu^{\mp}$     | LF  | [d] < 7.5 | imes 10 <sup>-7</sup> | CL=95% |
|-----------------|------------------------|-----|-----------|-----------------------|--------|
| Г <sub>63</sub> | $e^{\pm}	au^{\mp}$     | LF  | [d] < 9.8 | imes 10 <sup>-6</sup> | CL=95% |
| Г <sub>64</sub> | $\mu^{\pm} \tau^{\mp}$ | LF  | [d] < 1.2 | imes 10 <sup>-5</sup> | CL=95% |
| Г <sub>65</sub> | pe                     | L,B | < 1.8     | imes 10 <sup>-6</sup> | CL=95% |
| Г <sub>66</sub> | $p\mu$                 | L,B | < 1.8     | imes 10 <sup>-6</sup> | CL=95% |

- [a] This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06 (Physics Reports (Physics Letters C) 427 257 (2006)).
- [b]  $\ell$  indicates each type of lepton (e,  $\mu$ , and  $\tau$ ), not sum over them.
- [c] Here  $\ell$  indicates e or  $\mu$ .
- [d] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [e] This value is updated using the product of (i) the  $Z \rightarrow bb$  fraction from this listing and (ii) the *b*-hadron fraction in an unbiased sample of weakly decaying *b*-hadrons produced in *Z*-decays provided by the Heavy Flavor Averaging Group (HFLAV, http://www.slac.stanford.edu/xorg/hflav/osc/PDG\_2009/#FRACZ).
- [f] See the Particle Listings below for the  $\gamma$  energy range used in this measurement.
- [g] For  $m_{\gamma \gamma} = (60 \pm 5)$  GeV.

### **Z PARTIAL WIDTHS**

| Γ( | (e+ | e <sup></sup> | ) |
|----|-----|---------------|---|
|    |     |               |   |

Γ1

For the LEP experiments, this parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.

| VALUE (MeV)                       | EVTS   | DOCUMENT ID      |     | TECN | COMMENT                                          |
|-----------------------------------|--------|------------------|-----|------|--------------------------------------------------|
| 83.91±0.12 OUR FIT                |        |                  |     |      |                                                  |
| $83.66 \pm 0.20$                  | 137.0K | ABBIENDI         | 01A | OPAL | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $83.54 \pm 0.27$                  | 117.8k | ABREU            | 00F | DLPH | $E_{\rm cm}^{ee}$ = 88–94 GeV                    |
| $84.16 \pm 0.22$                  | 124.4k | ACCIARRI         | 00C | L3   | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $83.88 \!\pm\! 0.19$              |        | BARATE           | 00C | ALEP | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $82.89 \!\pm\! 1.20 \!\pm\! 0.89$ |        | <sup>1</sup> ABE | 95J | SLD  | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 91.31 GeV |

<sup>1</sup> ABE 95J obtain this measurement from Bhabha events in a restricted fiducial region to improve systematics. They use the values 91.187 and 2.489 GeV for the Z mass and total decay width to extract this partial width.

# $\Gamma(\mu^+\mu^-)$

#### Γ2

This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.

| VALUE (MeV)              | EVTS   | DOCUMENT ID |     | TECN | COMMENT                                                 |
|--------------------------|--------|-------------|-----|------|---------------------------------------------------------|
| 83.99 $\pm$ 0.18 OUR FIT |        |             |     |      |                                                         |
| $84.03 \pm 0.30$         | 182.8K | ABBIENDI    | 01A | OPAL | $E_{\rm cm}^{ee}$ = 88–94 GeV                           |
| $84.48 \pm 0.40$         | 157.6k | ABREU       | 00F | DLPH | <i>E</i> <sup><i>ee</i></sup> <sub>cm</sub> = 88–94 GeV |
|                          |        |             |     |      |                                                         |
| HTTP://PDG.LBL.          | GOV    | Page 5      |     | Crea | ated: 8/2/2019 16:43                                    |

| 83.95±0.44       | 113.4k | ACCIARRI | 00c L3   | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |
|------------------|--------|----------|----------|-------------------------------------------------|
| $84.02 \pm 0.28$ |        | BARATE   | 00C ALEP | $E_{\rm cm}^{ee}$ = 88–94 GeV                   |

# $\Gamma(\tau^+\tau^-)$

Γ3

Γ<sub>4</sub>

This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.

| VALUE (MeV)          | EVTS   | DOCUMENT ID |             | TECN | COMMENT                                         |
|----------------------|--------|-------------|-------------|------|-------------------------------------------------|
| 84.08±0.22 OUR FIT   |        |             |             |      |                                                 |
| $83.94 \!\pm\! 0.41$ | 151.5K | ABBIENDI    | 01A         | OPAL | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |
| $83.71 \pm 0.58$     | 104.0k | ABREU       | 00F         | DLPH | <i>E<sup>ee</sup></i> = 88–94 GeV               |
| $84.23 \pm 0.58$     | 103.0k | ACCIARRI    | <b>00</b> C | L3   | <i>E<sup>ee</sup></i> = 88–94 GeV               |
| $84.38 \pm 0.31$     |        | BARATE      | <b>00</b> C | ALEP | $E_{\rm cm}^{ee}$ = 88–94 GeV                   |

 $\Gamma(\ell^+\ell^-)_{\ell}$  indicates each type of lepton (*e*,  $\mu$ , and  $\tau$ ), not sum over them.

In our fit  $\Gamma(\ell^+ \ell^-)$  is defined as the partial Z width for the decay into a pair of massless charged leptons. This parameter is not directly used in the 5-parameter fit assuming lepton universality but is derived using the fit results. See the note "The Z boson" and ref. LEP-SLC 06.

| VALUE (MeV)         | EVTS   | DOCUMENT ID |             | TECN | COMMENT                                          |
|---------------------|--------|-------------|-------------|------|--------------------------------------------------|
| 83.984±0.086 OUR FI | т      |             |             |      |                                                  |
| $83.82 \pm 0.15$    | 471.3K | ABBIENDI    | 01A         | OPAL | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV  |
| $83.85 \pm 0.17$    | 379.4k | ABREU       | 00F         | DLPH | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $84.14 \pm 0.17$    | 340.8k | ACCIARRI    | <b>00</b> C | L3   | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $84.02 \pm 0.15$    | 500k   | BARATE      | <b>00</b> C | ALEP | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |

## **Γ**(invisible)

Γ7

We use only direct measurements of the invisible partial width using the single photon channel to obtain the average value quoted below. OUR FIT value is obtained as a difference between the total and the observed partial widths assuming lepton universality.

| VALUE (MeV)                                | EVTS        | DOCUMENT ID           |             | TECN      | COMMENT                                          |
|--------------------------------------------|-------------|-----------------------|-------------|-----------|--------------------------------------------------|
| 499.0 $\pm$ 1.5 OUR FIT                    |             |                       |             |           |                                                  |
| 503 $\pm 16$ OUR AVER                      | RAGE Erro   | r includes scale f    | actor       | of 1.2.   |                                                  |
| 498 $\pm 12$ $\pm 12$                      | 1791        | ACCIARRI              | <b>98</b> G | L3        | $E_{\rm cm}^{ee}$ = 88–94 GeV                    |
| $539$ $\pm 26$ $\pm 17$                    | 410         | AKERS                 | <b>95</b> C | OPAL      | $E_{\rm cm}^{ee}$ = 88–94 GeV                    |
| $450 \pm 34 \pm 34$                        | 258         | BUSKULIC              | 93L         | ALEP      | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $540$ $\pm80$ $\pm40$                      | 52          | ADEVA                 | 92          | L3        | $E_{\rm cm}^{ee}$ = 88–94 GeV                    |
| $\bullet \bullet \bullet$ We do not use th | e following | data for average      | s, fits,    | limits, e | etc. • • •                                       |
| 498.1± 2.6                                 |             | <sup>1</sup> ABBIENDI | 01A         | OPAL      | <i>E<sup>ee</sup></i> = 88–94 GeV                |
| 498.1± 3.2                                 |             | <sup>1</sup> ABREU    | 00F         | DLPH      | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV  |
| 499.1± 2.9                                 |             | <sup>1</sup> ACCIARRI | <b>00</b> C | L3        | <i>E<sup>ee</sup></i> = 88–94 GeV                |
| 499.1± 2.5                                 |             | <sup>1</sup> BARATE   | <b>00</b> C | ALEP      | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV  |
|                                            |             |                       |             |           |                                                  |

<sup>1</sup>This is an indirect determination of  $\Gamma(invisible)$  from a fit to the visible Z decay modes.

### Γ(hadrons)

## Г8

This parameter is not directly used in the 5-parameter fit assuming lepton universality, but is derived using the fit results. See the note "The Z boson" and ref. LEP-SLC 06.

| VALUE (MeV)              | EVTS  | DOCUMENT ID |             | TECN | COMMENT                                                 |
|--------------------------|-------|-------------|-------------|------|---------------------------------------------------------|
| 1744.4 $\pm$ 2.0 OUR FIT |       |             |             |      |                                                         |
| $1745.4 \pm 3.5$         | 4.10M | ABBIENDI    | 01A         | OPAL | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV         |
| $1738.1 \pm 4.0$         | 3.70M | ABREU       | 00F         | DLPH | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV        |
| $1751.1 \pm 3.8$         | 3.54M | ACCIARRI    | <b>00</b> C | L3   | <i>E</i> <sup><i>ee</i></sup> <sub>cm</sub> = 88–94 GeV |
| $1744.0 \pm 3.4$         | 4.07M | BARATE      | <b>00</b> C | ALEP | $E_{\rm cm}^{ee}=$ 88–94 GeV                            |
|                          | 0.0   |             |             | -    | em                                                      |

# **Z BRANCHING RATIOS**

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06).

# $\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-)$

 $\Gamma_2/\Gamma_1$ 

This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06. VALUE DOCUMENT ID

### 1.0009±0.0028 OUR FIT

| $\Gamma(	au^+	au^-)/\Gamma(e^+e^-)$ | DOCUMENT ID          | TECN      | Соммент                              | ′Γ <sub>1</sub> |
|-------------------------------------|----------------------|-----------|--------------------------------------|-----------------|
| 1.0020±0.0032 OUR AVERAGE           | DOCOMENT ID          | <u></u>   | COMMENT                              |                 |
| $1.02 \pm 0.06$                     | <sup>1</sup> AAIJ    | 18AR LHCB | $E^{pp}_{cm} = 8 \text{ TeV}$        |                 |
| $1.0019 \pm 0.0032$                 | <sup>2</sup> LEP-SLC | 06        | $E_{\rm cm}^{ee} = 88-94  {\rm GeV}$ |                 |

<sup>1</sup>AAIJ 18AR obtain the result from the ratio of the measured  $pp \rightarrow Z + X$  cross sections in the corresponding Z decay channels.

 $^{2}$  This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.

| $\Gamma(	au^+	au^-)/\Gamma(\mu^+\mu^-)$ |                      |           | $\Gamma_3/\Gamma_2$            |
|-----------------------------------------|----------------------|-----------|--------------------------------|
| VALUE                                   | DOCUMENT ID          | TECN      | COMMENT                        |
| $1.0010\pm0.0026$ OUR AVERAGE           |                      |           |                                |
| $1.01 \pm 0.05$                         | <sup>1</sup> AAIJ    | 18AR LHCB | $E_{\rm cm}^{pp} = 8 { m TeV}$ |
| $1.0010 \pm 0.0026$                     | <sup>2</sup> LEP-SLC | 06        | $E_{\rm cm}^{ee} = 88$ –94 GeV |

<sup>1</sup>AAIJ 18AR obtain the result from the ratio of the measured  $pp \rightarrow Z + X$  cross sections in the corresponding Z decay channels.

 $^{2}$  This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06.

# $\Gamma(\ell^+\ell^-\ell^+\ell^-)/\Gamma_{total}$

### $\Gamma_6/\Gamma$

Here  $\ell$  indicates either *e* or  $\mu$ . The branching fractions in this node are given within the phase-space defined by the requirements that (i) the 4-lepton invariant mass is between 80 GeV and 100 GeV, and (ii) any opposite-sign same-flavor lepton pair has a di-lepton invariant mass larger than 4 GeV.

OUR EVALUATION below is presented in RAINBOLT 19, assessing and including correlated systematic uncertainties between the measurements.

|                                                                      | EVTS  | DOCUMENT ID             |                | TECN | COMMENT                        | _ |
|----------------------------------------------------------------------|-------|-------------------------|----------------|------|--------------------------------|---|
| 4.58±0.26 OUR EVALU                                                  | ATION |                         |                |      |                                | _ |
| $4.83^{+0.23}_{-0.22}{}^{+0.35}_{-0.32}$                             | 509   | <sup>1</sup> SIRUNYAN   | 18bt           | CMS  | $E^{pp}_{ m cm}=13~ m TeV$     |   |
| $\begin{array}{rrrr} 4.9 & +0.8 & +0.4 \\ & -0.7 & -0.2 \end{array}$ | 39    | <sup>2</sup> KHACHATRY  | . <b>16</b> CC | CMS  | $E^{pp}_{ m cm}=13~ m TeV$     |   |
| $4.31\!\pm\!0.34\!\pm\!0.17$                                         | 172   | AAD                     | 14N            | ATLS | $E^{pp}_{cm} =$ 7, 8 TeV       |   |
| $4.6 \begin{array}{c} +1.0 \\ -0.9 \end{array} \pm 0.2$              | 28    | <sup>3</sup> CHATRCHYAN | 12bn           | CMS  | $E_{\rm cm}^{pp} = 7 { m TeV}$ |   |
|                                                                      |       |                         |                |      |                                |   |

<sup>1</sup>SIRUNYAN 18BT report the  $Z \rightarrow 4\ell$  branching fraction =  $(4.83 + 0.23 + 0.32 \pm 0.08 \pm 0.12) \times 10^{-6}$  where the uncertainties are statistical partematic due to the provide the second statistical partematic due to the second statistical pa

 $0.12) \times 10^{-6}$ , where the uncertainties are statistical, systematic, due to theory, and luminosity. The last three have been added in quadrature to obtain the total systematic error.

 $^{\rm error.}_{\rm 2}$  KHACHATRYAN 16CC reports  $(4.9 \substack{+0.8 \\ -0.7 \ -0.2 \ -0.1 \ -0.1}) \times 10^{-6}$  value, where the uncertainties are statistical, systematic, theory, and due to luminosity. We have combined uncertainties in quadrature.

<sup>3</sup>CHATRCHYAN 12BN reports  $(4.2^{+0.9}_{-0.8} \pm 0.2) \times 10^{-6}$  value. Their result (both central value and uncertainties) is scaled up by 10% to account for the different phase-space definition used here (see RAINBOLT 19).

| $\Gamma(hadrons)/\Gamma(e^+e^-)$      |                   |                                       |             |      | $\Gamma_8/\Gamma_1$                              |
|---------------------------------------|-------------------|---------------------------------------|-------------|------|--------------------------------------------------|
| VALUE                                 | EVTS              | DOCUMENT ID                           |             | TECN | COMMENT                                          |
| 20.804 $\pm$ 0.050 OUR FIT            |                   |                                       |             |      |                                                  |
| $20.902 \pm 0.084$                    | 137.0K            | <sup>1</sup> ABBIENDI                 | 01A         | OPAL | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV  |
| $20.88~\pm~0.12$                      | 117.8k            | ABREU                                 | 00F         | DLPH | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV  |
| $20.816 \pm 0.089$                    | 124.4k            | ACCIARRI                              | <b>00</b> C | L3   | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV  |
| $20.677 \pm \ 0.075$                  |                   | <sup>2</sup> BARATE                   | <b>00</b> C | ALEP | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| · · · · · · · · · · · · · · · · · · · | - II the second - | · · · · · · · · · · · · · · · · · · · | - David     | 14   |                                                  |

• • • We do not use the following data for averages, fits, limits, etc. • • •

| 27.0 | $^{+11.7}_{-8.8}$ | 12 | <sup>3</sup> ABRAMS | <b>89</b> D | MRK2 | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 89–93 GeV |
|------|-------------------|----|---------------------|-------------|------|--------------------------------------------------|
|------|-------------------|----|---------------------|-------------|------|--------------------------------------------------|

<sup>1</sup> ABBIENDI 01A error includes approximately 0.067 due to statistics, 0.040 due to event selection systematics, 0.027 due to the theoretical uncertainty in *t*-channel prediction, and 0.014 due to LEP energy uncertainty.

<sup>2</sup> BARATE 00C error includes approximately 0.062 due to statistics, 0.033 due to experimental systematics, and 0.026 due to the theoretical uncertainty in *t*-channel prediction.
 <sup>3</sup> ABRAMS 89D have included both statistical and systematic uncertainties in their quoted errors.

### $\Gamma(\text{hadrons})/\Gamma(\mu^+\mu^-)$

HTTP://PDG.LBL.GOV

### $\Gamma_8/\Gamma_2$

Created: 8/2/2019 16:43

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06).

| VALUE                                            | EVTS        | DOCUMENT ID           |             | TECN      | COMMENT                                          |
|--------------------------------------------------|-------------|-----------------------|-------------|-----------|--------------------------------------------------|
| 20.785 $\pm$ 0.033 OUR FIT                       |             |                       |             |           |                                                  |
| $20.811 \!\pm\! 0.058$                           | 182.8K      | <sup>1</sup> ABBIENDI | 01A         | OPAL      | $E_{cm}^{ee}$ = 88–94 GeV                        |
| $20.65 \pm 0.08$                                 | 157.6k      | ABREU                 | 00F         | DLPH      | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $20.861 \!\pm\! 0.097$                           | 113.4k      | ACCIARRI              | <b>00</b> C | L3        | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV  |
| $20.799 \!\pm\! 0.056$                           |             | <sup>2</sup> BARATE   | <b>00</b> C | ALEP      | $E_{\rm cm}^{ee}$ = 88–94 GeV                    |
| $\bullet \bullet \bullet$ We do not use the f    | ollowing da | ata for averages, fi  | ts, lim     | its, etc. | • • •                                            |
| $18.9 \begin{array}{c} +7.1 \\ -5.3 \end{array}$ | 13          | <sup>3</sup> ABRAMS   | <b>89</b> D | MRK2      | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 89–93 GeV |
|                                                  |             |                       |             |           |                                                  |

Page 8

- <sup>1</sup> ABBIENDI 01A error includes approximately 0.050 due to statistics and 0.027 due to event selection systematics.
- $^2\,{\rm BARATE}$  00C error includes approximately 0.053 due to statistics and 0.021 due to experimental systematics.
- <sup>3</sup>ABRAMS 89D have included both statistical and systematic uncertainties in their quoted errors.

# $\Gamma(\text{hadrons})/\Gamma(\tau^+\tau^-)$

## Г8/Г3

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06).

| VALUE                      | <u>EVTS</u> | DOCUMENT ID           |     | TECN | COMMENT                                         |
|----------------------------|-------------|-----------------------|-----|------|-------------------------------------------------|
| 20.764 $\pm$ 0.045 OUR FIT |             |                       |     |      |                                                 |
| $20.832 \!\pm\! 0.091$     | 151.5K      | <sup>1</sup> ABBIENDI | 01A | OPAL | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |
| $20.84 \pm 0.13$           | 104.0k      | ABREU                 | 00F | DLPH | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |
| $20.792 \!\pm\! 0.133$     | 103.0k      | ACCIARRI              | 00C | L3   | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |
| $20.707 \!\pm\! 0.062$     |             | <sup>2</sup> BARATE   | 00C | ALEP | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |
|                            |             |                       |     | •    |                                                 |

• • • We do not use the following data for averages, fits, limits, etc. • • •

15.2 
$$^{+4.8}_{-3.9}$$
 21 <sup>3</sup> ABRAMS 89D MRK2  $E_{cm}^{ee}$  = 89–93 GeV

 $^1\,{\sf ABBIENDI}$  01A error includes approximately 0.055 due to statistics and 0.071 due to event selection systematics.

- $^2$  BARATE 00C error includes approximately 0.054 due to statistics and 0.033 due to experimental systematics.
- $^3$  ABRAMS 89D have included both statistical and systematic uncertainties in their quoted errors.

# $\Gamma(hadrons)/\Gamma(\ell^+\ell^-)$

## $\Gamma_8/\Gamma_4$

 $\ell$  indicates each type of lepton (e,  $\mu$ , and  $\tau$ ), not sum over them.

Our fit result is obtained requiring lepton universality.

| VALUE                                                                                                   | EVTS   | DOCUMENT ID           |             | TECN | COMMENT                                                 |  |  |
|---------------------------------------------------------------------------------------------------------|--------|-----------------------|-------------|------|---------------------------------------------------------|--|--|
| 20.767±0.025 OUR                                                                                        | FIT    |                       |             |      |                                                         |  |  |
| $20.823 \!\pm\! 0.044$                                                                                  | 471.3K | <sup>1</sup> ABBIENDI | 01A         | OPAL | <i>E</i> <sup><i>ee</i></sup> <sub>cm</sub> = 88–94 GeV |  |  |
| $20.730 \!\pm\! 0.060$                                                                                  | 379.4k | ABREU                 | 00F         | DLPH | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV        |  |  |
| $20.810 \!\pm\! 0.060$                                                                                  | 340.8k | ACCIARRI              | 00C         | L3   | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV        |  |  |
| $20.725 \!\pm\! 0.039$                                                                                  | 500k   | <sup>2</sup> BARATE   | <b>00</b> C | ALEP | <i>E</i> <sup><i>ee</i></sup> <sub>cm</sub> = 88–94 GeV |  |  |
| ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$ |        |                       |             |      |                                                         |  |  |

18.9  $^{+3.6}_{-3.2}$  46 ABRAMS 89B MRK2  $E_{cm}^{ee}$  = 89–93 GeV

<sup>1</sup> ABBIENDI 01A error includes approximately 0.034 due to statistics and 0.027 due to event selection systematics.

<sup>2</sup> BARATE 00C error includes approximately 0.033 due to statistics, 0.020 due to experimental systematics, and 0.005 due to the theoretical uncertainty in t-channel prediction.

# $\Gamma((u\overline{u}+c\overline{c})/2)/\Gamma(hadrons)$

## Γ<sub>9</sub>/Γ<sub>8</sub>

This quantity is the branching ratio of  $Z \rightarrow$  "up-type" quarks to  $Z \rightarrow$  hadrons. Except ACKERSTAFF 97T the values of  $Z \rightarrow$  "up-type" and  $Z \rightarrow$  "down-type" branchings are extracted from measurements of  $\Gamma$ (hadrons), and  $\Gamma(Z \rightarrow \gamma + \text{jets})$  where  $\gamma$  is a high-energy (>5 or 7 GeV) isolated photon. As the experiments use different procedures and slightly different values of  $M_Z$ ,  $\Gamma$ (hadrons) and  $\alpha_s$  in their extraction procedures, our average has to be taken with caution.

| VALUE                                   | DOCUMENT ID             |     | TECN | COMMENT                                         |
|-----------------------------------------|-------------------------|-----|------|-------------------------------------------------|
| $0.166 \pm 0.009$ OUR AVERAGE           |                         |     |      |                                                 |
| $0.172 \substack{+\ 0.011 \\ -\ 0.010}$ | <sup>1</sup> ABBIENDI   | 04E | OPAL | $E_{ m cm}^{ee}=91.2~{ m GeV}$                  |
| $0.160\!\pm\!0.019\!\pm\!0.019$         | <sup>2</sup> ACKERSTAFF | 97⊤ | OPAL | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |
| $0.137 \substack{+\ 0.038 \\ -\ 0.054}$ | <sup>3</sup> ABREU      | 95X | DLPH | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |
| $0.137 \pm 0.033$                       | <sup>4</sup> ADRIANI    | 93  | L3   | $E_{\rm cm}^{ee}$ = 91.2 GeV                    |

<sup>1</sup> ABBIENDI 04E select photons with energy > 7 GeV and use  $\Gamma$ (hadrons) = 1744.4 ± 2.0 MeV and  $\alpha_s = 0.1172 \pm 0.002$  to obtain  $\Gamma_u = 300 + \frac{19}{-18}$  MeV.

<sup>2</sup> ACKERSTAFF 97T measure  $\Gamma_{u\overline{u}}/(\Gamma_{d\overline{d}}+\Gamma_{u\overline{u}}+\Gamma_{s\overline{s}}) = 0.258 \pm 0.031 \pm 0.032$ . To obtain this branching ratio authors use  $R_c + R_b = 0.380 \pm 0.010$ . This measurement is fully negatively correlated with the measurement of  $\Gamma_{d\overline{d}}, s\overline{s}/(\Gamma_{d\overline{d}}+\Gamma_{u\overline{u}}+\Gamma_{s\overline{s}})$  given in the next data block.

<sup>3</sup>ABREU 95X use  $M_Z = 91.187 \pm 0.009$  GeV,  $\Gamma$ (hadrons) = 1725 ± 12 MeV and  $\alpha_s = 0.123 \pm 0.005$ . To obtain this branching ratio we divide their value of  $C_{2/3} = 0.91 + 0.25$ by their value of  $(3C_{1/3} + 2C_{2/3}) = 6.66 \pm 0.05$ .

<sup>4</sup> ADRIANI 93 use  $M_Z = 91.181 \pm 0.022$  GeV,  $\Gamma$ (hadrons) = 1742 ± 19 MeV and  $\alpha_s = 0.125 \pm 0.009$ . To obtain this branching ratio we divide their value of  $C_{2/3} = 0.92 \pm 0.22$  by their value of  $(3C_{1/3} + 2C_{2/3}) = 6.720 \pm 0.076$ .

# $\Gamma((d\overline{d}+s\overline{s}+b\overline{b})/3)/\Gamma(hadrons)$

## $\Gamma_{10}/\Gamma_8$

This quantity is the branching ratio of  $Z \rightarrow$  "down-type" quarks to  $Z \rightarrow$  hadrons. Except ACKERSTAFF 97T the values of  $Z \rightarrow$  "up-type" and  $Z \rightarrow$  "down-type" branchings are extracted from measurements of  $\Gamma$ (hadrons), and  $\Gamma(Z \rightarrow \gamma + \text{jets})$  where  $\gamma$  is a high-energy (>5 or 7 GeV) isolated photon. As the experiments use different procedures and slightly different values of  $M_Z$ ,  $\Gamma$ (hadrons) and  $\alpha_s$  in their extraction procedures, our average has to be taken with caution.

| VALUE                                   | DOCUMENT ID             |             | TECN | COMMENT                                         |
|-----------------------------------------|-------------------------|-------------|------|-------------------------------------------------|
| $0.223 \pm 0.006$ OUR AVERAGE           |                         |             |      |                                                 |
| $0.218 \pm 0.007$                       |                         |             |      | $E_{\rm cm}^{ee} = 91.2  { m GeV}$              |
| $0.230\!\pm\!0.010\!\pm\!0.010$         | <sup>2</sup> ACKERSTAFF | <b>97</b> T | OPAL | $E_{\rm cm}^{ee}=$ 88–94 GeV                    |
| $0.243 \substack{+\ 0.036 \\ -\ 0.026}$ | <sup>3</sup> ABREU      | 95X         | DLPH | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |
| $0.243 \pm 0.022$                       | <sup>4</sup> ADRIANI    | 93          | L3   | $E_{\rm cm}^{ee}=$ 91.2 GeV                     |

<sup>1</sup> ABBIENDI 04E select photons with energy > 7 GeV and use  $\Gamma$ (hadrons) = 1744.4 ± 2.0 MeV and  $\alpha_s = 0.1172 \pm 0.002$  to obtain  $\Gamma_d = 381 \pm 12$  MeV.

<sup>2</sup> ACKERSTAFF 97<sup>T</sup> measure  $\Gamma_{d\overline{d},s\overline{s}}/(\Gamma_{d\overline{d}}+\Gamma_{u\overline{u}}+\Gamma_{s\overline{s}}) = 0.371 \pm 0.016 \pm 0.016$ . To obtain this branching ratio authors use  $R_c+R_b = 0.380 \pm 0.010$ . This measurement is fully negatively correlated with the measurement of  $\Gamma_{u\overline{u}}/(\Gamma_{d\overline{d}}+\Gamma_{u\overline{u}}+\Gamma_{s\overline{s}})$  presented in the previous data block.

- <sup>3</sup>ABREU 95X use  $M_Z = 91.187 \pm 0.009$  GeV,  $\Gamma$ (hadrons) = 1725 ± 12 MeV and  $\alpha_s = 0.123 \pm 0.005$ . To obtain this branching ratio we divide their value of  $C_{1/3} = 1.62 \substack{+0.24 \\ -0.17}$  by their value of  $(3C_{1/3} + 2C_{2/3}) = 6.66 \pm 0.05$ .
- <sup>4</sup> ADRIANI 93 use  $M_Z = 91.181 \pm 0.022$  GeV, Γ(hadrons) = 1742 ± 19 MeV and  $\alpha_s = 0.125 \pm 0.009$ . To obtain this branching ratio we divide their value of  $C_{1/3} = 1.63 \pm 0.15$  by their value of  $(3C_{1/3} + 2C_{2/3}) = 6.720 \pm 0.076$ .

# $R_{c} = \Gamma(c\overline{c})/\Gamma(\text{hadrons})$

### $\Gamma_{11}/\Gamma_8$

OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06.

The Standard Model predicts  $R_c = 0.1723$  for  $m_t = 174.3$  GeV and  $M_H = 150$  GeV.

| VALUE                                  | DOCUMENT ID             |             | TECN        | COMMENT                                                 |
|----------------------------------------|-------------------------|-------------|-------------|---------------------------------------------------------|
| $0.1721 \pm 0.0030$ OUR FIT            |                         |             |             |                                                         |
| $0.1744 \!\pm\! 0.0031 \!\pm\! 0.0021$ | <sup>1</sup> ABE        | 05F         | SLD         | E <sup>ee</sup> <sub>cm</sub> =91.28 GeV                |
| $0.1665 \!\pm\! 0.0051 \!\pm\! 0.0081$ | <sup>2</sup> ABREU      |             | DLPH        | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV        |
| $0.1698 \!\pm\! 0.0069$                | <sup>3</sup> BARATE     | <b>00</b> B | ALEP        | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV        |
| $0.180\ \pm 0.011\ \pm 0.013$          | <sup>4</sup> ACKERSTAFF | 98E         | OPAL        | <i>E</i> <sup><i>ee</i></sup> <sub>cm</sub> = 88–94 GeV |
| $0.167\ \pm 0.011\ \pm 0.012$          | <sup>5</sup> ALEXANDER  | <b>96</b> R | OPAL        | <i>E</i> <sup><i>ee</i></sup> <sub>cm</sub> = 88–94 GeV |
| • • • We do not use the fo             | llowing data for a      | verage      | es, fits, l | imits, etc. • • •                                       |
| $0.1623 \!\pm\! 0.0085 \!\pm\! 0.0209$ | <sup>6</sup> ABREU      | <b>95</b> D | DLPH        | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV        |

- <sup>1</sup> ABE 05F use hadronic Z decays collected during 1996–98 to obtain an enriched sample of  $c\overline{c}$  events using a double tag method. The single *c*-tag is obtained with a neural network trained to perform flavor discrimination using as input several signatures (corrected secondary vertex mass, vertex decay length, multiplicity and total momentum of the hemisphere). A multitag approach is used, defining 4 regions of the output value of the neural network and  $R_c$  is extracted from a simultaneous fit to the count rates of the 4 different tags. The quoted systematic error includes an uncertainty of  $\pm 0.0006$  due to the uncertainty on  $R_b$ .
- <sup>2</sup> ABREU 00 obtain this result properly combining the measurement from the  $D^{*+}$  production rate ( $R_c = 0.1610 \pm 0.0104 \pm 0.0077 \pm 0.0043$  (BR)) with that from the overall charm counting ( $R_c = 0.1692 \pm 0.0047 \pm 0.0063 \pm 0.0074$  (BR)) in  $c \overline{c}$  events. The systematic error includes an uncertainty of  $\pm 0.0054$  due to the uncertainty on the charmed hadron branching fractions.
- <sup>3</sup>BARATE 00B use exclusive decay modes to independently determine the quantities  $R_c \times f(c \rightarrow X)$ ,  $X=D^0$ ,  $D^+$ ,  $D_s^+$ , and  $\Lambda_c$ . Estimating  $R_c \times f(c \rightarrow \Xi_c / \Omega_c) = 0.0034$ , they simply sum over all the charm decays to obtain  $R_c = 0.1738 \pm 0.0047 \pm 0.0088 \pm 0.0075$ (BR). This is combined with all previous ALEPH measurements (BARATE 98T and BUSKULIC 94G,  $R_c = 0.1681 \pm 0.0054 \pm 0.0062$ ) to obtain the quoted value.
- <sup>4</sup> ACKERSTAFF 98E use an inclusive/exclusive double tag. In one jet  $D^{*\pm}$  mesons are exclusively reconstructed in several decay channels and in the opposite jet a slow pion (opposite charge inclusive  $D^{*\pm}$ ) tag is used. The *b* content of this sample is measured by the simultaneous detection of a lepton in one jet and an inclusively reconstructed  $D^{*\pm}$  meson in the opposite jet. The systematic error includes an uncertainty of  $\pm 0.006$ due to the external branching ratios.
- <sup>5</sup> ALEXANDER 96R obtain this value via direct charm counting, summing the partial contributions from  $D^0$ ,  $D^+$ ,  $D_s^+$ , and  $\Lambda_c^+$ , and assuming that strange-charmed baryons account for the 15% of the  $\Lambda_c^+$  production. An uncertainty of  $\pm 0.005$  due to the uncertainties in the charm hadron branching ratios is included in the overall systematics. <sup>6</sup> ABREU 95D perform a maximum likelihood fit to the combined p and  $p_T$  distributions
- of single and dilepton samples. The second error includes an uncertainty of  $\pm 0.0124$  due to models and branching ratios.

# $R_b = \Gamma(b\overline{b})/\Gamma(\text{hadrons})$

# $\Gamma_{12}/\Gamma_8$

OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06.

The Standard Model predicts  $R_b$ =0.21581 for  $m_t$ =174.3 GeV and  $M_H$ =150 GeV.

| VALUE                                           | DOCUMENT ID           |             | TECN       | <u>COMMENT</u>                                   |
|-------------------------------------------------|-----------------------|-------------|------------|--------------------------------------------------|
| 0.21629±0.00066 OUR FIT                         |                       |             |            |                                                  |
| $0.21594 \pm 0.00094 \pm 0.00075$               | <sup>1</sup> ABE      | 05F         | SLD        | <i>E<sup>ee</sup></i> =91.28 GeV                 |
| $0.2174 \ \pm 0.0015 \ \pm 0.0028$              | <sup>2</sup> ACCIARRI | 00          | L3         | <i>E<sup>ee</sup></i> <sub>cm</sub> = 89–93 GeV  |
| $0.2178\ \pm 0.0011\ \pm 0.0013$                | <sup>3</sup> ABBIENDI | <b>99</b> B | OPAL       | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV  |
| $0.21634 \pm 0.00067 \pm 0.00060$               | <sup>4</sup> ABREU    | <b>99</b> B | DLPH       | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV  |
| $0.2159\ \pm 0.0009\ \pm 0.0011$                | <sup>5</sup> BARATE   | 97F         | ALEP       | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV  |
| $\bullet$ $\bullet$ We do not use the following | ng data for averag    | es, fit     | s, limits, | etc. • • •                                       |
| $0.2145 \ \pm 0.0089 \ \pm 0.0067$              | <sup>6</sup> ABREU    | <b>95</b> D | DLPH       | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $0.219 \pm 0.006 \pm 0.005$                     | <sup>7</sup> BUSKULIC | <b>94</b> G | ALEP       | E <sup>ee</sup> <sub>cm</sub> = 88–94 GeV        |
| $0.251 \ \pm 0.049 \ \pm 0.030$                 | <sup>8</sup> JACOBSEN | 91          | MRK2       | $E_{\rm cm}^{ee} = 91  { m GeV}$                 |

<sup>1</sup> ABE 05F use hadronic Z decays collected during 1996–98 to obtain an enriched sample of  $b\bar{b}$  events using a double tag method. The single b-tag is obtained with a neural network trained to perform flavor discrimination using as input several signatures (corrected secondary vertex mass, vertex decay length, multiplicity and total momentum of the hemisphere; the key tag is obtained requiring the secondary vertex corrected mass to be above the D-meson mass). ABE 05F obtain  $R_b = 0.21604 \pm 0.00098 \pm 0.00074$  where the systematic error includes an uncertainty of  $\pm 0.00012$  due to the uncertainty on  $R_c$ . The value reported here is obtained properly combining with ABE 98D. The quoted systematic error includes an uncertainty of  $\pm 0.00012$  due to the uncertainty on  $R_c$ .

<sup>2</sup> ACCIARRI 00 obtain this result using a double-tagging technique, with a high  $p_T$  lepton tag and an impact parameter tag in opposite hemispheres.

- <sup>3</sup>ABBIENDI 99B tag  $Z \rightarrow b\overline{b}$  decays using leptons and/or separated decay vertices. The *b*-tagging efficiency is measured directly from the data using a double-tagging technique.
- <sup>4</sup> ABREU 99B obtain this result combining in a multivariate analysis several tagging methods (impact parameter and secondary vertex reconstruction, complemented by event shape variables). For  $R_c$  different from its Standard Model value of 0.172,  $R_b$  varies as  $-0.024 \times (R_c - 0.172)$ .
- <sup>5</sup> BARATE 97F combine the lifetime-mass hemisphere tag (BARATE 97E) with event shape information and lepton tag to identify  $Z \rightarrow b\overline{b}$  candidates. They further use *c*- and *u d s*-selection tags to identify the background. For  $R_c$  different from its Standard Model value of 0.172,  $R_b$  varies as  $-0.019 \times (R_c - 0.172)$ .
- <sup>6</sup>ABREU 95D perform a maximum likelihood fit to the combined p and  $p_T$  distributions of single and dilepton samples. The second error includes an uncertainty of  $\pm 0.0023$  due to models and branching ratios.
- <sup>7</sup> BUSKULIC 94G perform a simultaneous fit to the p and  $p_T$  spectra of both single and dilepton events.

<sup>8</sup> JACOBSEN 91 tagged  $b\overline{b}$  events by requiring coincidence of  $\geq$  3 tracks with significant impact parameters using vertex detector. Systematic error includes lifetime and decay uncertainties (±0.014).

| $\Gamma(b\overline{b}b\overline{b})/\Gamma(hadrons)$ |                       |             |      |                       | Γ <sub>13</sub> /Γ <sub>8</sub> |
|------------------------------------------------------|-----------------------|-------------|------|-----------------------|---------------------------------|
| VALUE (units $10^{-4}$ )                             | DOCUMENT ID           |             | TECN | COMMENT               |                                 |
| 5.2 $\pm$ 1.9 OUR AVERAGE                            |                       |             |      |                       |                                 |
| $3.6 \pm 1.7 \pm 2.7$                                | <sup>1</sup> ABBIENDI | <b>01</b> G | OPAL | $E_{cm}^{ee} = 88-94$ | GeV                             |
| $6.0 \pm 1.9 \pm 1.4$                                | <sup>2</sup> ABREU    | <b>99</b> U | DLPH | $E_{cm}^{ee} = 88-94$ | GeV                             |
|                                                      |                       |             |      |                       |                                 |

<sup>1</sup>ABBIENDI 01G use a sample of four-jet events from hadronic Z decays. To enhance the  $b\overline{b}b\overline{b}$  signal, at least three of the four jets are required to have a significantly detached secondary vertex.

<sup>2</sup>ABREU 990 force hadronic Z decays into 3 jets to use all the available phase space and require a b tag for every jet. This decay mode includes primary and secondary 4b production, e.g, from gluon splitting to  $b\overline{b}$ .

| $\Gamma(ggg)/\Gamma(hadrons)$ |     |                    |     |      | Г <sub>14</sub> /Г <sub>8</sub>                 |
|-------------------------------|-----|--------------------|-----|------|-------------------------------------------------|
| VALUE                         | CL% | DOCUMENT ID        |     | TECN | COMMENT                                         |
| $< 1.6 \times 10^{-2}$        | 95  | <sup>1</sup> ABREU | 96s | DLPH | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |

 $^{1}$  This branching ratio is slightly dependent on the jet-finder algorithm. The value we quote is obtained using the JADE algorithm, while using the DURHAM algorithm ABREU 96S obtain an upper limit of  $1.5 \times 10^{-2}$ .

# $\Gamma(\pi^0 \gamma) / \Gamma_{\text{total}}$

 $\Gamma_{15}/\Gamma$ 

|                            |            |                       |             |      | =• /                                                     |
|----------------------------|------------|-----------------------|-------------|------|----------------------------------------------------------|
| VALUE                      | <u>CL%</u> | DOCUMENT ID           |             | TECN | COMMENT                                                  |
| <2.01 × 10 <sup>-5</sup>   | 95         | AALTONEN              | 14E         | CDF  | ${\cal E}^{{m p}{\overline{m p}}}_{ m cm}=1.96~{ m TeV}$ |
| $< 5.2 \times 10^{-5}$     | 95         | <sup>1</sup> ACCIARRI | <b>95</b> G | L3   | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV          |
| $<$ 5.5 $	imes$ 10 $^{-5}$ | 95         | ABREU                 | <b>94</b> B | DLPH | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV          |
| $< 2.1 \times 10^{-4}$     | 95         | DECAMP                | 92          | ALEP | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV          |
| $< 1.4 	imes 10^{-4}$      | 95         | AKRAWY                | 91F         | OPAL | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV          |
|                            |            |                       |             |      |                                                          |

<sup>1</sup> This limit is for both decay modes  $Z \rightarrow \pi^0 \gamma / \gamma \gamma$  which are indistinguishable in ACCIA-RRI 95G.

| $\Gamma(\eta\gamma)/\Gamma_{total}$ |            |             |             |      | Г <sub>16</sub> /Г                                      |
|-------------------------------------|------------|-------------|-------------|------|---------------------------------------------------------|
| VALUE                               | <u>CL%</u> | DOCUMENT ID |             | TECN | COMMENT                                                 |
| $< 7.6 	imes 10^{-5}$               | 95         | ACCIARRI    | <b>95</b> G | L3   | <i>E</i> <sup><i>ee</i></sup> <sub>cm</sub> = 88–94 GeV |
| $< 8.0 	imes 10^{-5}$               | 95         | ABREU       | <b>94</b> B | DLPH | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV        |
| <5.1 × 10 <sup>-5</sup>             | 95         | DECAMP      | 92          | ALEP | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV        |
| $< 2.0 \times 10^{-4}$              | 95         | AKRAWY      | 91F         | OPAL | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV        |

| $\Gamma( ho^0\gamma)/\Gamma_{	ext{total}}$ |            |             |                     |           |                              | Г <sub>17</sub> /Г |
|--------------------------------------------|------------|-------------|---------------------|-----------|------------------------------|--------------------|
| VALUE                                      | <u>CL%</u> | <u>EVTS</u> | DOCUMENT ID         | TECN      | COMMENT                      |                    |
| <2.5 × 10 <sup>-5</sup>                    | 95         | 12.5k       | <sup>1</sup> AABOUD | 18AU ATLS | $E^{pp}_{ m cm}=13~{ m TeV}$ |                    |

<sup>1</sup>AABOUD 18AU search for the  $Z \rightarrow \rho \gamma$  decay mode where the  $\rho$  is identified through its decay  $\rho \rightarrow \pi^+ \pi^-$ . In the data corresponding to 32.3 fb<sup>-1</sup>, 12,583 events are selected for 635 < m( $\pi^+ \pi^-$ ) < 915 MeV.

| $\Gamma(\omega\gamma)/\Gamma_{	ext{total}}$ |            |             |             |      | Г <sub>18</sub> /Г                                      |
|---------------------------------------------|------------|-------------|-------------|------|---------------------------------------------------------|
| VALUE                                       | <u>CL%</u> | DOCUMENT ID |             | TECN | COMMENT                                                 |
| <6.5 × 10 <sup>-4</sup>                     | 95         | ABREU       | <b>94</b> B | DLPH | <i>E</i> <sup><i>ee</i></sup> <sub>cm</sub> = 88–94 GeV |
| $\Gamma(\eta'(958)\gamma)/\Gamma_{total}$   |            |             |             |      | Г <sub>19</sub> /Г                                      |
| VALUE                                       | <u>CL%</u> | DOCUMENT ID |             | TECN | COMMENT                                                 |
| $<4.2 \times 10^{-5}$                       | 95         | DECAMP      | 92          | ALEP | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV         |

HTTP://PDG.LBL.GOV

| $\Gammaig(\phi\gammaig)/\Gamma_{	ext{total}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |          |                                     |               |           | Г <sub>20</sub> /Г                               |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-------------------------------------|---------------|-----------|--------------------------------------------------|--|--|
| VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>CL%</u> | EVTS     | DOCUMENT ID                         |               | TECN      | COMMENT                                          |  |  |
| <9 × 10 <sup>-7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 95         | 3.3k     | <sup>1</sup> AABOUD                 | 18AU          | ATLS      | $E^{pp}_{ m cm}=$ 13 TeV                         |  |  |
| $\bullet \bullet \bullet$ We do not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | use the    | e follow | ing data for average                | s, fits,      | limits, e | etc. • • •                                       |  |  |
| $< \! 8.3 	imes 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95         | 1.0k     | <sup>2</sup> AABOUD                 | 16K           | ATLS      | $E^{pp}_{cm} = 13 \; { m TeV}$                   |  |  |
| <sup>1</sup> AABOUD 18AU search for the $Z \rightarrow \phi \gamma$ decay mode where the $\phi$ is identified through its decay $\phi \rightarrow K^+ K^-$ . In the data corresponding to 32.3 fb <sup>-1</sup> , 3,364 events are selected for 1012 < m( $K^+ K^-$ ) < 1028 MeV.<br><sup>2</sup> AABOUD 16K search for the $Z \rightarrow \phi \gamma$ decay mode where the $\phi$ is identified through its decay into $K^+ K^-$ . In the data corresponding to a total luminosity of 2.7 fb <sup>-1</sup> , 1065 events are selected and their $K^+ K^- \gamma$ invariant mass spectrum is analyzed. |            |          |                                     |               |           |                                                  |  |  |
| $\Gamma(\gamma \gamma)/\Gamma_{total}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | would      | violate  | the Landau-Yang th                  | orem          |           | Γ <sub>21</sub> /Γ                               |  |  |
| VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | CL%      | -                                   |               |           | COMMENT                                          |  |  |
| <1.46 × 10 <sup>-5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 95       | AALTONEN                            |               |           |                                                  |  |  |
| $<$ 5.2 $	imes$ 10 $^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 95       | <sup>1</sup> ACCIARRI               | <b>95</b> G   | L3        | E <sup>ee</sup> <sub>cm</sub> = 88–94 GeV        |  |  |
| $<$ 5.5 $	imes$ 10 $^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 95       | ABREU                               | <b>94</b> B   | DLPH      | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV  |  |  |
| $< 1.4 	imes 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 95       | AKRAWY                              | 91F           | OPAL      | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |  |  |
| <sup>1</sup> This limit is fo<br>RRI 95G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r both     | decay r  | modes $Z \to \pi^0 \gamma / \gamma$ | $\gamma$ whic | ch are in | distinguishable in ACCIA-                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |          |                                     |               |           | F /F                                             |  |  |

| $\Gamma(\pi^{0}\pi^{0})/\Gamma_{total}$        |               |                       |             |           | Г <sub>22</sub> /Г                              |
|------------------------------------------------|---------------|-----------------------|-------------|-----------|-------------------------------------------------|
| VALUE                                          | <u>CL%</u>    | DOCUMENT ID           |             | TECN      | COMMENT                                         |
| <1.52 × 10 <sup>-5</sup>                       | 95            | AALTONEN              | 14E         | CDF       | $E_{Cm}^{p\overline{p}}=1.96\;TeV$              |
| $\Gamma(\gamma\gamma\gamma)/\Gamma_{ m total}$ |               |                       |             |           | Г <sub>23</sub> /Г                              |
| VALUE                                          | <u>CL%</u>    | DOCUMENT ID           |             | TECN      | COMMENT                                         |
| <2.2 × 10 <sup>-6</sup>                        | 95            | AAD                   | 16L         | ATLS      | $E^{pp}_{cm} = 8 \text{ TeV}$                   |
| $\bullet \bullet \bullet$ We do not use the    | e following o | data for averages     | s, fits,    | limits, e | etc. • • •                                      |
| $< 1.0 \times 10^{-5}$                         | 95            | <sup>1</sup> ACCIARRI | <b>95</b> C | L3        | <i>E<sup>ee</sup></i> = 88–94 GeV               |
| $< 1.7 \times 10^{-5}$                         | 95            | <sup>1</sup> ABREU    | <b>94</b> B | DLPH      | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |
| $< 6.6 	imes 10^{-5}$                          | 95            | AKRAWY                | 91F         | OPAL      | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |

<sup>1</sup>Limit derived in the context of composite Z model.

#### $\Gamma(\pi^{\pm}W^{\mp})/\Gamma_{\text{total}}$ $\Gamma_{24}/\Gamma$ The value is for the sum of the charge states indicated. VALUE DOCUMENT ID TECN COMMENT <u>CL%</u> $< 7 \times 10^{-5}$ 92 ALEP $E_{cm}^{ee} = 88-94 \text{ GeV}$ 95 DECAMP $\Gamma(\rho^{\pm} W^{\mp})/\Gamma_{\text{total}}$ The value is for the sum of the charge states indicated. $\Gamma_{25}/\Gamma$ VALUE DOCUMENT ID TECN COMMENT <u>CL%</u> $< 8.3 \times 10^{-5}$ 92 ALEP *E*<sup>ee</sup><sub>cm</sub>= 88–94 GeV 95 DECAMP

HTTP://PDG.LBL.GOV

| $\Gamma(J/\psi(1S)X)/\Gamma_{total}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                        |             |               | Г <sub>26</sub> /Г                                                           |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|-------------|---------------|------------------------------------------------------------------------------|--|--|
| VALUE (units $10^{-3}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EVTS        | DOCUMENT ID            |             | TECN          | COMMENT                                                                      |  |  |
| $3.51^{+0.23}_{-0.25}$ OUR AVERA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GE Erro     | r includes scale fa    | ctor o      | of 1.1.       |                                                                              |  |  |
| $3.21 {\pm} 0.21 {+} 0.19 \\ -0.28$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 553         | <sup>1</sup> ACCIARRI  | 99F         | L3            | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV                             |  |  |
| $3.9 \ \pm 0.2 \ \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 511         | <sup>2</sup> ALEXANDER | <b>96</b> B | OPAL          | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV                              |  |  |
| $3.73\!\pm\!0.39\!\pm\!0.36$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 153         | <sup>3</sup> ABREU     | <b>94</b> P | DLPH          | <i>E</i> <sup><i>ee</i></sup> <sub>cm</sub> = 88–94 GeV                      |  |  |
| <sup>1</sup> ACCIARRI 99F combine $\mu^+ \mu^-$ and $e^+ e^- J/\psi(1S)$ decay channels. The branching ratio<br>for prompt $J/\psi(1S)$ production is measured to be $(2.1 \pm 0.6 \pm 0.4 \substack{+0.4 \\ -0.2}$ (theor.))×10 <sup>-4</sup><br><sup>2</sup> ALEXANDER 96B identify $J/\psi(1S)$ from the decays into lepton pairs. $(4.8 \pm 2.4)\%$ of<br>this branching ratio is due to prompt $J/\psi(1S)$ production (ALEXANDER 96N).<br><sup>3</sup> Combining $\mu^+ \mu^-$ and $e^+ e^-$ channels and taking into account the common systematii<br>errors. $(7.7 \substack{+6.3 \\ -5.4})\%$ of this branching ratio is due to prompt $J/\psi(1S)$ production.<br>$\Gamma(J/\psi(1S)\gamma)/\Gamma_{total}$ |             |                        |             |               |                                                                              |  |  |
| VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>CL%</u>  | DOCUMENT ID            |             | TECN          | COMMENT                                                                      |  |  |
| <2.3 × 10 <sup>-0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95          | <sup>1</sup> AABOUD    | 18BL        | ATLS          | $E_{\rm cm}^{pp} = 13 { m TeV}$                                              |  |  |
| • • • We do not use the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e following | data for averages      | s, fits,    | limits, e     | etc. ● ● ●                                                                   |  |  |
| $< 2.6 	imes 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95          | <sup>2</sup> AAD       | 151         | ATLS          | $E^{pp}_{cm} = 8 \text{ TeV}$                                                |  |  |
| isolated photon of <i>p</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T > 35(2)   | 25) GeV and a mι       | uon w       | ith <i>pT</i> | Two triggers were used: $> 18(24)$ GeV. The $J/\psi$ azimuthal angle between |  |  |

is detected via its dimuon decay and it is required that the azimuthal angle between the photon and the  $J/\psi$  in the plane transverse to the beam direction is  $> \pi/2$ . The number of observed/expected background events is  $92/89 \pm 6$  in the dimuon mass range 2.9–3.3 GeV leading to the quoted 95% C.L. limit.

<sup>2</sup>AAD 151 use events with the highest  $p_T$  muon in the pair required to have  $p_T > 20$ GeV, the dimuon mass required to be within 0.2 GeV of the  $J/\psi(1S)$  mass and it's transverse momentum required to be > 36 GeV. The photon is also required to have it's  $p_T > 36$  GeV.

# $\Gamma(a/a(2S)X)/\Gamma$

| $\Gamma(\psi(2S)X)/\Gamma_{total}$ |      |                        |             |      | Г <sub>28</sub> /Г                               |
|------------------------------------|------|------------------------|-------------|------|--------------------------------------------------|
| VALUE (units $10^{-3}$ )           | EVTS | DOCUMENT ID            |             | TECN | COMMENT                                          |
| $1.60\pm0.29$ OUR AVE              | RAGE |                        |             |      |                                                  |
| $1.6 \ \pm 0.5 \ \pm 0.3$          | 39   | <sup>1</sup> ACCIARRI  | 97J         | L3   | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $1.6 \ \pm 0.3 \ \pm 0.2$          | 46.9 | <sup>2</sup> ALEXANDER | <b>96</b> B | OPAL | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $1.60\!\pm\!0.73\!\pm\!0.33$       | 5.4  | <sup>3</sup> ABREU     | <b>94</b> P | DLPH | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV  |

<sup>1</sup>ACCIARRI 97J measure this branching ratio via the decay channel  $\psi(2S) 
ightarrow \ell^+ \ell^-$  ( $\ell$  $= \mu$ , e).

 $^2\,{\sf ALEXANDER}$  96B measure this branching ratio via the decay channel  $\psi(2S)$   $\rightarrow$  $J/\psi \pi^+ \pi^-$ , with  $J/\psi \rightarrow \ell^+ \ell^-$ .

<sup>3</sup>ABREU 94P measure this branching ratio via decay channel  $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$ , with  $J/\psi \rightarrow \mu^+ \mu^-$ .

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update

| $\Gammaig(\psi(2S)\gammaig)/\Gamma_{total}$ |     |                     |           |                                | Г <sub>29</sub> /Г |
|---------------------------------------------|-----|---------------------|-----------|--------------------------------|--------------------|
| VALUE                                       | CL% | DOCUMENT ID         | TECN      | COMMENT                        |                    |
| <4.5 × 10 <sup>-6</sup>                     | 95  | <sup>1</sup> AABOUD | 18BL ATLS | $E^{pp}_{cm} = 13 \text{ TeV}$ |                    |

<sup>1</sup> AABOUD 18BL study  $Z \rightarrow \psi(2S)\gamma$  in 13 TeV pp interactions. Two triggers were used: isolated photon of  $p_T > 35(25)$  GeV and a muon with  $p_T > 18(24)$  GeV. The  $\psi(2S)$ is detected via its dimuon decay and it is required that the azimuthal angle between the photon and the  $\psi(2S)$  in the plane transverse to the beam direction is  $> \pi/2$ . The number of observed/expected background events is  $43/42 \pm 5$  in the dimuon mass range 3.5-3.9 GeV leading to the quoted 95% C.L. limit.

| $\Gammaig(J/\psi(1S)\ell^+\ell^-ig)/\Gammaig(\mu^+\mu^-\mu^+\mu^-ig)$ |                       |          |                     |  |  |
|-----------------------------------------------------------------------|-----------------------|----------|---------------------|--|--|
| VALUE                                                                 | DOCUMENT ID           | TECN     | COMMENT             |  |  |
| 0.67±0.18±0.05                                                        | <sup>1</sup> SIRUNYAN | 18DZ CMS | <i>pp</i> at 13 TeV |  |  |

<sup>1</sup> SIRUNYAN 18DZ observe the decay  $Z \to \Psi \ell^+ \ell^-$  in pp collisions at  $\sqrt{s} = 13$  TeV, where  $\Psi$  includes  $J/\psi$  as well as  $\psi(2S) \to J/\psi X$ , and  $\ell^+ \ell^-$  represents an electron or muon pair while the  $J/\psi$  is detected via its  $\mu^+ \mu^-$  decay channel. To reduce systematic errors they determine the ratio of the branching fraction of this decay to that of  $Z \to \mu^+ \mu^- \mu^+ \mu^-$  within phase-space cuts imposed on lepton transverse momentum and pseudo rapidity, dilepton invariant mass, and  $J/\psi$  transverse momentum. The number of selected  $\Psi \mu^+ \mu^- (\Psi e^+ e^-)$  candidate events is 29 (18). Analyzing the  $\mu^+ \mu^-$  and  $\mu^+ \mu^- \ell^+ \ell^-$  invariant mass distributions, a yield of  $13.0 \pm 3.9$  ( $11.2 \pm 3.4$ ) events for the  $\Psi \mu^+ \mu^- (\Psi e^+ e^-)$  mode is obtained. The ratio of the branching fractions is determined as  $0.67 \pm 0.18 \pm 0.05$  within the selected phase-space cuts. Assuming extrapolation to full phase space cancels in the ratio, and using their measured value of  $B(Z \to \mu^+ \mu^- \mu^+ \mu^-) = (1.20 \pm 0.08) \times 10^{-6}$ , they estimate  $B(Z \to J/\psi \ell^+ \ell^-) = 8 \times 10^{-7}$ .

| $\Gamma(\chi_{c1})$ | (1 <i>P</i> ) | )X), | /Γ <sub>total</sub> |
|---------------------|---------------|------|---------------------|
|---------------------|---------------|------|---------------------|

 $\Gamma_{31}/\Gamma$ 

| (/////////                     | Juli |                       |             |      | <b>U</b> =/                                      |
|--------------------------------|------|-----------------------|-------------|------|--------------------------------------------------|
| VALUE (units $10^{-3}$ )       | EVTS | DOCUMENT ID           |             | TECN | COMMENT                                          |
| $2.9\pm0.7$ OUR AVER           | AGE  |                       |             |      |                                                  |
| $2.7\!\pm\!0.6\!\pm\!0.5$      | 33   | <sup>1</sup> ACCIARRI | 97J         | L3   | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $5.0\!\pm\!2.1\!+\!1.5_{-0.9}$ | 6.4  | <sup>2</sup> ABREU    | <b>94</b> P | DLPH | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |

<sup>1</sup> ACCIARRI 97J measure this branching ratio via the decay channel  $\chi_{c1} \rightarrow J/\psi + \gamma$ , with  $J/\psi \rightarrow \ell^+ \ell^-$  ( $\ell = \mu$ , e). The  $M(\ell^+ \ell^- \gamma) - M(\ell^+ \ell^-)$  mass difference spectrum is fitted with two gaussian shapes for  $\chi_{c1}$  and  $\chi_{c2}$ .

<sup>2</sup> This branching ratio is measured via the decay channel  $\chi_{c1} \rightarrow J/\psi + \gamma$ , with  $J/\psi \rightarrow \mu^+ \mu^-$ .

| $\Gamma(\chi_{c2}(1P)X)/\Gamma_{total}$ |     |                       |     |      | Г <sub>32</sub> /Г                                      |
|-----------------------------------------|-----|-----------------------|-----|------|---------------------------------------------------------|
| VALUE                                   | CL% | DOCUMENT ID           |     | TECN | COMMENT                                                 |
| <3.2 × 10 <sup>-3</sup>                 | 90  | <sup>1</sup> ACCIARRI | 97J | L3   | <i>E</i> <sup><i>ee</i></sup> <sub>cm</sub> = 88–94 GeV |

<sup>1</sup>ACCIARRI 97J derive this limit via the decay channel  $\chi_{c2} \rightarrow J/\psi + \gamma$ , with  $J/\psi \rightarrow \ell^+ \ell^-$  ( $\ell = \mu$ , e). The  $M(\ell^+ \ell^- \gamma) - M(\ell^+ \ell^-)$  mass difference spectrum is fitted with two gaussian shapes for  $\chi_{c1}$  and  $\chi_{c2}$ .

| $\Gamma(\Upsilon(1S) \times +\Upsilon(2S))$ | ) X + 7(3 | 3 <i>S</i> )X)/Γ <sub>total</sub> | Г <sub>33</sub> /Г | $\Gamma = (\Gamma_{34} + \Gamma_{36} + \Gamma_{38}) / \Gamma$ |
|---------------------------------------------|-----------|-----------------------------------|--------------------|---------------------------------------------------------------|
| VALUE (units $10^{-4}$ )                    | EVTS      | DOCUMENT ID                       | TECN               | COMMENT                                                       |
| $1.0 \pm 0.4 \pm 0.22$                      | 6.4       | <sup>1</sup> ALEXANDER 96         | F OPAL             | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV              |

<sup>1</sup> ALEXANDER 96F identify the  $\Upsilon$  (which refers to any of the three lowest bound states) through its decay into  $e^+e^-$  and  $\mu^+\mu^-$ . The systematic error includes an uncertainty of  $\pm 0.2$  due to the production mechanism.

# $\Gamma(\Upsilon(1S)X)/\Gamma_{total}$

| Γ <sub>34</sub> | /Γ |
|-----------------|----|
|-----------------|----|

| VALUE                                                                                                   | CL% | DOCUMENT ID           |     | TECN | COMMENT                           |
|---------------------------------------------------------------------------------------------------------|-----|-----------------------|-----|------|-----------------------------------|
| <3.4 × 10 <sup>-6</sup>                                                                                 | 95  | <sup>1</sup> AAD      | 151 | ATLS | $E^{pp}_{cm}=8$ TeV               |
| ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$ |     |                       |     |      |                                   |
| $< 4.4 	imes 10^{-5}$                                                                                   | 95  | <sup>2</sup> ACCIARRI | 99F | L3   | <i>E<sup>ee</sup></i> = 88–94 GeV |

<sup>1</sup> AAD 15I use events with the highest  $p_T$  muon in the pair required to have  $p_T > 20$  GeV, the dimuon mass required to be in the range 8–12 GeV and it's transverse momentum required to be > 36 GeV. The photon is also required to have it's  $p_T > 36$  GeV.

<sup>2</sup>ACCIARRI 99F search for  $\Upsilon(1S)$  through its decay into  $\ell^+ \ell^-$  ( $\ell = e$  or  $\mu$ ).

# $\Gamma(\Upsilon(1S)\gamma)/\Gamma_{\text{total}}$

| VALUE                   | <u>CL%</u> | DOCUMENT ID         | TECN      | COMMENT                        |  |
|-------------------------|------------|---------------------|-----------|--------------------------------|--|
| <2.8 × 10 <sup>-6</sup> | 95         | <sup>1</sup> AABOUD | 18BL ATLS | $E^{pp}_{cm} = 13 \text{ TeV}$ |  |

<sup>1</sup> AABOUD 18BL study  $Z \rightarrow \Upsilon(1S)\gamma$  in 13 TeV pp interactions. Two triggers were used: isolated photon of  $p_T > 35(25)$  GeV and a muon with  $p_T > 18(24)$  GeV. The  $\Upsilon(1S)$ is detected via its dimuon decay and it is required that the azimuthal angle between the photon and the  $\Upsilon(1S)$  in the plane transverse to the beam direction is  $> \pi/2$ . The number of observed/expected background events is  $115/126 \pm 8$  in the dimuon mass range 9.0–10.0 GeV leading to the quoted 95% C.L. limit.

# $\Gamma(\Upsilon(2S)X)/\Gamma_{total}$

 $-(m(\alpha c))/r$ 

 $\Gamma_{36}/\Gamma$ 

/ -

 $\Gamma_{35}/\Gamma$ 

|                           |             |                       |             |           |                                                | , |
|---------------------------|-------------|-----------------------|-------------|-----------|------------------------------------------------|---|
| VALUE                     | CL%         | DOCUMENT ID           |             | TECN      | COMMENT                                        |   |
| $< 6.5 \times 10^{-6}$    | 95          | <sup>1</sup> AAD      | 151         | ATLS      | $E^{pp}_{cm}=$ 8 TeV                           |   |
| • • • We do not use the   | e following | data for averages     | s, fits,    | limits, e | etc. • • •                                     |   |
| $< \! 13.9 	imes 10^{-5}$ | 95          | <sup>2</sup> ACCIARRI | <b>97</b> R | L3        | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 Ge | V |

<sup>1</sup> AAD 15I use events with the highest  $p_T$  muon in the pair required to have  $p_T > 20$  GeV, the dimuon mass required to be in the range 8–12 GeV and it's transverse momentum required to be > 36 GeV. The photon is also required to have it's  $p_T > 36$  GeV.

<sup>2</sup>ACCIARRI 97R search for  $\Upsilon(2S)$  through its decay into  $\ell^+ \ell^-$  ( $\ell = e$  or  $\mu$ ).

| $(1(25)\gamma)/(total)$ |     |                     |           |                                           | 1 37/1 |
|-------------------------|-----|---------------------|-----------|-------------------------------------------|--------|
| VALUE                   | CL% | DOCUMENT ID         | TECN      | COMMENT                                   |        |
| <1.7 × 10 <sup>-6</sup> | 95  | <sup>1</sup> AABOUD | 18bl ATLS | ${\cal E}^{m{pp}}_{\sf cm}=13\;{\sf TeV}$ |        |

<sup>1</sup> AABOUD 18BL study  $Z \rightarrow \Upsilon(2S)\gamma$  in 13 TeV pp interactions. Two triggers were used: isolated photon of  $p_T > 35(25)$  GeV and a muon with  $p_T > 18(24)$  GeV. The  $\Upsilon(2S)$ is detected via its dimuon decay and it is required that the azimuthal angle between the photon and the  $\Upsilon(2S)$  in the plane transverse to the beam direction is  $> \pi/2$ . The number of observed/expected background events is  $106/121 \pm 8$  in the dimuon mass range 9.5–10.5 GeV leading to the quoted 95% C.L. limit.

| $\Gamma(\Upsilon(3S)X)/\Gamma_{total}$ |             |                       |             |         |                                 | Г <sub>38</sub> /Г |
|----------------------------------------|-------------|-----------------------|-------------|---------|---------------------------------|--------------------|
| VALUE                                  | CL%         | DOCUMENT ID           |             | TECN    | COMMENT                         |                    |
| <5.4 × 10 <sup>-6</sup>                | 95          | <sup>1</sup> AAD      | 151         | ATLS    | $E^{pp}_{cm} = 8 \text{ TeV}$   |                    |
| • • • We do not use the                | e following | data for averages     | s, fits,    | limits, | etc. • • •                      |                    |
| $< 9.4 	imes 10^{-5}$                  | 95          | <sup>2</sup> ACCIARRI | <b>97</b> R | L3      | <i>E<sup>ee</sup></i> = 88–94 G | eV                 |

<sup>1</sup> AAD 15I use events with the highest  $p_T$  muon in the pair required to have  $p_T > 20$  GeV, the dimuon mass required to be in the range 8–12 GeV and it's transverse momentum required to be > 36 GeV. The photon is also required to have it's  $p_T > 36$  GeV.

<sup>2</sup>ACCIARRI 97R search for  $\Upsilon(3S)$  through its decay into  $\ell^+\ell^-$  ( $\ell = e$  or  $\mu$ ).

| Г(1 | r(35) | γ)/ſ | total |
|-----|-------|------|-------|
|-----|-------|------|-------|

Г<sub>39</sub>/Г

 $\Gamma_{40}/\Gamma_8$ 

 $\Gamma_{42}/\Gamma_8$ 

| VALUE                   | CL% | DOCUMENT ID         | TECN      | COMMENT                        |  |
|-------------------------|-----|---------------------|-----------|--------------------------------|--|
| <4.8 × 10 <sup>-6</sup> | 95  | <sup>1</sup> AABOUD | 18BL ATLS | $E^{pp}_{cm} = 13 \text{ TeV}$ |  |

<sup>1</sup> AABOUD 18BL study  $Z \rightarrow \Upsilon(3S)\gamma$  in 13 TeV pp interactions. Two triggers were used: isolated photon of  $p_T > 35(25)$  GeV and a muon with  $p_T > 18(24)$  GeV. The  $\Upsilon(3S)$ is detected via its dimuon decay and it is required that the azimuthal angle between the photon and the  $\Upsilon(3S)$  in the plane transverse to the beam direction is  $> \pi/2$ . The number of observed/expected background events is  $112/113 \pm 8$  in the dimuon mass range 10.0–11.0 GeV leading to the quoted 95% C.L. limit.

| $\Gamma((D^{o}/D^{o})X)/\Gamma(ha)$ | adrons) |                    |     |      |                                    |
|-------------------------------------|---------|--------------------|-----|------|------------------------------------|
| VALUE                               | EVTS    | DOCUMENT ID        |     | TECN | COMMENT                            |
| 0.296±0.019±0.021                   | 369     | <sup>1</sup> ABREU | 93I | DLPH | $E_{\rm cm}^{ee} = 88-94 {\rm Ge}$ |

<sup>1</sup> The  $(D^0/\overline{D}^0)$  states in ABREU 931 are detected by the  $K\pi$  decay mode. This is a corrected result (see the erratum of ABREU 931).

| $\Gamma(D^{\pm}X)/\Gamma(hadrons)$ | 5)   |                    |     |      | Γ <sub>41</sub> /Γ <sub>8</sub>                 |
|------------------------------------|------|--------------------|-----|------|-------------------------------------------------|
| VALUE                              | EVTS | DOCUMENT ID        |     | TECN | COMMENT                                         |
| $0.174 {\pm} 0.016 {\pm} 0.018$    | 539  | <sup>1</sup> ABREU | 931 | DLPH | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |

<sup>1</sup> The  $D^{\pm}$  states in ABREU 93I are detected by the  $K \pi \pi$  decay mode. This is a corrected result (see the erratum of ABREU 93I).

# $\Gamma(D^*(2010)^{\pm}X)/\Gamma(hadrons)$

. . . .

| I he value is for the sum of the charge states indicated. |      |                      |        |         |                                                 |  |
|-----------------------------------------------------------|------|----------------------|--------|---------|-------------------------------------------------|--|
| VALUE                                                     | EVTS | DOCUMENT ID          |        | TECN    | COMMENT                                         |  |
| 0.163±0.019 OUR AVE                                       | RAGE | Error includes scale | factor | of 1.3. |                                                 |  |
| $0.155 \!\pm\! 0.010 \!\pm\! 0.013$                       | 358  | <sup>1</sup> ABREU   | 931    | DLPH    | $E_{\rm cm}^{ee}$ = 88–94 GeV                   |  |
| $0.21 \pm 0.04$                                           | 362  | <sup>2</sup> DECAMP  | 91J    | ALEP    | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |  |

 ${}^{1}D^{*}(2010)^{\pm}$  in ABREU 93I are reconstructed from  $D^{0}\pi^{\pm}$ , with  $D^{0} \rightarrow K^{-}\pi^{+}$ . The new CLEO II measurement of  $B(D^{*\pm} \rightarrow D^{0}\pi^{\pm}) = (68.1 \pm 1.6)$  % is used. This is a corrected result (see the erratum of ABREU 93I).

<sup>2</sup> DECAMP 91J report  $B(D^*(2010)^+ \rightarrow D^0 \pi^+) B(D^0 \rightarrow K^- \pi^+) \Gamma(D^*(2010)^{\pm}X)$ /  $\Gamma(hadrons) = (5.11 \pm 0.34) \times 10^{-3}$ . They obtained the above number assuming  $B(D^0 \rightarrow K^- \pi^+) = (3.62 \pm 0.34 \pm 0.44)\%$  and  $B(D^*(2010)^+ \rightarrow D^0 \pi^+) = (55 \pm 4)\%$ . We have rescaled their original result of  $0.26 \pm 0.05$  taking into account the new CLEO II branching ratio  $B(D^*(2010)^+ \rightarrow D^0 \pi^+) = (68.1 \pm 1.6)\%$ .

#### $\Gamma(D_{s1}(2536)^{\pm}X)/\Gamma(hadrons)$ $\Gamma_{43}/\Gamma_8$ $D_{s1}(2536)^{\pm}$ is an expected orbitally-excited state of the $D_s$ meson. DOCUMENT ID TECN COMMENT VALUE (%) EVTS 02B ALEP $E_{cm}^{ee} = 88-94 \text{ GeV}$ <sup>1</sup> HEISTER 92 $0.52 \pm 0.09 \pm 0.06$ <sup>1</sup>HEISTER 02B reconstruct this meson in the decay modes $D_{s1}(2536)^{\pm} \rightarrow D^{*\pm} \kappa^0$ and $D_{s1}(2536)^{\pm} \rightarrow D^{*0} K^{\pm}$ . The quoted branching ratio assumes that the decay width of the $D_{s1}(2536)$ is saturated by the two measured decay modes.

# $\Gamma(D_{sJ}(2573)^{\pm}X)/\Gamma(hadrons)$

| $D_{sJ}^{}(2573)^{\pm}$ is          | an expected | orbitally-excited a  | state o     | of the D | <sub>s</sub> meson.               |
|-------------------------------------|-------------|----------------------|-------------|----------|-----------------------------------|
| VALUE (%)                           | EVTS        | DOCUMENT ID          |             | TECN     | COMMENT                           |
| $0.83 {\pm} 0.29 {+} 0.07 {-} 0.13$ | 64          | <sup>1</sup> HEISTER | <b>02</b> B | ALEP     | <i>E<sup>ee</sup></i> = 88–94 GeV |

<sup>1</sup>HEISTER 02B reconstruct this meson in the decay mode  $D^*_{s2}(2573)^{\pm} \rightarrow D^0 K^{\pm}$ . The quoted branching ratio assumes that the detected decay mode represents 45% of the full decay width.

# $\Gamma(D^{*'}(2629)^{\pm}X)/\Gamma(hadrons)$

| $D^{*'}(2629)^{\pm}$ is a predicted radial excitation of the $D^{*}(2010)^{\pm}$ meson | n. |
|----------------------------------------------------------------------------------------|----|
|----------------------------------------------------------------------------------------|----|

| VALUE                   | <u>DOCUMENT ID</u>       | TECN      | <u>COMMENT</u>                                  |
|-------------------------|--------------------------|-----------|-------------------------------------------------|
| searched for            | 1 ABBIENDI 01M           | OPAL      | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |
| 1 ABBIENDI 01N searched | for the decay mode $D^*$ | */(2620)± | $ \rightarrow D^{*\pm}\pi^{\pm}\pi^{-}$ with    |

ABBIENDI 01N searched for the decay mode  $D^{*'}(2629)^{\pm} \rightarrow D^{*\pm}\pi^{+}\pi^{-}$  with  $D^{*+} \rightarrow D^0 \pi^+$ , and  $D^0 \rightarrow K^- \pi^+$ . They quote a 95% CL limit for  $Z \rightarrow D^{*\prime}(2629)^{\pm} \times B(D^{*\prime}(2629)^+ \rightarrow D^{*+} \pi^+ \pi^-) < 3.1 \times 10^{-3}$ .

# $\Gamma(B^*X)/[\Gamma(BX) + \Gamma(B^*X)]$

 $\Gamma_{47}/(\Gamma_{46}+\Gamma_{47})$ As the experiments assume different values of the b-baryon contribution, our average should be taken with caution.

| VALUE                               | <u>EVTS</u> | DOCUMENT ID             |             | TECN | COMMENT                                          |
|-------------------------------------|-------------|-------------------------|-------------|------|--------------------------------------------------|
| $0.75 \pm 0.04$ OUR AVE             | RAGE        |                         |             |      |                                                  |
| $0.760 \!\pm\! 0.036 \!\pm\! 0.083$ |             | <sup>1</sup> ACKERSTAFF | <b>9</b> 7M | OPAL | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $0.771\!\pm\!0.026\!\pm\!0.070$     |             | <sup>2</sup> BUSKULIC   | <b>96</b> D | ALEP | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $0.72 \ \pm 0.03 \ \pm 0.06$        |             | <sup>3</sup> ABREU      | <b>95</b> R | DLPH | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $0.76\ \pm 0.08\ \pm 0.06$          | 1378        | <sup>4</sup> ACCIARRI   | <b>95</b> B | L3   | $E_{\rm cm}^{ee}$ = 88–94 GeV                    |

 $^1$ ACKERSTAFF 97M use an inclusive B reconstruction method and assume a (13.2  $\pm$ 4.1)% b-baryon contribution. The value refers to a b-flavored meson mixture of  $B_u$ ,  $B_d$ , and  $B_{s}$ .

 $^2$ BUSKULIC 96D use an inclusive reconstruction of B hadrons and assume a (12.2  $\pm$ 4.3)% b-baryon contribution. The value refers to a b-flavored mixture of  $B_{\mu\nu}$ ,  $\dot{B}_{d}$ , and В<sub>s</sub>.

 $^3$  ABREU 95R use an inclusive *B*-reconstruction method and assume a  $(10\pm4)\%$  *b*-baryon contribution. The value refers to a *b*-flavored meson mixture of  $B_{\mu}$ ,  $B_{d}$ , and  $B_{s}$ .

 $^4$  ACCIARRI 95B assume a 9.4% *b*-baryon contribution. The value refers to a *b*-flavored mixture of  $B_{\mu}$ ,  $B_{d}$ , and  $B_{s}$ .

HTTP://PDG.LBL.GOV

 $\Gamma_{45}/\Gamma_8$ 

 $\Gamma_{44}/\Gamma_8$ 

## $\Gamma(B^+X)/\Gamma(hadrons)$

### $\Gamma_{48}/\Gamma_8$

"OUR EVALUATION" is obtained using our current values for  $f(\overline{b} \rightarrow B^+)$  and  $R_b = \Gamma(b\overline{b})/\Gamma(hadrons)$ . We calculate  $\Gamma(B^+ X)/\Gamma(hadrons) = R_b \times f(\overline{b} \rightarrow B^+)$ . The decay fraction  $f(\overline{b} \rightarrow B^+)$  was provided by the Heavy Flavor Averaging Group (HFLAV, http://www.slac.stanford.edu/xorg/hflav/osc/PDG\_2009/#FRACZ). DOCUMENT ID TECN COMMENT

#### $0.0869 \pm 0.0019$ OUR EVALUATION

 $0.0887 \pm 0.0030$ 

VALUE

<sup>1</sup> ABDALLAH 03K DLPH  $E_{cm}^{ee} = 88-94$  GeV

<sup>1</sup> ABDALLAH 03K measure the production fraction of  $B^+$  mesons in hadronic Z decays  $f(B^+) = (40.99 \pm 0.82 \pm 1.11)\%$ . The value quoted here is obtained multiplying this production fraction by our value of  $R_b = \Gamma(\overline{b}b)/\Gamma(hadrons)$ .

# $\Gamma(B_s^0 X) / \Gamma(hadrons)$

#### Γ<sub>49</sub>/Γ<sub>8</sub>

"OUR EVALUATION" is obtained using our current values for  $f(\overline{b} \rightarrow B_s^0)$  and  $R_b = \Gamma(b\overline{b})/\Gamma(hadrons)$ . We calculate  $\Gamma(B_s^0)/\Gamma(hadrons) = R_b \times f(\overline{b} \rightarrow B_s^0)$ . The decay fraction  $f(\overline{b} \rightarrow B_s^0)$  was provided by the Heavy Flavor Averaging Group (HFLAV, http://www.slac.stanford.edu/xorg/hflav/osc/PDG\_2009/#FRACZ).

| VALUE                            | DOCOMENTID                              | TLCN                      | COMMENT                                           |  |  |  |  |
|----------------------------------|-----------------------------------------|---------------------------|---------------------------------------------------|--|--|--|--|
| 0.0227±0.0019 OUR EVALUATION     |                                         |                           |                                                   |  |  |  |  |
| seen                             | <sup>1</sup> ABREU                      | 92м DLPH                  | I <i>E<sup>ee</sup></i> = 88–94 GeV               |  |  |  |  |
| seen                             | <sup>2</sup> ACTON                      | 92N OPAL                  | <i>E<sup>ee</sup></i> = 88–94 GeV                 |  |  |  |  |
| seen                             | <sup>3</sup> BUSKULIC                   | 92E ALEF                  | 2 <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |  |  |  |  |
| $^1$ ABREU 92M reported value is | $\Gamma(B_s^0 X) * B(B_s^0 \rightarrow$ | $D_{s} \mu \nu_{\mu} X$ ) | $*B(D_{s} \rightarrow \phi \pi)/\Gamma(hadrons)$  |  |  |  |  |

$$= (18 \pm 8) \times 10^{-1}$$

5

<sup>2</sup> ACTON 92N find evidence for  $B_s^0$  production using  $D_s$ - $\ell$  correlations, with  $D_s^+ \to \phi \pi^+$ and  $K^*(892)K^+$ . Assuming  $R_b$  from the Standard Model and averaging over the e and  $\mu$  channels, authors measure the product branching fraction to be  $f(\overline{b} \to B_s^0) \times B(B_s^0 \to D_s^- \ell^+ \nu_\ell X) \times B(D_s^- \to \phi \pi^-) = (3.9 \pm 1.1 \pm 0.8) \times 10^{-4}$ .

<sup>3</sup>BUSKULIC 92E find evidence for  $B_s^0$  production using  $D_s$ - $\ell$  correlations, with  $D_s^+ \rightarrow \phi \pi^+$  and  $K^*(892)K^+$ . Using  $B(D_s^+ \rightarrow \phi \pi^+) = (2.7 \pm 0.7)\%$  and summing up the e and  $\mu$  channels, the weighted average product branching fraction is measured to be  $B(\overline{b} \rightarrow B_s^0) \times B(B_s^0 \rightarrow D_s^- \ell^+ \nu_\ell X) = 0.040 \pm 0.011 \substack{+0.010 \\ -0.012}$ .

# $\Gamma(B_c^+ X)/\Gamma(hadrons)$

 $\Gamma_{50}/\Gamma_8$ 

| VALUE        | DOCUMENT ID                | TECN    | COMMENT                                          |
|--------------|----------------------------|---------|--------------------------------------------------|
| searched for | <sup>1</sup> ACKERSTAFF 98 | BO OPAL | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV  |
| searched for | <sup>2</sup> ABREU 97      | 7e DLPH | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| searched for | <sup>3</sup> BARATE 97     | 7H ALEP | $E_{\rm cm}^{ee}$ = 88–94 GeV                    |

<sup>1</sup> ACKERSTAFF 980 searched for the decay modes  $B_c \rightarrow J/\psi \pi^+$ ,  $J/\psi a_1^+$ , and  $J/\psi \ell^+ \nu_{\ell}$ , with  $J/\psi \rightarrow \ell^+ \ell^-$ ,  $\ell = e, \mu$ . The number of candidates (background) for the three decay modes is 2 (0.63 ± 0.2), 0 (1.10 ± 0.22), and 1 (0.82 ± 0.19) respectively. Interpreting the  $2B_c \rightarrow J/\psi \pi^+$  candidates as signal, they report  $\Gamma(B_c^+ X) \times B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) = (3.8^{+5.0}_{-2.4} \pm 0.5) \times 10^{-5}$ . Interpreted as background, the 90% CL bounds are  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(hadrons) < 1.06 \times 10^{-4}$ ,  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+)/\Gamma(B_c^+ X)$ 

 $J/\psi a_1^+)/\Gamma(hadrons) < 5.29 \times 10^{-4}, \ \Gamma(B_c^+X)*B(B_c \rightarrow J/\psi \ell^+ \nu_\ell)/\Gamma(hadrons) < 6.96 \times 10^{-5}.$ 

<sup>2</sup> ABREU 97E searched for the decay modes  $B_c \rightarrow J/\psi \pi^+$ ,  $J/\psi \ell^+ \nu_\ell$ , and  $J/\psi (3\pi)^+$ , with  $J/\psi \rightarrow \ell^+ \ell^-$ ,  $\ell = e,\mu$ . The number of candidates (background) for the three decay modes is 1 (1.7), 0 (0.3), and 1 (2.3) respectively. They report the following 90% CL limits:  $\Gamma(B_c^+X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(\text{hadrons}) < (1.05-0.84) \times 10^{-4}$ ,  $\Gamma(B_c^+X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(\text{hadrons}) < (1.05-0.84) \times 10^{-4}$ ,  $\Gamma(B_c^+X)*B(B_c \rightarrow J/\psi \pi^+)/\Gamma(\text{hadrons}) < (1.05-0.84) \times 10^{-4}$ ,  $\Gamma(B_c^+X)*B(B_c \rightarrow J/\psi \ell \nu_\ell)/\Gamma(\text{hadrons}) < (5.8-5.0) \times 10^{-5}$ ,  $\Gamma(B_c^+X)*B(B_c \rightarrow J/\psi (3\pi)^+)/\Gamma(\text{hadrons}) < (1.75 \times 10^{-4})$ , where the ranges are due to the predicted  $B_c$  lifetime (0.4-1.4) ps. <sup>3</sup> BARATE 97H searched for the decay modes  $B_c \rightarrow J/\psi \pi^+$  and  $J/\psi \ell^+ \nu_\ell$  with

 $J/\psi \rightarrow \ell^+ \ell^-$ ,  $\ell = e,\mu$ . The number of candidates (background) for the two decay modes is 0 (0.44) and 2 (0.81) respectively. They report the following 90% CL limits:  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+) / \Gamma(hadrons) < 3.6 \times 10^{-5}$  and  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \pi^+) / \Gamma(hadrons) < 3.6 \times 10^{-5}$  and  $\Gamma(B_c^+ X) * B(B_c \rightarrow J/\psi \ell^+ \nu_\ell) / \Gamma(hadrons) < 5.2 \times 10^{-5}$ .

 $\Gamma(\Lambda_c^+ X) / \Gamma(hadrons)$ 

 $\Gamma_{51}/\Gamma_8$ 

| VALUE                           | DOCUMENT ID            |             | TECN | COMMENT                             |
|---------------------------------|------------------------|-------------|------|-------------------------------------|
| $0.022\pm0.005$ OUR AVERAGE     |                        |             |      |                                     |
| $0.024 \pm 0.005 \pm 0.006$     | <sup>1</sup> ALEXANDER | <b>96</b> R | OPAL | $E_{\rm cm}^{ee} = 88-94  { m GeV}$ |
| $0.021\!\pm\!0.003\!\pm\!0.005$ | <sup>2</sup> BUSKULIC  | 96Y         | ALEP | $E_{\rm cm}^{ee} =$ 88–94 GeV       |

<sup>1</sup>ALEXANDER 96R measure  $R_b \times f(b \rightarrow \Lambda_c^+ X) \times B(\Lambda_c^+ \rightarrow pK^-\pi^+) = (0.122 \pm 0.023 \pm 0.010)\%$  in hadronic Z decays; the value quoted here is obtained using our best value  $B(\Lambda_c^+ \rightarrow pK^-\pi^+) = (5.0 \pm 1.3)\%$ . The first error is the total experiment's error and the second error is the systematic error due to the branching fraction uncertainty. <sup>2</sup>BUSKULIC 96Y obtain the production fraction of  $\Lambda_c^+$  baryons in hadronic Z decays  $f(b \rightarrow \Lambda_c^+ X) = 0.110 \pm 0.014 \pm 0.006$  using  $B(\Lambda_c^+ \rightarrow pK^-\pi^+) = (4.4 \pm 0.6)\%$ ; we have rescaled using our best value  $B(\Lambda_c^+ \rightarrow pK^-\pi^+) = (5.0 \pm 1.3)\%$  obtaining  $f(b \rightarrow \Lambda_c^+ X) = 0.097 \pm 0.013 \pm 0.025$  where the first error is their total experiment's error and the second error is the systematic error due to the branching fraction uncertainty. The value quoted here is obtained multiplying this production fraction by our value of  $R_b = \Gamma(b \overline{b})/\Gamma(hadrons)$ .

#### $\Gamma(\Xi_c^0 X) / \Gamma(hadrons)$ $\Gamma_{52}/\Gamma_8$ DOCUMENT ID TECN COMMENT We do not use the following data for averages, fits, limits, etc. • • <sup>1</sup> ABDALLAH 05C DLPH $E_{cm}^{ee} = 88-94 \text{ GeV}$ seen <sup>1</sup>ABDALLAH 05C searched for the charmed strange baryon $\Xi_c^0$ in the decay channel $\Xi_c^0 \rightarrow \Xi^- \pi^+ (\Xi^- \rightarrow \Lambda \pi^-)$ . The production rate is measured to be $f_{\Xi_c^0} \times B(\Xi_c^0 \rightarrow \Xi_c^0)$ $arepsilon^-\pi^+)=$ (4.7 $\pm$ 1.4 $\pm$ 1.1) imes 10 $^{-4}$ per hadronic Z decay. $\Gamma(\Xi_b X)/\Gamma(hadrons)$ $\Gamma_{53}/\Gamma_8$ Here $\Xi_b$ is used as a notation for the strange *b*-baryon states $\Xi_b^-$ and $\Xi_b^0$ . DOCUMENT ID \_\_\_\_\_ TECN \_\_\_\_\_ COMMENT VALUE • We do not use the following data for averages, fits, limits, etc. • • • <sup>1</sup> ABDALLAH 05C DLPH $E_{cm}^{ee} = 88-94 \text{ GeV}$ seen 96T ALEP $E_{cm}^{ee} = 88-94 \text{ GeV}$ 95V DLPH $E_{cm}^{ee} = 88-94 \text{ GeV}$ <sup>2</sup> BUSKULIC seen <sup>3</sup> ABREU seen

- $^1$ ABDALLAH 05C searched for the beauty strange baryon  $arepsilon_b$  in the inclusive semileptonic decay channel  $\Xi_b \rightarrow \Xi^- \ell^- \overline{\nu}_\ell X$ . Evidence for the  $\Xi_b$  production is seen from the observation of  $\Xi^{\mp}$  production accompanied by a lepton of the same sign. From the excess of "right-sign" pairs  $\Xi^{\mp} \ell^{\mp}$  compared to "wrong-sign" pairs  $\Xi^{\mp} \ell^{\pm}$  the production rate is measured to be B( $b \rightarrow \Xi_b$ ) × B( $\Xi_b \rightarrow \Xi^- \ell^- X$ ) = (3.0 ± 1.0 ± 0.3) × 10<sup>-4</sup> per lepton species, averaged over electrons and muons.
- $^2$  BUSKULIC 96T investigate  $\varXi$ -lepton correlations and find a significant excess of "rightsign" pairs  $\Xi^{\mp} \ell^{\mp}$  compared to "wrong-sign" pairs  $\Xi^{\mp} \ell^{\pm}$ . This excess is interpreted as evidence for  $\Xi_b$  semileptonic decay. The measured product branching ratio is B( $b \rightarrow$  $\Xi_b$ ) × B( $\Xi_b \rightarrow X_c X \ell^- \overline{\nu}_\ell$ ) × B( $X_c \rightarrow \Xi^- X'$ ) = (5.4 ± 1.1 ± 0.8) × 10<sup>-4</sup> per lepton species, averaged over electrons and muons, with  $X_c$  a charmed baryon.
- <sup>3</sup>ABREU 95V observe an excess of "right-sign" pairs  $\Xi^{\pm}\ell^{\pm}$  compared to "wrong-sign" pairs  $\Xi^{\mp}\ell^{\pm}$  in jets: this excess is interpreted as evidence for the beauty strange baryon  $\Xi_b$  production, with  $\Xi_b \to \Xi^- \ell^- \overline{\nu}_\ell X$ . They find that the probability for this signal to come from non *b*-baryon decays is less than  $5 \times 10^{-4}$  and that  $\Lambda_b$  decays can account for less than 10% of these events. The  $\Xi_b$  production rate is then measured to be B( $b \rightarrow$  $(\Xi_h) \times B(\Xi_h \rightarrow \Xi^- \ell^- X) = (5.9 \pm 2.1 \pm 1.0) \times 10^{-4}$  per lepton species, averaged over electrons and muons.

### $\Gamma(b-baryon X)/\Gamma(hadrons)$

 $\Gamma_{54}/\Gamma_8$ 

 $\Gamma_{55}/\Gamma$ 

"OUR EVALUATION" is obtained using our current values for f(  $b \rightarrow b$ -baryon) and  $R_b = \Gamma(b \overline{b})/\Gamma(hadrons)$ . We calculate  $\Gamma(b-baryon X)/\Gamma(hadrons) = R_b \times f(b \rightarrow baryon X)$ *b*-baryon). The decay fraction  $f(b \rightarrow b$ -baryon) was provided by the Heavy Flavor Averaging Group (HFLAV, http://www.slac.stanford.edu/xorg/hflav/osc/PDG\_2009). VALUE DOCUMENT ID TECN COMMENT

#### 0.0197±0.0032 OUR EVALUATION $0.0221 \pm 0.0015 \pm 0.0058$

<sup>1</sup> BARATE 98v ALEP *E*<sup>ee</sup><sub>cm</sub>= 88–94 GeV  $^1$  BARATE 98V use the overall number of identified protons in b-hadron decays to measure  $f(b \rightarrow b\text{-baryon}) = 0.102 \pm 0.007 \pm 0.027$ . They assume  $BR(b\text{-baryon} \rightarrow pX) =$ 

 $(58 \pm 6)\%$  and BR $(B_5^0 \rightarrow pX) = (8.0 \pm 4.0)\%$ . The value quoted here is obtained multiplying this production fraction by our value of  $R_b = \Gamma(b\overline{b})/\Gamma(hadrons)$ .

### $\Gamma(\text{anomalous } \gamma + \text{hadrons}) / \Gamma_{\text{total}}$

Limits on additional sources of prompt photons beyond expectations for final-state bremsstrahlung.

| VALUE                   | CL% | DOCUMENT ID         |     | TECN | COMMENT                                         |
|-------------------------|-----|---------------------|-----|------|-------------------------------------------------|
| <3.2 × 10 <sup>-3</sup> | 95  | <sup>1</sup> AKRAWY | 90J | OPAL | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |

<sup>1</sup>AKRAWY 90J report  $\Gamma(\gamma X) < 8.2$  MeV at 95%CL. They assume a three-body  $\gamma q \overline{q}$ distribution and use  $E(\gamma) > 10$  GeV.

| $\Gamma(e^+ e^- \gamma) / \Gamma_{ m total}$ |     |                    |             |      | Г                                              | <sub>56</sub> /Г |
|----------------------------------------------|-----|--------------------|-------------|------|------------------------------------------------|------------------|
| VALUE                                        | CL% | DOCUMENT ID        |             | TECN | COMMENT                                        |                  |
| <5.2 × 10 <sup>-4</sup>                      | 95  | <sup>1</sup> ACTON | <b>91</b> B | OPAL | <i>E<sup>ee</sup></i> <sub>cm</sub> = 91.2 GeV |                  |

<sup>1</sup>ACTON 91B looked for isolated photons with E>2% of beam energy (> 0.9 GeV).

| $\Gamma(\mu^+\mu^-\gamma)/\Gamma_{	ext{total}}$ |     |                    |             |      |                                                | Г <sub>57</sub> /Г |
|-------------------------------------------------|-----|--------------------|-------------|------|------------------------------------------------|--------------------|
| VALUE                                           | CL% | DOCUMENT ID        |             | TECN | COMMENT                                        |                    |
| <5.6 × 10 <sup>-4</sup>                         | 95  | <sup>1</sup> ACTON | <b>91</b> B | OPAL | <i>E<sup>ee</sup></i> <sub>cm</sub> = 91.2 GeV | ,                  |

<sup>1</sup> ACTON 91B looked for isolated photons with E>2% of beam energy (> 0.9 GeV).

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update

| $\Gamma(\tau^+\tau^-\gamma)/\Gamma_{total}$                                                                                                                                              |               |                                          |             |                | Г <sub>58</sub> /Г                                      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------|-------------|----------------|---------------------------------------------------------|--|
| VALUE                                                                                                                                                                                    | <u>CL%</u>    | DOCUMENT ID                              |             | TECN           | COMMENT                                                 |  |
| <7.3 × 10 <sup>-4</sup>                                                                                                                                                                  | 95            | <sup>1</sup> ACTON                       | <b>91</b> B | OPAL           | $E_{\rm Cm}^{ee} = 91.2  {\rm GeV}$                     |  |
| <sup>1</sup> ACTON 91B looke                                                                                                                                                             | ed for isolat | ed photons with E>                       | 2% c        | of beam        | energy ( $> 0.9$ GeV).                                  |  |
| $\Gamma(\ell^+\ell^-\gamma\gamma)/\Gamma_{total}$ The value is the                                                                                                                       |               | $\ell={\it e},\mu,	au.$                  |             |                | Г <sub>59</sub> /Г                                      |  |
| VALUE                                                                                                                                                                                    | <u>CL%</u>    | DOCUMENT ID                              |             |                |                                                         |  |
| <6.8 × 10 <sup>—6</sup>                                                                                                                                                                  | 95            | <sup>1</sup> ACTON                       | 93E         | OPAL           | $E_{\rm cm}^{ee}=$ 88–94 GeV                            |  |
| $^{1}$ For $m_{\gamma\gamma}=$ 60 $\pm$                                                                                                                                                  | 5 GeV.        |                                          |             |                |                                                         |  |
| $\Gamma(q\overline{q}\gamma\gamma)/\Gamma_{ m total}$                                                                                                                                    |               |                                          |             |                | Г <sub>60</sub> /Г                                      |  |
| VALUE                                                                                                                                                                                    | <u>CL%</u>    | DOCUMENT ID                              |             |                | COMMENT                                                 |  |
| <5.5 × 10 <sup>-6</sup>                                                                                                                                                                  | 95            | <sup>1</sup> ACTON                       | 93E         | OPAL           | <i>E</i> <sup><i>ee</i></sup> <sub>cm</sub> = 88–94 GeV |  |
| $^{1}$ For $m_{\gamma\gamma}=$ 60 $\pm$                                                                                                                                                  | 5 GeV.        |                                          |             |                |                                                         |  |
| $\Gamma ig(  u \overline{ u} \gamma \gamma ig) / \Gamma_{total}$                                                                                                                         |               |                                          |             |                | Г <sub>61</sub> /Г                                      |  |
| VALUE                                                                                                                                                                                    | <u>CL%</u>    | <u>DOCUMENT ID</u><br><sup>1</sup> ACTON |             | TECN           | COMMENT                                                 |  |
| <3.1 × 10 <sup>-6</sup>                                                                                                                                                                  | 95            | <sup>1</sup> ACTON                       | 93E         | OPAL           | <i>E</i> <sup><i>ee</i></sup> <sub>cm</sub> = 88–94 GeV |  |
| $^1$ For $m_{\gamma\gamma}=$ 60 $\pm$                                                                                                                                                    | 5 GeV.        |                                          |             |                |                                                         |  |
|                                                                                                                                                                                          | -             | ber conservation. T                      | he va       | alue is f      | <b>Γ<sub>62</sub>/Γ</b><br>or the sum of the charge     |  |
| states indicated VALUE                                                                                                                                                                   | CL%           | DOCUMENT ID                              |             | TECN           | COMMENT                                                 |  |
| <7.5 × 10 <sup>-7</sup>                                                                                                                                                                  | 95            | AAD                                      |             |                | $E_{\rm cm}^{pp} = 8  {\rm TeV}$                        |  |
| $< 2.5 \times 10^{-6}$                                                                                                                                                                   | 95            | ABREU                                    |             |                | $E_{\rm cm}^{ee}$ = 88–94 GeV                           |  |
| $< 1.7 \times 10^{-6}$                                                                                                                                                                   | 95            | AKERS                                    | 95W         | OPAL           | $E_{\rm cm}^{ee}$ = 88–94 GeV                           |  |
| $< 0.6 \times 10^{-5}$                                                                                                                                                                   | 95            | ADRIANI                                  | 931         | L3             | $E_{\rm cm}^{ee}$ = 88–94 GeV                           |  |
| ${<}2.6	imes10^{-5}$                                                                                                                                                                     | 95            | DECAMP                                   | 92          | ALEP           | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV         |  |
| $ \Gamma(e^{\pm}\mu^{\mp})/\Gamma(e^{+}e^{-}) \qquad \qquad \Gamma_{62}/\Gamma_{1} $ Test of lepton family number conservation. The value is for the sum of the charge states indicated. |               |                                          |             |                |                                                         |  |
| VALUE                                                                                                                                                                                    | <u>CL%</u>    | DOCUMENT ID                              | TE          | <u>CN</u> CC   | DMMENT                                                  |  |
| <0.07                                                                                                                                                                                    | 90            | ALBAJAR 89                               | UA          | $A1 E_{0}^{l}$ | o <del>p</del><br>cm= 546,630 GeV                       |  |

 $\Gamma(e^{\pm}\tau^{\mp})/\Gamma_{\text{total}}$ Test of lepton family number conservation. The value is for the sum of the charge

| VALUE                   | <u>CL%</u> | DOCUMENT ID |             | TECN | COMMENT                                                 |  |
|-------------------------|------------|-------------|-------------|------|---------------------------------------------------------|--|
| ${<}5.8	imes10^{-5}$    | 95         | AABOUD      | 18CN        | ATLS | $E^{pp}_{ m cm}=13~{ m TeV}$                            |  |
| $< 2.2 \times 10^{-5}$  | 95         | ABREU       | <b>97</b> C | DLPH | <i>E</i> <sup><i>ee</i></sup> <sub>cm</sub> = 88–94 GeV |  |
| <9.8 × 10 <sup>-6</sup> | 95         | AKERS       | 95W         | OPAL | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV         |  |
| $< 1.3 \times 10^{-5}$  | 95         | ADRIANI     | 931         | L3   | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV         |  |
| $< 1.2 \times 10^{-4}$  | 95         | DECAMP      | 92          | ALEP | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV        |  |
|                         |            |             |             |      |                                                         |  |

# $\Gamma(\mu^{\pm}\tau^{\mp})/\Gamma_{\text{total}}$

# Г<sub>64</sub>/Г

Test of lepton family number conservation. The value is for the sum of the charge states indicated.

| oraroo marcaroar        |            |             |             |      |                               |
|-------------------------|------------|-------------|-------------|------|-------------------------------|
| VALUE                   | <u>CL%</u> | DOCUMENT ID |             | TECN | COMMENT                       |
| ${<}1.3\times10^{-5}$   | 95         | AABOUD      | 18CN        | ATLS | $E^{pp}_{cm}=$ 8, 13 TeV      |
| <1.2 × 10 <sup>-5</sup> | 95         | ABREU       | <b>97</b> C | DLPH | $E_{\rm cm}^{ee}$ = 88–94 GeV |
| $< 1.7 \times 10^{-5}$  | 95         | AKERS       | 95W         | OPAL | $E_{\rm cm}^{ee}$ = 88–94 GeV |
| $< 1.9 \times 10^{-5}$  | 95         | ADRIANI     | 931         | L3   | $E_{\rm cm}^{ee}$ = 88–94 GeV |
| $< 1.0 \times 10^{-4}$  | 95         | DECAMP      | 92          | ALEP | $E_{\rm cm}^{ee}=$ 88–94 GeV  |
|                         |            |             |             |      |                               |

# $\Gamma(pe)/\Gamma_{total}$

Γ<sub>65</sub>/Γ

Test of baryon number and lepton number conservations. Charge conjugate states are implied.

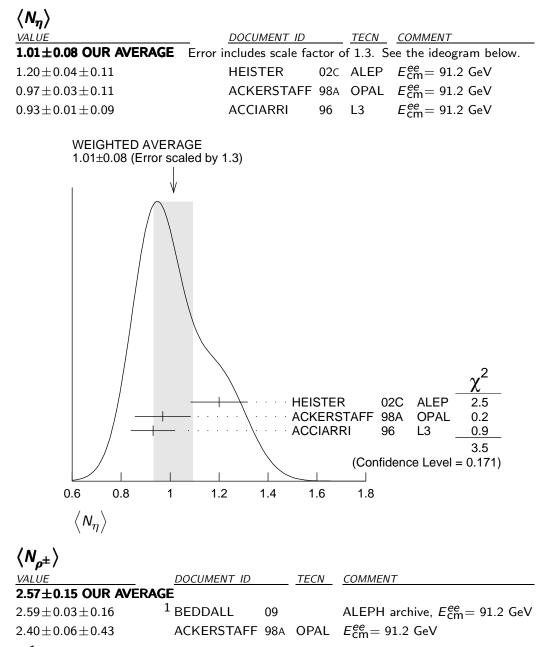
| VALUE                   | CL% | DOCUMENT ID           |     | TECN | COMMENT                                          |
|-------------------------|-----|-----------------------|-----|------|--------------------------------------------------|
| <1.8 × 10 <sup>-6</sup> | 95  | <sup>1</sup> ABBIENDI | 991 | OPAL | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |

<sup>1</sup>ABBIENDI 991 give the 95%CL limit on the partial width  $\Gamma(Z^0 \rightarrow pe) < 4.6$  KeV and we have transformed it into a branching ratio.

# $\Gamma(\rho\mu)/\Gamma_{\text{total}}$

# Г<sub>66</sub>/Г

Test of baryon number and lepton number conservations. Charge conjugate states are implied.


| VALUE                   | <u>CL%</u> | DOCUMENT ID           |     | TECN | COMMENT                                         |
|-------------------------|------------|-----------------------|-----|------|-------------------------------------------------|
| <1.8 × 10 <sup>-6</sup> | 95         | <sup>1</sup> ABBIENDI | 991 | OPAL | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |
|                         |            |                       |     |      | -                                               |

<sup>1</sup>ABBIENDI 991 give the 95%CL limit on the partial width  $\Gamma(Z^0 \rightarrow p\mu) < 4.4$  KeV and we have transformed it into a branching ratio.

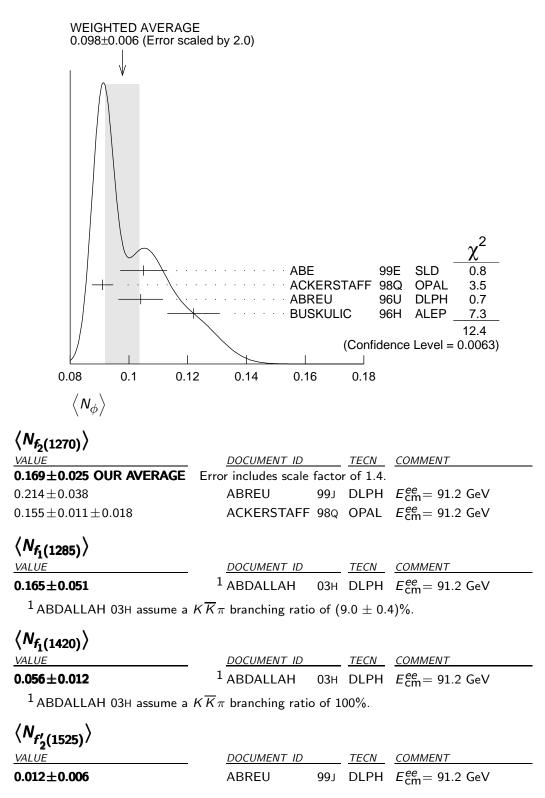
### AVERAGE PARTICLE MULTIPLICITIES IN HADRONIC Z DECAY

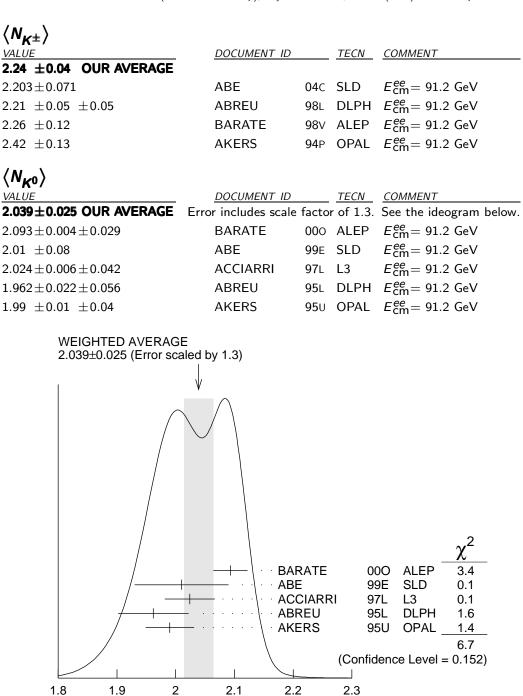
Summed over particle and antiparticle, when appropriate.

| $\langle N_{\gamma} \rangle$            |             |             |             |                                                |
|-----------------------------------------|-------------|-------------|-------------|------------------------------------------------|
| VALUE                                   | DOCUMENT ID |             | TECN        | COMMENT                                        |
| $20.97 \pm 0.02 \pm 1.15$               | ACKERSTAFF  | 98A         | OPAL        | $E_{\rm cm}^{ee} = 91.2  {\rm GeV}$            |
| $\langle N_{\pi^{\pm}} \rangle$         |             |             | TECN        | COMMENT                                        |
| <u>VALUE</u><br>17.03 ±0.16 OUR AVERAGE | DOCUMENT ID |             | <u>TECN</u> | COMMENT                                        |
| $17.007 \pm 0.209$                      | ABE         | 04C         | SLD         | <i>E<sup>ee</sup></i> <sub>cm</sub> = 91.2 GeV |
| $17.26\ \pm 0.10\ \pm 0.88$             | ABREU       | 98L         | DLPH        | $E_{\rm cm}^{ee}=$ 91.2 GeV                    |
| $17.04 \pm 0.31$                        | BARATE      | 98v         | ALEP        | $E_{\rm cm}^{ee} = 91.2  {\rm GeV}$            |
| $17.05 \pm 0.43$                        | AKERS       | <b>94</b> P | OPAL        | $E_{\rm Cm}^{ee}=$ 91.2 GeV                    |
| $\langle N_{\pi^0} \rangle$             |             |             |             |                                                |
| VALUE                                   | DOCUMENT ID |             | TECN        | COMMENT                                        |
| 9.76±0.26 OUR AVERAGE                   |             |             |             |                                                |
| $9.55 \pm 0.06 \pm 0.75$                | ACKERSTAFF  | 98A         | OPAL        | $E_{\rm cm}^{ee}$ = 91.2 GeV                   |
| $9.63\!\pm\!0.13\!\pm\!0.63$            | BARATE      | 97J         | ALEP        | $E_{\rm cm}^{ee}$ = 91.2 GeV                   |
| $9.90\!\pm\!0.02\!\pm\!0.33$            | ACCIARRI    | 96          | L3          | $E_{\rm cm}^{ee} = 91.2  {\rm GeV}$            |
| $9.2\ \pm 0.2\ \pm 1.0$                 | ADAM        | 96          | DLPH        | $E_{\rm cm}^{ee} = 91.2  { m GeV}$             |
| HTTP://PDG.LBL.GOV                      | Page 24     |             | Crea        | ated: 8/2/2019 16:43                           |



<sup>1</sup> BEDDALL 09 analyse 3.2 million hadronic Z decays as archived by ALEPH collaboration and report a value of  $2.59 \pm 0.03 \pm 0.15 \pm 0.04$ . The first error is statistical, the second systematic, and the third arises from extrapolation to full phase space. We combine the systematic errors in quadrature.


# $\left< \textit{N}_{\rho^0} \right>$


| VALUE                        | DOCUMENT ID             | TECN         | COMMENT                                        |
|------------------------------|-------------------------|--------------|------------------------------------------------|
| $1.24\pm0.10$ OUR AVERAGE    | Error includes scale fa | ctor of 1.1. |                                                |
| $1.19 \pm 0.10$              | ABREU                   | 99J DLPH     | <i>E<sup>ee</sup></i> <sub>cm</sub> = 91.2 GeV |
| $1.45\!\pm\!0.06\!\pm\!0.20$ | BUSKULIC                | 96H ALEP     | $E_{\rm cm}^{ee}$ = 91.2 GeV                   |

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update

| $\langle N_{\omega} \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |                                                        |                                                                                 |                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DOCUMENT ID                                                                                                                 |                                                        | TECN                                                                            | COMMENT                                                                                                                                                                                                                               |
| $1.02\pm0.06$ OUR AVERAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             |                                                        |                                                                                 | - 20                                                                                                                                                                                                                                  |
| $1.00 \pm 0.03 \pm 0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HEISTER                                                                                                                     |                                                        |                                                                                 | $E_{\rm cm}^{ee} = 91.2 {\rm GeV}$                                                                                                                                                                                                    |
| $1.04 \pm 0.04 \pm 0.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ACKERSTAFF                                                                                                                  | 98A                                                    | OPAL                                                                            | <i>E</i> <sup><i>ee</i></sup> <sub>cm</sub> = 91.2 GeV                                                                                                                                                                                |
| $1.17\!\pm\!0.09\!\pm\!0.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACCIARRI                                                                                                                    | <b>97</b> D                                            | L3                                                                              | $E_{\rm cm}^{ee} = 91.2  {\rm GeV}$                                                                                                                                                                                                   |
| $\langle N_{\eta'} \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                             |                                                        |                                                                                 |                                                                                                                                                                                                                                       |
| VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DOCUMENT ID                                                                                                                 |                                                        |                                                                                 | COMMENT                                                                                                                                                                                                                               |
| 0.17 $\pm$ 0.05 OUR AVERAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Error includes scale                                                                                                        |                                                        |                                                                                 |                                                                                                                                                                                                                                       |
| $0.14 \pm 0.01 \pm 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             |                                                        |                                                                                 | $E_{\rm cm}^{ee} = 91.2  {\rm GeV}$                                                                                                                                                                                                   |
| $0.25 \pm 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>1</sup> ACCIARRI                                                                                                       |                                                        |                                                                                 | $E_{\rm Cm}^{ee}=$ 91.2 GeV                                                                                                                                                                                                           |
| $\bullet \bullet \bullet$ We do not use the follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ing data for averages                                                                                                       | , fits,                                                | limits, e                                                                       | etc. • • •                                                                                                                                                                                                                            |
| $0.068\!\pm\!0.018\!\pm\!0.016$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>2</sup> BUSKULIC                                                                                                       | <b>92</b> D                                            | ALEP                                                                            | $E_{\rm cm}^{ee}=$ 91.2 GeV                                                                                                                                                                                                           |
| <sup>1</sup> ACCIARRI 97D obtain this $\gamma' \rightarrow \rho^0 \gamma$ .<br><sup>2</sup> BUSKULIC 92D obtain this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             | the tv                                                 | vo decay                                                                        | channels $\eta' 	o \pi^+ \pi^- \eta$                                                                                                                                                                                                  |
| - BUSKULIC 92D obtain this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                             |                                                        |                                                                                 |                                                                                                                                                                                                                                       |
| $\langle N_{f_0(980)} \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                        |                                                                                 |                                                                                                                                                                                                                                       |
| ⟨N <sub>f0</sub> (980)⟩<br><sub>VALUE</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DOCUMENT ID                                                                                                                 |                                                        | TECN                                                                            | COMMENT                                                                                                                                                                                                                               |
| $\langle N_{f_0(980)} \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DOCUMENT ID                                                                                                                 |                                                        |                                                                                 |                                                                                                                                                                                                                                       |
| ⟨N <sub>f0</sub> (980)⟩<br><sub>VALUE</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                             |                                                        |                                                                                 | <u>COMMENT</u><br>E <sup>ce</sup> <sub>cm</sub> = 91.2 GeV                                                                                                                                                                            |
| ⟨ <i>N<sub>f0(980)</sub></i> ⟩<br><u>VALUE</u><br>0.147±0.011 OUR AVERAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>DOCUMENT ID</u><br>ABREU                                                                                                 | 99J                                                    | DLPH                                                                            |                                                                                                                                                                                                                                       |
| <pre>     ⟨N<sub>f0(980)</sub>⟩     <sub>VALUE</sub>     0.147±0.011 OUR AVERAGE     0.164±0.021 </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>DOCUMENT ID</u><br>ABREU                                                                                                 | 99J                                                    | DLPH                                                                            | <i>E<sup>ee</sup></i> <sub>cm</sub> = 91.2 GeV                                                                                                                                                                                        |
| <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>DOCUMENT ID</u><br>ABREU                                                                                                 | 99J<br>98Q                                             | DLPH<br>OPAL                                                                    | <i>E<sup>ee</sup></i> <sub>cm</sub> = 91.2 GeV                                                                                                                                                                                        |
| <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>DOCUMENT ID</u><br>ABREU<br>ACKERSTAFF<br><u>DOCUMENT ID</u>                                                             | 99J<br>98Q                                             | DLPH<br>OPAL<br><u>TECN</u>                                                     | E <sup>ee</sup> <sub>cm</sub> = 91.2 GeV<br>E <sup>ee</sup> <sub>cm</sub> = 91.2 GeV                                                                                                                                                  |
| $ \frac{\langle N_{f_0(980)} \rangle}{\overset{VALUE}{0.147 \pm 0.011 \text{ OUR AVERAGE}}} \\ 0.164 \pm 0.021 \\ 0.141 \pm 0.007 \pm 0.011 \\ \frac{\langle N_{a_0(980)} \pm \rangle}{\overset{VALUE}{0.27 \pm 0.04 \pm 0.10}} \\ \frac{\langle N_{\phi} \rangle}{\langle N_{\phi} \rangle} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>DOCUMENT ID</u><br>ABREU<br>ACKERSTAFF<br><u>DOCUMENT ID</u><br>ACKERSTAFF                                               | 99J<br>98Q<br>98A                                      | DLPH<br>OPAL<br><u>TECN</u><br>OPAL                                             | $E_{\rm cm}^{ee} = 91.2 \text{ GeV}$ $E_{\rm cm}^{ee} = 91.2 \text{ GeV}$ $\frac{COMMENT}{E_{\rm cm}^{ee}} = 91.2 \text{ GeV}$                                                                                                        |
| $\frac{\langle N_{f_{0}(980)} \rangle}{\overset{VALUE}{0.147 \pm 0.011 \text{ OUR AVERAGE}}} \\ 0.164 \pm 0.021 \\ 0.141 \pm 0.007 \pm 0.011 \\ \frac{\langle N_{a_{0}(980)} \pm \rangle}{\overset{VALUE}{0.27 \pm 0.04 \pm 0.10}} \\ \frac{\langle N_{\phi} \rangle}{\overset{VALUE}{0.27 \pm 0.04 \pm 0.$ | DOCUMENT ID<br>ABREU<br>ACKERSTAFF<br><u>DOCUMENT ID</u><br>ACKERSTAFF                                                      | 99J<br>98Q<br>98A                                      | DLPH<br>OPAL<br><u>TECN</u><br>OPAL<br><u>TECN</u>                              | $E_{cm}^{ee} = 91.2 \text{ GeV}$ $E_{cm}^{ee} = 91.2 \text{ GeV}$ $\underline{COMMENT}$ $E_{cm}^{ee} = 91.2 \text{ GeV}$ $\underline{COMMENT}$                                                                                        |
| $\frac{\langle N_{f_0(980)} \rangle}{\overset{VALUE}{0.147 \pm 0.011 \text{ OUR AVERAGE}}} \\ 0.164 \pm 0.021 \\ 0.164 \pm 0.007 \pm 0.011 \\ \frac{\langle N_{a_0(980)} \pm \rangle}{VALUE} \\ 0.27 \pm 0.04 \pm 0.10 \\ \frac{\langle N_{\phi} \rangle}{VALUE} \\ 0.098 \pm 0.006 \text{ OUR AVERAGE} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DOCUMENT ID<br>ABREU<br>ACKERSTAFF<br>DOCUMENT ID<br>ACKERSTAFF<br>DOCUMENT ID<br>Error includes scale                      | 99J<br>98Q<br>98A<br>98A                               | DLPH<br>OPAL<br><u>TECN</u><br>OPAL<br><u>TECN</u><br>r of 2.0.                 | $E_{\rm cm}^{ee} = 91.2 \text{ GeV}$ $E_{\rm cm}^{ee} = 91.2 \text{ GeV}$ $\frac{COMMENT}{E_{\rm cm}^{ee}} = 91.2 \text{ GeV}$ $\frac{COMMENT}{See \text{ the ideogram below.}}$                                                      |
| $\frac{\langle N_{f_0(980)} \rangle}{\overset{VALUE}{0.147 \pm 0.011 \text{ OUR AVERAGE}}} \\ 0.164 \pm 0.021 \\ 0.164 \pm 0.007 \pm 0.011 \\ \frac{\langle N_{a_0(980)} \pm \rangle}{V_{a_0(980)} \pm \rangle} \\ \frac{\langle N_{a_0(980)} \pm 0.004 \pm 0.100}{V_{ALUE}} \\ \frac{\langle N_{\phi} \rangle}{V_{ALUE}} \\ 0.098 \pm 0.006 \text{ OUR AVERAGE} \\ 0.105 \pm 0.008 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DOCUMENT ID<br>ABREU<br>ACKERSTAFF<br>DOCUMENT ID<br>ACKERSTAFF<br>DOCUMENT ID<br>Error includes scale<br>ABE               | 99J<br>98Q<br>98A<br>98A<br>facto<br>99E               | DLPH<br>OPAL<br><u>TECN</u><br>OPAL<br><u>TECN</u><br>r of 2.0.<br>SLD          | $E_{cm}^{ee} = 91.2 \text{ GeV}$ $E_{cm}^{ee} = 91.2 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 91.2 \text{ GeV}$ $\frac{COMMENT}{See \text{ the ideogram below.}}$ $E_{cm}^{ee} = 91.2 \text{ GeV}$                                 |
| $\frac{\langle N_{f_0(980)} \rangle}{\overset{VALUE}{0.147 \pm 0.011 \text{ OUR AVERAGE}}} \\ 0.164 \pm 0.021 \\ 0.141 \pm 0.007 \pm 0.011 \\ \frac{\langle N_{a_0(980)} \pm \rangle}{\overset{VALUE}{0.27 \pm 0.04 \pm 0.10}} \\ \frac{\langle N_{\phi} \rangle}{\overset{VALUE}{0.098 \pm 0.006 \text{ OUR AVERAGE}}} \\ 0.105 \pm 0.008 \\ 0.091 \pm 0.002 \pm 0.003 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DOCUMENT ID<br>ABREU<br>ACKERSTAFF<br>DOCUMENT ID<br>ACKERSTAFF<br>DOCUMENT ID<br>Error includes scale<br>ABE<br>ACKERSTAFF | 99J<br>98Q<br>98A<br>98A<br>facto<br>99E<br>98Q        | DLPH<br>OPAL<br><u>TECN</u><br>OPAL<br>TECN<br>of 2.0.<br>SLD<br>OPAL           | $E_{cm}^{ee} = 91.2 \text{ GeV}$ $E_{cm}^{ee} = 91.2 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 91.2 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 91.2 \text{ GeV}$ $E_{cm}^{ee} = 91.2 \text{ GeV}$ $E_{cm}^{ee} = 91.2 \text{ GeV}$ |
| $\frac{\langle N_{f_0(980)} \rangle}{\overset{VALUE}{0.147 \pm 0.011 \text{ OUR AVERAGE}}} \\ 0.164 \pm 0.021 \\ 0.164 \pm 0.007 \pm 0.011 \\ \frac{\langle N_{a_0(980)} \pm \rangle}{V_{a_0(980)} \pm \rangle} \\ \frac{\langle N_{a_0(980)} \pm 0.004 \pm 0.100}{V_{ALUE}} \\ \frac{\langle N_{\phi} \rangle}{V_{ALUE}} \\ 0.098 \pm 0.006 \text{ OUR AVERAGE} \\ 0.105 \pm 0.008 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DOCUMENT ID<br>ABREU<br>ACKERSTAFF<br>DOCUMENT ID<br>ACKERSTAFF<br>DOCUMENT ID<br>Error includes scale<br>ABE               | 99J<br>98Q<br>98A<br>98A<br>facto<br>99E<br>98Q<br>96U | DLPH<br>OPAL<br><u>TECN</u><br>OPAL<br>TECN<br>r of 2.0.<br>SLD<br>OPAL<br>DLPH | $E_{cm}^{ee} = 91.2 \text{ GeV}$ $E_{cm}^{ee} = 91.2 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 91.2 \text{ GeV}$ $\frac{COMMENT}{See \text{ the ideogram below.}}$ $E_{cm}^{ee} = 91.2 \text{ GeV}$                                 |

HTTP://PDG.LBL.GOV Page 26





$$\langle N_{K^0} \rangle$$
  
 $\langle N_{K^*(892)\pm} \rangle$ 

| <u>VALUE</u><br>0.72 ±0.05 OUR AVERAGE                                             | DOCUMENT ID    | TECN | COMMENT                                              |
|------------------------------------------------------------------------------------|----------------|------|------------------------------------------------------|
| $\begin{array}{c} 0.712 \pm 0.031 \pm 0.059 \\ 0.72 \pm 0.02 \pm 0.08 \end{array}$ | ABREU<br>ACTON |      | $E_{cm}^{ee}$ = 91.2 GeV<br>$E_{cm}^{ee}$ = 91.2 GeV |

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update

| Citation. IN. Tanabasin et al. (Farticle L                 | vata Group), r nys. r          | EV. D        | 56, 05000  |                                                                      |
|------------------------------------------------------------|--------------------------------|--------------|------------|----------------------------------------------------------------------|
| $\langle N_{\kappa^{*}(892)^{0}} \rangle$                  |                                |              |            |                                                                      |
| VALUE                                                      | DOCUMENT ID                    |              | TECN       | COMMENT                                                              |
| $0.739 \pm 0.022$ OUR AVERAGE                              |                                |              |            |                                                                      |
| $0.707 \pm 0.041$                                          | ABE                            |              |            | $E_{\rm cm}^{ee}=$ 91.2 GeV                                          |
| $0.74 \pm 0.02 \pm 0.02$                                   | ACKERSTAFF                     | <b>97</b> S  | OPAL       | $E_{\rm cm}^{ee}$ = 91.2 GeV                                         |
| $0.77 \pm 0.02 \pm 0.07$                                   | ABREU                          | <b>96</b> U  | DLPH       | $E_{\rm cm}^{ee}$ = 91.2 GeV                                         |
| $0.83 \pm 0.01 \pm 0.09$                                   | BUSKULIC                       | 96H          | ALEP       | $E_{\rm cm}^{ee}$ = 91.2 GeV                                         |
| $0.97\ \pm 0.18\ \pm 0.31$                                 | ABREU                          | 93           | DLPH       | $E_{\rm cm}^{ee} = 91.2  {\rm GeV}$                                  |
| $\langle N_{\kappa_2^*(1430)} \rangle$                     |                                |              |            |                                                                      |
| VALUE                                                      | DOCUMENT ID                    |              | TECN       | COMMENT                                                              |
| 0.073±0.023                                                | ABREU                          | 99J          | DLPH       | $E_{\rm cm}^{ee} = 91.2  { m GeV}$                                   |
| $\bullet \bullet \bullet$ We do not use the following of   | data for averages              | s, fits,     | limits, e  | etc. • • •                                                           |
| $0.19\ \pm 0.04\ \pm 0.06$                                 | <sup>1</sup> AKERS             | 95X          | OPAL       | <i>E<sup>ee</sup></i> <sub>cm</sub> = 91.2 GeV                       |
| $^1$ AKERS 95X obtain this value fo                        | r <i>x</i> < 0.3.              |              |            |                                                                      |
|                                                            |                                |              |            |                                                                      |
| $\langle N_{D^{\pm}} \rangle$                              |                                |              |            |                                                                      |
| <u>VALUE</u><br>0.187±0.020 OUR AVERAGE Erro               | DOCUMENT ID                    |              |            |                                                                      |
|                                                            |                                |              |            | •                                                                    |
| $0.170 \pm 0.009 \pm 0.014$                                |                                |              |            | $E_{\rm cm}^{ee} = 91.2 \text{ GeV}$                                 |
| $0.251 \pm 0.026 \pm 0.025$<br>$0.199 \pm 0.019 \pm 0.024$ | BUSKULIC<br><sup>1</sup> ABREU |              |            | $E_{cm}^{ee} = 91.2 \text{ GeV}$<br>$E_{cm}^{ee} = 91.2 \text{ GeV}$ |
|                                                            | ADREU                          | 951          | DLFH       | $E_{cm} = 91.2 \text{ GeV}$                                          |
| <sup>1</sup> See ABREU 95 (erratum).                       |                                |              |            |                                                                      |
| WEIGHTED AVERAGE                                           |                                |              |            |                                                                      |
| 0.187±0.020 (Error scaled                                  | by 1.5)                        |              |            |                                                                      |
|                                                            |                                |              |            |                                                                      |
| $\wedge$                                                   |                                |              |            |                                                                      |
|                                                            |                                |              |            |                                                                      |
|                                                            |                                |              |            |                                                                      |
|                                                            |                                |              |            |                                                                      |
|                                                            |                                |              |            |                                                                      |
|                                                            |                                |              |            |                                                                      |
|                                                            |                                |              |            |                                                                      |
|                                                            |                                |              |            |                                                                      |
|                                                            |                                |              |            |                                                                      |
|                                                            |                                |              |            | 2                                                                    |
|                                                            |                                |              |            | _χ                                                                   |
|                                                            |                                | XAN          |            | SR OPAL 1.1                                                          |
|                                                            |                                | SKULI<br>REU | C 94<br>93 | 4J ALEP 3.1<br>3I DLPH 0.2                                           |
|                                                            | AD                             | 10           | 9.         | 4.3                                                                  |
|                                                            | $\sim$                         |              | (Confid    | lence Level = 0.114)                                                 |
| 0.1 0.15 0.2 0.2                                           |                                | 25           | <br>0.4    |                                                                      |
|                                                            | 25 0.3 0                       | .35          | 0.4        |                                                                      |
| $\left< \textit{N}_{D^{\pm}} \right>$                      |                                |              |            |                                                                      |

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update

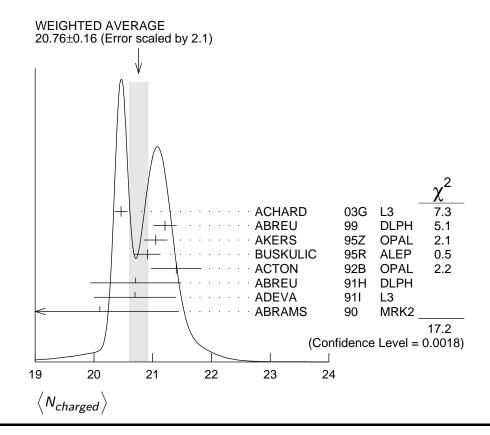
| <b>(Ν<sub>D</sub>0)</b><br>VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DOCUMENT ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             | TECN                                                                                                   | COMMENT                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $0.462 \pm 0.026$ OUR AVERAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |                                                                                                        |                                                                                                                                                                                                       |
| $0.465 \!\pm\! 0.017 \!\pm\! 0.027$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALEXANDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>96</b> R                                                 | OPAL                                                                                                   | $E_{\rm cm}^{ee}=$ 91.2 GeV                                                                                                                                                                           |
| $0.518 \!\pm\! 0.052 \!\pm\! 0.035$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BUSKULIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94J                                                         |                                                                                                        | $E_{\rm Cm}^{ee} =$ 91.2 GeV                                                                                                                                                                          |
| $0.403 \!\pm\! 0.038 \!\pm\! 0.044$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>1</sup> ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 931                                                         | DLPH                                                                                                   | $E_{\rm cm}^{ee}=$ 91.2 GeV                                                                                                                                                                           |
| $^{1}$ See ABREU 95 (erratum).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |                                                                                                        |                                                                                                                                                                                                       |
| $\langle N_{D^{\pm}} \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |                                                                                                        |                                                                                                                                                                                                       |
| S<br>VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DOCUMENT ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             | TECN                                                                                                   | COMMENT                                                                                                                                                                                               |
| $0.131 \pm 0.010 \pm 0.018$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ALEXANDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>96</b> R                                                 | OPAL                                                                                                   | $E_{\rm cm}^{ee}=$ 91.2 GeV                                                                                                                                                                           |
| $\langle N_{D^*(2010)^{\pm}} \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |                                                                                                        |                                                                                                                                                                                                       |
| VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DOCUMENT ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             | TECN                                                                                                   | COMMENT                                                                                                                                                                                               |
| <b>0.183 ±0.008 OUR AVERAG</b><br>0.1854±0.0041±0.0091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00-                                                         |                                                                                                        | <i>E<sup>ee</sup></i> = 91.2 GeV                                                                                                                                                                      |
| $0.1854 \pm 0.0041 \pm 0.0091$<br>$0.187 \pm 0.015 \pm 0.013$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BUSKULIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |                                                                                                        | $E_{\rm cm}^{ee} = 91.2 \text{ GeV}$<br>$E_{\rm cm}^{ee} = 91.2 \text{ GeV}$                                                                                                                          |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>2</sup> ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |                                                                                                        | $E_{\rm cm}^{ee} = 91.2 \text{ GeV}$<br>$E_{\rm cm}^{ee} = 91.2 \text{ GeV}$                                                                                                                          |
| $^{1}$ ACKERSTAFF 98E system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |                                                                                                        |                                                                                                                                                                                                       |
| branching ratios $B(D^{*+} \rightarrow 0.0012)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                                                                                        |                                                                                                                                                                                                       |
| 0.0012.<br><sup>2</sup> See ABREU 95 (erratum).<br>$\langle N_{D_{s1}(2536)^+} \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                                                                                        |                                                                                                                                                                                                       |
| 0.0012.<br><sup>2</sup> See ABREU 95 (erratum).<br>$\langle N_{D_{s1}(2536)+} \rangle$<br>VALUE (units 10 <sup>-3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                       | DOCUMENT ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |                                                                                                        | COMMENT                                                                                                                                                                                               |
| 0.0012.<br><sup>2</sup> See ABREU 95 (erratum).<br>$\langle N_{D_{s1}(2536)^+} \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOCUMENT ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |                                                                                                        |                                                                                                                                                                                                       |
| 0.0012.<br><sup>2</sup> See ABREU 95 (erratum).<br>$\langle N_{D_{s1}(2536)+} \rangle$<br>VALUE (units 10 <sup>-3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>DOCUMENT ID</u><br>wing data for average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s, fits,                                                    | limits, e                                                                                              |                                                                                                                                                                                                       |
| 0.0012.<br><sup>2</sup> See ABREU 95 (erratum).<br>$\langle N_{D_{s1}(2536)+} \rangle$<br><u>VALUE (units 10<sup>-3</sup>)</u><br>••• We do not use the follow                                                                                                                                                                                                                                                                                                                                                                                  | DOCUMENT ID<br>wing data for averages<br>$^1$ ACKERSTAFF<br>this value for $x > 0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s, fits,<br>97w                                             | limits, e                                                                                              | etc. • • • • $E_{\rm cm}^{ee} = 91.2  {\rm GeV}$                                                                                                                                                      |
| 0.0012.<br><sup>2</sup> See ABREU 95 (erratum).<br>$\langle N_{D_{s1}(2536)+} \rangle$<br><u>VALUE (units 10<sup>-3</sup>)</u><br>• • We do not use the follow<br>$2.9^{+0.7}_{-0.6} \pm 0.2$<br><sup>1</sup> ACKERSTAFF 97W obtain                                                                                                                                                                                                                                                                                                             | <u>DOCUMENT ID</u><br>wing data for averages<br><sup>1</sup> ACKERSTAFF<br>this value for x> 0.6<br>D* K final states.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s, fits,<br>97w<br>and v                                    | limits, o<br>OPAL<br>vith the                                                                          | etc. • • • $E_{Cm}^{ee} = 91.2 \text{ GeV}$ assumption that its dec                                                                                                                                   |
| 0.0012.<br><sup>2</sup> See ABREU 95 (erratum).<br>$\langle N_{D_{s1}(2536)}+\rangle$<br><u>VALUE (units 10<sup>-3</sup>)</u><br>• • We do not use the follow<br>2.9 <sup>+0.7</sup> ±0.2<br><sup>1</sup> ACKERSTAFF 97W obtain<br>width is saturated by the <i>L</i><br>$\langle N_{B^*}\rangle$<br><u>VALUE</u>                                                                                                                                                                                                                               | $\frac{DOCUMENT \ ID}{1}$ wing data for averages<br><sup>1</sup> ACKERSTAFF<br>this value for $x > 0.6$<br>$D^* K$ final states.<br><u>DOCUMENT ID</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s, fits,<br>97w<br>and v                                    | Iimits, o<br>OPAL<br>vith the<br><u>TECN</u>                                                           | etc. • • •<br>$E_{Cm}^{ee} = 91.2 \text{ GeV}$<br>assumption that its dec                                                                                                                             |
| 0.0012.<br><sup>2</sup> See ABREU 95 (erratum).<br>$\langle N_{D_{s1}(2536)}+\rangle$<br><u>VALUE (units 10<sup>-3</sup>)</u><br>••• We do not use the follow<br>$2.9^{+0.7}_{-0.6}\pm0.2$<br><sup>1</sup> ACKERSTAFF 97W obtain<br>width is saturated by the <i>L</i><br>$\langle N_{B^*}\rangle$<br><u>VALUE</u><br>0.28±0.01±0.03                                                                                                                                                                                                            | $\frac{DOCUMENT \ ID}{1}$ wing data for averages $1 \text{ ACKERSTAFF}$ this value for x> 0.6 D* K final states. $\frac{DOCUMENT \ ID}{1}$ ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s, fits,<br>97w<br>and v<br>95R                             | limits, o<br>OPAL<br>vith the<br><u>TECN</u><br>DLPH                                                   | etc. • • •<br>$E_{cm}^{ee} = 91.2 \text{ GeV}$<br>assumption that its dec<br>$\frac{COMMENT}{E_{cm}^{ee}} = 91.2 \text{ GeV}$                                                                         |
| 0.0012.<br><sup>2</sup> See ABREU 95 (erratum).<br>$\langle N_{D_{s1}(2536)+} \rangle$<br><u>VALUE (units 10<sup>-3</sup>)</u><br>• • We do not use the follow<br>$2.9^{+0.7}_{-0.6} \pm 0.2$<br><sup>1</sup> ACKERSTAFF 97W obtain<br>width is saturated by the <i>L</i><br>$\langle N_{B^*} \rangle$                                                                                                                                                                                                                                          | $\frac{DOCUMENT \ ID}{1}$ wing data for averages $1 \text{ ACKERSTAFF}$ this value for x> 0.6 D* K final states. $\frac{DOCUMENT \ ID}{1}$ ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s, fits,<br>97w<br>and v<br>95R                             | limits, o<br>OPAL<br>vith the<br><u>TECN</u><br>DLPH                                                   | etc. • • •<br>$E_{cm}^{ee} = 91.2 \text{ GeV}$<br>assumption that its dec<br>$\frac{COMMENT}{E_{cm}^{ee}} = 91.2 \text{ GeV}$                                                                         |
| 0.0012.<br><sup>2</sup> See ABREU 95 (erratum).<br>$\langle N_{D_{s1}(2536)}+\rangle$<br><u>VALUE (units 10<sup>-3</sup>)</u><br>••• We do not use the follow<br>2.9 <sup>+0.7</sup> $\pm$ 0.2<br><sup>1</sup> ACKERSTAFF 97W obtain<br>width is saturated by the <i>L</i><br>$\langle N_{B^*}\rangle$<br><u>VALUE</u><br>0.28±0.01±0.03<br><sup>1</sup> ABREU 95R quote this val<br>$\langle N_{J/\psi(1S)}\rangle$                                                                                                                            | DOCUMENT ID<br>wing data for averages<br>1 ACKERSTAFF<br>this value for $x > 0.6$<br>$D^* K$ final states.<br>$\frac{DOCUMENT ID}{1}$<br>ABREU<br>ue for a flavor-average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s, fits,<br>97W<br>and v<br>95R<br>ed exc                   | imits, o<br>OPAL<br>vith the<br><u>TECN</u><br>DLPH                                                    | etc. • • •<br>$E_{cm}^{ee} = 91.2 \text{ GeV}$<br>assumption that its dec<br>$\frac{COMMENT}{E_{cm}^{ee} = 91.2 \text{ GeV}}$<br>te.                                                                  |
| 0.0012.<br><sup>2</sup> See ABREU 95 (erratum).<br>$\langle N_{D_{s1}(2536)+} \rangle$<br><u>VALUE (units 10<sup>-3</sup>)</u><br>• • We do not use the follow<br>$2.9^{+0.7}_{-0.6} \pm 0.2$<br><sup>1</sup> ACKERSTAFF 97W obtain<br>width is saturated by the <i>L</i><br>$\langle N_{B^*} \rangle$<br><u>VALUE</u><br>0.28 \pm 0.01 \pm 0.03<br><sup>1</sup> ABREU 95R quote this val<br>$\langle N_{J/\psi(1S)} \rangle$<br><u>VALUE</u>                                                                                                   | $\frac{DOCUMENT \ ID}{M}$ wing data for averages $\frac{1}{ACKERSTAFF}$ this value for x> 0.6 D* K final states. $\frac{DOCUMENT \ ID}{1 \ ABREU}$ ue for a flavor-average $\frac{DOCUMENT \ ID}{DOCUMENT \ ID}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s, fits,<br>97W<br>and v<br>95R<br>ed exc                   | imits, o<br>OPAL<br>vith the<br><u>TECN</u><br>DLPH<br>tited stat                                      | etc. • • •<br>$E_{cm}^{ee} = 91.2 \text{ GeV}$<br>assumption that its dec<br>$\frac{COMMENT}{E_{cm}^{ee}} = 91.2 \text{ GeV}$<br>te.<br>$\underline{COMMENT}$                                         |
| 0.0012.<br><sup>2</sup> See ABREU 95 (erratum).<br>$\langle N_{D_{s1}(2536)}+ \rangle$<br><u>VALUE (units 10<sup>-3</sup>)</u><br>••• We do not use the follow<br>2.9 <sup>+0.7</sup> <sub>-0.6</sub> ±0.2<br><sup>1</sup> ACKERSTAFF 97W obtain<br>width is saturated by the <i>L</i><br>$\langle N_{B^*} \rangle$<br><u>VALUE</u><br>0.28±0.01±0.03<br><sup>1</sup> ABREU 95R quote this val<br>$\langle N_{J/\psi(1S)} \rangle$<br><u>VALUE</u><br>0.0056±0.0003±0.0004                                                                      | $\frac{DOCUMENT \ ID}{Ming}$ wing data for averages 1 ACKERSTAFF this value for x> 0.6 D* K final states. $\frac{DOCUMENT \ ID}{1 \ ABREU}$ ue for a flavor-average $\frac{DOCUMENT \ ID}{1 \ ALEXANDER}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s, fits,<br>97W<br>and v<br>95R<br>ed exc<br>96B            | imits, o<br>OPAL<br>vith the<br><u>TECN</u><br>DLPH<br>cited stat                                      | etc. • • •<br>$E_{cm}^{ee} = 91.2 \text{ GeV}$<br>assumption that its dec<br>$\frac{COMMENT}{E_{cm}^{ee} = 91.2 \text{ GeV}}$<br>te.<br>$\frac{COMMENT}{E_{cm}^{ee} = 91.2 \text{ GeV}}$              |
| 0.0012.<br><sup>2</sup> See ABREU 95 (erratum).<br>(N <sub>D<sub>s1</sub>(2536)+)<br/>VALUE (units 10<sup>-3</sup>)<br/>• • We do not use the follow<br/>2.9<sup>+0.7</sup>±0.2<br/><sup>1</sup> ACKERSTAFF 97W obtain<br/>width is saturated by the <i>L</i><br/>(N<sub>B*</sub>)<br/><u>VALUE</u><br/>0.28±0.01±0.03<br/><sup>1</sup> ABREU 95R quote this val<br/>(N<sub>J</sub>/ψ(1S))<br/><u>VALUE</u><br/>0.0056±0.0003±0.0004<br/><sup>1</sup> ALEXANDER 96B identify</sub>                                                              | $\frac{DOCUMENT \ ID}{Ming}$ wing data for averages 1 ACKERSTAFF this value for x> 0.6 D* K final states. $\frac{DOCUMENT \ ID}{1 \ ABREU}$ ue for a flavor-average $\frac{DOCUMENT \ ID}{1 \ ALEXANDER}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s, fits,<br>97W<br>and v<br>95R<br>ed exc<br>96B            | imits, o<br>OPAL<br>vith the<br><u>TECN</u><br>DLPH<br>cited stat                                      | etc. • • •<br>$E_{cm}^{ee} = 91.2 \text{ GeV}$<br>assumption that its dec<br>$\frac{COMMENT}{E_{cm}^{ee} = 91.2 \text{ GeV}}$<br>te.<br>$\frac{COMMENT}{E_{cm}^{ee} = 91.2 \text{ GeV}}$              |
| 0.0012.<br><sup>2</sup> See ABREU 95 (erratum).<br>$\langle N_{D_{s1}(2536)}+\rangle$<br><u>VALUE (units 10<sup>-3</sup>)</u><br>••• We do not use the follow<br>2.9 <sup>+0.7</sup> <sub>-0.6</sub> ±0.2<br><sup>1</sup> ACKERSTAFF 97W obtain<br>width is saturated by the <i>L</i><br>$\langle N_{B^*}\rangle$<br><u>VALUE</u><br>0.28±0.01±0.03<br><sup>1</sup> ABREU 95R quote this val<br>$\langle N_{J/\psi(1S)}\rangle$<br><u>VALUE</u><br>0.0056±0.0003±0.0004<br><sup>1</sup> ALEXANDER 96B identify<br>$\langle N_{\psi(2S)}\rangle$ | $\frac{DOCUMENT \ ID}{Ming data for averages}$ wing data for averages $1_{ACKERSTAFF}$ this value for x> 0.6 D* K final states. $\frac{DOCUMENT \ ID}{1_{ABREU}}$ ue for a flavor-average $\frac{DOCUMENT \ ID}{1_{ALEXANDER}}$ $J/\psi(1S) from the definition of t$ | s, fits,<br>97W<br>and v<br>95R<br>ed exc<br>96B<br>ecays i | imits, o<br>OPAL<br>vith the<br><u>TECN</u><br>DLPH<br>cited stat                                      | etc. • • •<br>$E_{cm}^{ee} = 91.2 \text{ GeV}$<br>assumption that its dec<br>$\frac{COMMENT}{E_{cm}^{ee}} = 91.2 \text{ GeV}$<br>te.<br>$\frac{COMMENT}{E_{cm}^{ee}} = 91.2 \text{ GeV}$<br>on pairs. |
| 0.0012.<br><sup>2</sup> See ABREU 95 (erratum).<br>(N <sub>D<sub>s1</sub>(2536)+)<br/>VALUE (units 10<sup>-3</sup>)<br/>• • We do not use the follow<br/>2.9<sup>+0.7</sup>±0.2<br/><sup>1</sup> ACKERSTAFF 97W obtain<br/>width is saturated by the <i>L</i><br/>(N<sub>B*</sub>)<br/><u>VALUE</u><br/>0.28±0.01±0.03<br/><sup>1</sup> ABREU 95R quote this val<br/>(N<sub>J</sub>/ψ(1S))<br/><u>VALUE</u><br/>0.0056±0.0003±0.0004<br/><sup>1</sup> ALEXANDER 96B identify</sub>                                                              | DOCUMENT ID         wing data for averages         1 ACKERSTAFF         this value for $x > 0.6$ D* K final states.         DOCUMENT ID         1 ABREU         ue for a flavor-average         DOCUMENT ID         1 ALEXANDER $J/\psi(1S)$ from the design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s, fits,<br>97W<br>and v<br>95R<br>ed exc<br>96B<br>ecays i | limits, o<br>OPAL<br>vith the<br><u>TECN</u><br>DLPH<br>tited stat<br><u>TECN</u><br>OPAL<br>into lept | etc. • • •<br>$E_{cm}^{ee} = 91.2 \text{ GeV}$<br>assumption that its dec<br>$\frac{COMMENT}{E_{cm}^{ee}} = 91.2 \text{ GeV}$<br>te.<br>$\frac{COMMENT}{E_{cm}^{ee}} = 91.2 \text{ GeV}$<br>on pairs. |

| $\langle N_{\rho} \rangle$                   |                                            |                         |             |                                                 |
|----------------------------------------------|--------------------------------------------|-------------------------|-------------|-------------------------------------------------|
| VALUE                                        | DOCUMENT ID                                | 7                       | TECN        | COMMENT                                         |
| 1.046±0.026 OUR AVERAGE                      |                                            |                         |             |                                                 |
| $1.054 \pm 0.035$                            | ABE                                        |                         |             | $E_{\rm cm}^{ee} = 91.2 {\rm GeV}$              |
| $1.08 \pm 0.04 \pm 0.03$                     | ABREU                                      |                         |             | $E_{\rm cm}^{ee} = 91.2 {\rm GeV}$              |
| $1.00 \pm 0.07$                              | BARATE                                     |                         |             | $E_{\rm cm}^{ee} = 91.2  {\rm GeV}$             |
| $0.92 \pm 0.11$                              | AKERS                                      | 94P C                   | OPAL        | $E_{\rm cm}^{ee} = 91.2  {\rm GeV}$             |
| $\langle N_{\Delta(1232)^{++}} \rangle$      |                                            |                         |             |                                                 |
| VALUE<br>0.087±0.033 OUR AVERAGE             | <u>DOCUMENT ID</u><br>Error includes scale |                         |             | COMMENT                                         |
|                                              |                                            |                         |             |                                                 |
| $0.079 \pm 0.009 \pm 0.011$                  | ABREU                                      |                         |             | $E_{\rm cm}^{ee} = 91.2 {\rm GeV}$              |
| $0.22 \pm 0.04 \pm 0.04$                     | ALEXANDER                                  | 95D C                   | JPAL        | $E_{\rm cm}^{ee} = 91.2  {\rm GeV}$             |
| $\langle N_A \rangle$                        |                                            |                         |             |                                                 |
| VALUE                                        | DOCUMENT ID                                |                         |             |                                                 |
| 0.388±0.009 OUR AVERAGE                      | Error includes scale                       | factor o                | of 1.7.     | See the ideogram below.                         |
| $0.404 \pm 0.002 \pm 0.007$                  | BARATE                                     | 000 A                   | <b>ALEP</b> | $E_{\rm cm}^{ee}$ = 91.2 GeV                    |
| $0.395 \pm 0.022$                            | ABE                                        | 99e S                   | SLD         | $E_{\rm cm}^{ee}$ = 91.2 GeV                    |
| $0.364 \pm 0.004 \pm 0.017$                  | ACCIARRI                                   | 97∟ L                   | _3          | $E_{\rm cm}^{ee} = 91.2  {\rm GeV}$             |
| $0.374 \pm 0.002 \pm 0.010$                  | ALEXANDER                                  | 97D C                   | DPAL        | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 91.2 GeV |
| $0.357 \pm 0.003 \pm 0.017$                  | ABREU                                      | 93L D                   | DLPH        | $E_{\rm cm}^{ee} = 91.2  {\rm GeV}$             |
| WEIGHTED AVERAGE<br>0.388±0.009 (Error scale |                                            | CIARRI<br>EXANDE<br>REU | 93          | E SLD 0.1<br>L L3 1.9<br>D OPAL 1.9             |
|                                              |                                            |                         | `           |                                                 |
| 0.3 0.35                                     | 0.4 0.45                                   |                         | 0.5         |                                                 |
| $\langle N_A \rangle$                        |                                            |                         |             |                                                 |

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$ 

| ⟨ <i>N<sub>A(1520)</sub>⟩</i><br><sup>VALUE</sup><br>0.0224±0.0027 OUR AVERAGE                                                                                                                                   | DOCUMENT ID                              |             | <u>TECN</u>                 | COMMENT                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------|-----------------------------|--------------------------------------------------------------------------------------------------------|
| $0.029 \ \pm 0.005 \ \pm 0.005$                                                                                                                                                                                  | ABREU                                    | <b>00</b> P | DLPH                        | $E_{\rm cm}^{ee} = 91.2  { m GeV}$                                                                     |
| $0.0213\!\pm\!0.0021\!\pm\!0.0019$                                                                                                                                                                               | ALEXANDER                                | <b>97</b> D | OPAL                        | $E_{\rm cm}^{ee} = 91.2 {\rm GeV}$                                                                     |
| $\langle N_{\Sigma^+} \rangle$ VALUE                                                                                                                                                                             | DOCUMENT ID                              |             | TECN                        | COMMENT                                                                                                |
| 0.107±0.010 OUR AVERAGE                                                                                                                                                                                          | DOCOMENT                                 |             | TLCN                        | COMMENT                                                                                                |
| $0.114\!\pm\!0.011\!\pm\!0.009$                                                                                                                                                                                  | ACCIARRI                                 | L00         | L3                          | $E_{\rm cm}^{ee} = 91.2  { m GeV}$                                                                     |
| $0.099\!\pm\!0.008\!\pm\!0.013$                                                                                                                                                                                  | ALEXANDER                                | 97E         | OPAL                        | $E_{\rm cm}^{ee} = 91.2  { m GeV}$                                                                     |
|                                                                                                                                                                                                                  |                                          |             |                             |                                                                                                        |
| $\langle N_{\Sigma^{-}} \rangle$ $\frac{VALUE}{0.082 \pm 0.007} \text{ OUR AVERACE}$                                                                                                                             | DOCUMENT ID                              |             | TECN                        | COMMENT                                                                                                |
| <u>VALUE</u><br>0.082±0.007 OUR AVERAGE                                                                                                                                                                          |                                          | 00P         |                             |                                                                                                        |
| <u>VALUE</u><br>0.082±0.007 OUR AVERAGE<br>0.081±0.002±0.010                                                                                                                                                     | ABREU                                    |             | DLPH                        | <i>E<sup>ee</sup></i> <sub>cm</sub> = 91.2 GeV                                                         |
| $\frac{V_{ALUE}}{0.082 \pm 0.007 \text{ OUR AVERAGE}}$ $0.081 \pm 0.002 \pm 0.010$ $0.083 \pm 0.006 \pm 0.009$ $\left< N_{\Sigma^{+}+\Sigma^{-}} \right>$ $\frac{V_{ALUE}}{0.181 \pm 0.018 \text{ OUR AVERAGE}}$ | ABREU<br>ALEXANDER<br><u>DOCUMENT ID</u> | 97e         | DLPH<br>OPAL<br><u>TECN</u> | E <sup>ee</sup> <sub>Cm</sub> = 91.2 GeV<br>E <sup>ee</sup> <sub>Cm</sub> = 91.2 GeV<br><u>COMMENT</u> |
| $\frac{V_{ALUE}}{0.082 \pm 0.007 \text{ OUR AVERAGE}}$ $0.081 \pm 0.002 \pm 0.010$ $0.083 \pm 0.006 \pm 0.009$ $\left< N_{\Sigma^{+}+\Sigma^{-}} \right>$ $\frac{V_{ALUE}}{0.181 \pm 0.018 \text{ OUR AVERAGE}}$ | ABREU<br>ALEXANDER<br><u>DOCUMENT ID</u> | 97e         | DLPH<br>OPAL<br><u>TECN</u> | $E_{cm}^{ee}$ = 91.2 GeV<br>$E_{cm}^{ee}$ = 91.2 GeV                                                   |

 $^1\,\text{We}$  have combined the values of  $\langle \textit{N}_{\Sigma^+}\rangle$  and  $\langle \textit{N}_{\Sigma^-}\rangle$  from ALEXANDER 97E adding the statistical and systematic errors of the two final states separately in quadrature. If isospin symmetry is assumed this value becomes 0.174  $\pm$  0.010  $\pm$  0.015.


| $\langle N_{50} \rangle$                             |             |             |             |                                     |
|------------------------------------------------------|-------------|-------------|-------------|-------------------------------------|
| VALUE                                                | DOCUMENT ID |             | TECN        | COMMENT                             |
| $0.076 \pm 0.010$ OUR AVERAGE                        |             |             |             |                                     |
| $0.095 \!\pm\! 0.015 \!\pm\! 0.013$                  | ACCIARRI    | 00J         | L3          | $E_{\rm cm}^{ee} = 91.2  { m GeV}$  |
| $0.071\!\pm\!0.012\!\pm\!0.013$                      | ALEXANDER   | 97E         | OPAL        | $E_{\rm cm}^{ee} = 91.2  {\rm GeV}$ |
| $0.070 \pm 0.010 \pm 0.010$                          | ADAM        | <b>96</b> B | DLPH        | $E_{\rm cm}^{ee} = 91.2  { m GeV}$  |
| $\langle N_{(\Sigma^++\Sigma^-+\Sigma^0)/3} \rangle$ |             |             |             |                                     |
| VALUE                                                | DOCUMENT ID |             | TECN        | COMMENT                             |
| $0.084 \pm 0.005 \pm 0.008$                          | ALEXANDER   | 97E         | OPAL        | $E_{\rm cm}^{ee} = 91.2  { m GeV}$  |
| $\langle N_{\Sigma(1385)^+}  angle$                  |             |             |             |                                     |
| VALUE                                                | DOCUMENT ID |             | TECN        | COMMENT                             |
| $0.0239 \pm 0.0009 \pm 0.0012$                       | ALEXANDER   | <b>97</b> D | OPAL        | $E_{\rm cm}^{ee}$ = 91.2 GeV        |
| $\langle N_{\Sigma(1385)^{-}} \rangle$               | DOCUMENT ID |             | TECN        | COMMENT                             |
| VALUE                                                | DOCUMENT ID |             | <u>TECN</u> | <u>COMMENT</u>                      |
| $0.0240 \pm 0.0010 \pm 0.0014$                       | ALEXANDER   | <b>97</b> D | OPAL        | $E_{\rm Cm}^{ee} = 91.2  { m GeV}$  |

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$ 

| $\langle N_{\Sigma(1385)^++\Sigma(1385)^-} \rangle$                       |                                     |                              |                 |                                                |
|---------------------------------------------------------------------------|-------------------------------------|------------------------------|-----------------|------------------------------------------------|
| VALUE                                                                     | DOCUMENT ID                         |                              | TECN            | COMMENT                                        |
| 0.046 ±0.004 OUR AVERAGE                                                  | Error includes sca                  |                              |                 | •                                              |
| $0.0479 \!\pm\! 0.0013 \!\pm\! 0.0026$                                    | ALEXANDER                           | <b>97</b> D                  | OPAL            | $E_{\rm cm}^{ee} =$ 91.2 GeV                   |
| $0.0382\!\pm\!0.0028\!\pm\!0.0045$                                        | ABREU                               | <b>95</b> 0                  | DLPH            | $E_{\rm Cm}^{ee} = 91.2  {\rm GeV}$            |
| ⟨ <b>N</b> <sub>=</sub> -⟩<br><sub>VALUE</sub>                            | DOCUMENT ID                         |                              | TECN            | COMMENT                                        |
| 0.0258±0.0009 OUR AVERAGE                                                 | DOCOMENT ID                         |                              | TLCN            | COMMENT                                        |
| $0.0247 \pm 0.0009 \pm 0.0025$                                            | ABDALLAH                            | 06E                          | DLPH            | $E_{\rm cm}^{ee} = 91.2 \; { m GeV}$           |
| $0.0259 \pm 0.0004 \pm 0.0009$                                            |                                     |                              |                 | $E_{\rm cm}^{ee} = 91.2 {\rm GeV}$             |
| $\langle N_{\equiv(1530)^0} \rangle$                                      |                                     |                              |                 |                                                |
| VALUE                                                                     | DOCUMENT ID                         |                              |                 |                                                |
|                                                                           | Error includes sca                  |                              |                 |                                                |
| $0.0045 \pm 0.0005 \pm 0.0006$                                            | ABDALLAH                            |                              |                 | $E_{\rm cm}^{ee} = 91.2 {\rm GeV}$             |
| $0.0068 \pm 0.0005 \pm 0.0004$                                            | ALEXANDER                           | <b>97</b> D                  | OPAL            | <i>E<sup>ee</sup></i> <sub>cm</sub> = 91.2 GeV |
| $\langle N_{\Omega^{-}} \rangle$                                          |                                     |                              |                 |                                                |
| VALUE                                                                     | DOCUMENT ID                         |                              | TECN            | COMMENT                                        |
| 0.00164±0.00028 OUR AVERAGE                                               |                                     |                              |                 | - 00                                           |
| $0.0018 \pm 0.0003 \pm 0.0002$                                            |                                     |                              |                 | $E_{\rm cm}^{ee} = 91.2 {\rm GeV}$             |
| $0.0014 \pm 0.0002 \pm 0.0004$                                            | ADAM                                | <b>96</b> B                  | DLPH            | $E_{\rm cm}^{ee}$ = 91.2 GeV                   |
| $\langle N_{\Lambda^+} \rangle$                                           |                                     |                              |                 |                                                |
| VALUE                                                                     | DOCUMENT ID                         |                              | TECN            | COMMENT                                        |
| $0.078 \pm 0.012 \pm 0.012$                                               | ALEXANDER                           | <b>96</b> R                  | OPAL            | $E_{\rm cm}^{ee}$ = 91.2 GeV                   |
| $\langle N_{\overline{D}} \rangle$                                        |                                     |                              |                 |                                                |
| VALUE (units $10^{-6}$ )                                                  | DOCUMENT ID                         |                              | TECN            | COMMENT                                        |
| • • We do not use the following of                                        |                                     |                              |                 |                                                |
| -                                                                         | <sup>1</sup> SCHAEL                 |                              |                 | $E_{ m cm}^{ee}=91.2~{ m GeV}$                 |
| <sup>1</sup> SCHAEL 06A obtain this anti-<br>anti-deuteron momentum range | deuteron produc<br>from 0.62 to 1.0 | tion r<br>03 Ge <sup>v</sup> | ate per<br>V/c. | hadronic $Z$ decay in the                      |
| $\langle N_{charged} \rangle$                                             |                                     |                              |                 |                                                |

| \' <b>"</b> charged /             |                            |             |                                     |
|-----------------------------------|----------------------------|-------------|-------------------------------------|
| VALUE                             | DOCUMENT ID                | TECN        | COMMENT                             |
| 20.76±0.16 OUR AVERAGE            | Error includes scale facto | or of 2.1.  | See the ideogram below.             |
| $20.46 \!\pm\! 0.01 \!\pm\! 0.11$ | ACHARD 03                  | G <b>L3</b> | $E_{\rm cm}^{ee} = 91.2  {\rm GeV}$ |
| $21.21\!\pm\!0.01\!\pm\!0.20$     | ABREU 99                   | DLPH        | $E_{\rm cm}^{ee}$ = 91.2 GeV        |
| $21.05 \pm 0.20$                  | AKERS 95                   | z OPAL      | $E_{\rm cm}^{ee}$ = 91.2 GeV        |
| $20.91 \!\pm\! 0.03 \!\pm\! 0.22$ | BUSKULIC 95                | r ALEP      | $E_{\rm cm}^{ee} = 91.2  { m GeV}$  |
| $21.40 \pm 0.43$                  | ACTON 92                   | b OPAL      | $E_{\rm cm}^{ee} = 91.2  {\rm GeV}$ |
| $20.71\!\pm\!0.04\!\pm\!0.77$     | ABREU 91                   | h DLPH      | $E_{\rm cm}^{ee} = 91.2  { m GeV}$  |
| $20.7 \pm 0.7$                    | ADEVA 91                   | I L3        | $E_{\rm cm}^{ee} = 91.2  { m GeV}$  |
| $20.1 \ \pm 1.0 \ \pm 0.9$        | ABRAMS 90                  | MRK2        | $E_{\rm cm}^{ee}=$ 91.1 GeV         |
|                                   |                            |             |                                     |

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$ 



### **Z HADRONIC POLE CROSS SECTION**

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). This quantity is defined as

$$\sigma_h^0 = \frac{12\pi}{M_7^2} \frac{\Gamma(e^+ e^-) \Gamma(\text{hadrons})}{\Gamma_7^2}$$

It is one of the parameters used in the Z lineshape fit.

| VALUE                | (nb)                                                                                       | EVTS          | DOCUMENT ID           |             | TECN      | COMMENT                                          |  |  |
|----------------------|--------------------------------------------------------------------------------------------|---------------|-----------------------|-------------|-----------|--------------------------------------------------|--|--|
| 41.541±0.037 OUR FIT |                                                                                            |               |                       |             |           |                                                  |  |  |
| 41.501               | $1\!\pm\!0.055$                                                                            | 4.10M         | <sup>1</sup> ABBIENDI | 01A         | OPAL      | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |  |  |
| 41.578               | $8 \pm 0.069$                                                                              | 3.70M         | ABREU                 | 00F         | DLPH      | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |  |  |
| 41.535               | $5\pm0.055$                                                                                | 3.54M         | ACCIARRI              | <b>00</b> C | L3        | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |  |  |
| 41.559               | $9 \pm 0.058$                                                                              | 4.07M         | <sup>2</sup> BARATE   | <b>00</b> C | ALEP      | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |  |  |
| • • •                | We do not use                                                                              | the following | g data for average    | s, fits,    | limits, e | etc. • • •                                       |  |  |
| 42                   | $\pm 4$                                                                                    | 450           | ABRAMS                | <b>89</b> B | MRK2      | $E_{\rm cm}^{ee}$ = 89.2–93.0 GeV                |  |  |
| <sup>1</sup> A       | $^1$ ABBIENDI 01A error includes approximately 0.031 due to statistics, 0.033 due to event |               |                       |             |           |                                                  |  |  |

selection systematics, 0.029 due to uncertainty in luminosity measurement, and 0.011 due to LEP energy uncertainty.

 $^2$  BARATE 00C error includes approximately 0.030 due to statistics, 0.026 due to experimental systematics, and 0.025 due to uncertainty in luminosity measurement.

HTTP://PDG.LBL.GOV Page 34

### **Z VECTOR COUPLINGS**

These quantities are the effective vector couplings of the Z to charged leptons and quarks. Their magnitude is derived from a measurement of the Z lineshape and the forward-backward lepton asymmetries as a function of energy around the Z mass. The relative sign among the vector to axial-vector couplings is obtained from a measurement of the Z asymmetry parameters,  $A_e$ ,  $A_{\mu}$ , and  $A_{\tau}$ . By convention the sign of  $g_A^e$  is fixed to be negative (and opposite to that of  $g^{\nu_e}$  obtained using  $\nu_e$  scattering measurements). For the light quarks, the sign of the couplings is assigned consistently with this assumption. The LEP/SLD-based fit values quoted below correspond to global nine- or five-parameter fits to lineshape, lepton forward-backward asymmetry, and  $A_e$ ,  $A_{\mu}$ , and  $A_{\tau}$  measurements. See the note "The Z boson" and ref. LEP-SLC 06 for details. Where  $p\overline{p}$  and ep data is quoted, OUR FIT value corresponds to a weighted average of this with the LEP/SLD fit result.

# g<sub>V</sub>

| VALUE                            | <u>EVTS</u> | DOCUMENT ID           | TECN    | I COMMENT                                        |
|----------------------------------|-------------|-----------------------|---------|--------------------------------------------------|
| $-0.03817 \pm 0.00047$ OUR FI    | т           |                       |         |                                                  |
| $-0.058$ $\pm 0.016$ $\pm 0.007$ | 5026        | <sup>1</sup> ACOSTA   | 05м CDF | $E_{\rm cm}^{p\overline{p}}$ = 1.96 TeV          |
| $-0.0346 \pm 0.0023$             | 137.0K      | <sup>2</sup> ABBIENDI | 010 OPA | L $E_{\rm cm}^{ee} = 88-94$ GeV                  |
| $-0.0412 \pm 0.0027$             | 124.4k      | <sup>3</sup> ACCIARRI | 00C L3  | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $-0.0400 \pm 0.0037$             |             | BARATE                | 00C ALE | $P  E_{CM}^{ee} = 88-94  GeV$                    |
| $-0.0414\ \pm 0.0020$            |             | <sup>4</sup> ABE      | 95J SLD | $E_{\rm cm}^{ee}$ = 91.31 GeV                    |
|                                  |             |                       |         |                                                  |

<sup>1</sup>ACOSTA 05M determine the forward-backward asymmetry of  $e^+e^-$  pairs produced via  $q \overline{q} \rightarrow Z/\gamma^* \rightarrow e^+e^-$  in 15 M( $e^+e^-$ ) effective mass bins ranging from 40 GeV to 600 GeV. These results are used to obtain the vector and axial-vector couplings of the Z to  $e^+e^-$ , assuming the quark couplings are as predicted by the standard model. Higher order radiative corrections have not been taken into account.

<sup>2</sup>ABBIENDI 010 use their measurement of the  $\tau$  polarization in addition to the lineshape and forward-backward lepton asymmetries.

 $^3\,{\rm ACCIARRI}$  00C use their measurement of the  $\tau$  polarization in addition to forward-backward lepton asymmetries.

<sup>4</sup> ABE 95J obtain this result combining polarized Bhabha results with the  $A_{LR}$  measurement of ABE 94C. The Bhabha results alone give  $-0.0507 \pm 0.0096 \pm 0.0020$ .

| $g_V^{\mu}$                                                                                             |        |                       |             |      |                                                 |  |  |
|---------------------------------------------------------------------------------------------------------|--------|-----------------------|-------------|------|-------------------------------------------------|--|--|
| VALUE                                                                                                   | EVTS   | DOCUMENT ID           |             | TECN | COMMENT                                         |  |  |
| $-0.0367 \pm 0.0023$ OU                                                                                 | R FIT  |                       |             |      |                                                 |  |  |
| $-0.0388\substack{+0.0060\\-0.0064}$                                                                    | 182.8K | <sup>1</sup> ABBIENDI | 010         | OPAL | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |  |  |
| $-0.0386 \!\pm\! 0.0073$                                                                                | 113.4k | <sup>2</sup> ACCIARRI | <b>00</b> C | L3   | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |  |  |
| $-0.0362 \pm 0.0061$                                                                                    |        | BARATE                | <b>00</b> C | ALEP | <i>E<sup>ee</sup></i> = 88–94 GeV               |  |  |
| ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$ |        |                       |             |      |                                                 |  |  |
| $-0.0413 \pm 0.0060$                                                                                    | 66143  | <sup>3</sup> ABBIENDI | 01K         | OPAL | <i>E<sup>ee</sup></i> = 89–93 GeV               |  |  |

<sup>1</sup>ABBIENDI 010 use their measurement of the  $\tau$  polarization in addition to the lineshape and forward-backward lepton asymmetries.

 $^2\,{\rm ACCIARRI}$  00C use their measurement of the  $\tau$  polarization in addition to forward-backward lepton asymmetries.

 $^3$ ABBIENDI 01K obtain this from an angular analysis of the muon pair asymmetry which takes into account effects of initial state radiation on an event by event basis and of initial-final state interference.

| $g_V^{\tau}$             |        |                       |             |      |                                                 |
|--------------------------|--------|-----------------------|-------------|------|-------------------------------------------------|
| VALUE                    | EVTS   | DOCUMENT ID           |             | TECN | COMMENT                                         |
| $-0.0366 \pm 0.0010$ OUR | FIT    |                       |             |      |                                                 |
| $-0.0365 \!\pm\! 0.0023$ | 151.5K | <sup>1</sup> ABBIENDI | 010         | OPAL | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |
| $-0.0384 \pm 0.0026$     | 103.0k | <sup>2</sup> ACCIARRI | 00C         | L3   | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |
| $-0.0361\!\pm\!0.0068$   |        | BARATE                | <b>00</b> C | ALEP | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |

<sup>1</sup>ABBIENDI 010 use their measurement of the  $\tau$  polarization in addition to the lineshape and forward-backward lepton asymmetries.

<sup>2</sup>ACCIARRI 00C use their measurement of the au polarization in addition to forwardbackward lepton asymmetries.

| δV                       |         |                       |             |      |                                                  |
|--------------------------|---------|-----------------------|-------------|------|--------------------------------------------------|
| VALUE                    | EVTS    | DOCUMENT ID           |             | TECN | COMMENT                                          |
| $-0.03783 \pm 0.00041$ C | OUR FIT |                       |             |      |                                                  |
| $-0.0358 \pm 0.0014$     | 471.3K  | <sup>1</sup> ABBIENDI | 010         | OPAL | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV  |
| $-0.0397 \pm 0.0020$     | 379.4k  | <sup>2</sup> ABREU    | 00F         | DLPH | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $-0.0397 \pm 0.0017$     | 340.8k  | <sup>3</sup> ACCIARRI | <b>00</b> C | L3   | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $-0.0383\ \pm 0.0018$    | 500k    | BARATE                | <b>00</b> C | ALEP | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |

<sup>1</sup>ABBIENDI 010 use their measurement of the au polarization in addition to the lineshape and forward-backward lepton asymmetries.

<sup>2</sup>Using forward-backward lepton asymmetries.

<sup>3</sup>ACCIARRI 00C use their measurement of the  $\tau$  polarization in addition to forwardbackward lepton asymmetries.

# gv

ol.

| VALUE                                                                                                   | EVTS | DOCUMENT ID            |             | TECN | COMMENT                                                                            |  |
|---------------------------------------------------------------------------------------------------------|------|------------------------|-------------|------|------------------------------------------------------------------------------------|--|
| 0.266±0.034 OUR AVERAGE                                                                                 |      |                        |             |      |                                                                                    |  |
| $0.270 \!\pm\! 0.037$                                                                                   |      | <sup>1</sup> ANDREEV   | 18A         | H1   | $e^{\pm}p$                                                                         |  |
| $0.201\!\pm\!0.112$                                                                                     | 156k | <sup>2</sup> ABAZOV    | <b>11</b> D | D0   | $E_{ m cm}^{p\overline{p}}=1.97~ m TeV$                                            |  |
| $\begin{array}{c} 0.24 & +0.28 \\ -0.11 \end{array}$                                                    |      | <sup>3</sup> LEP-SLC   | 06          |      | $E_{\rm Cm}^{ee}=$ 88–94 GeV                                                       |  |
| $0.399^{+0.152}_{-0.188}{\pm}0.066$                                                                     | 5026 | <sup>4</sup> ACOSTA    | <b>0</b> 5M | CDF  | $E_{cm}^{p\overline{p}}$ = 1.96 TeV                                                |  |
| ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$ |      |                        |             |      |                                                                                    |  |
| $0.14 \begin{array}{c} +0.09 \\ -0.09 \end{array}$                                                      |      | <sup>5</sup> ABRAMOWIC | Z16A        | ZEUS |                                                                                    |  |
| $0.144 \substack{+ 0.066 \\ - 0.058}$                                                                   |      | <sup>6</sup> ABT       | 16          |      |                                                                                    |  |
| $0.27 \pm 0.13$                                                                                         | 1500 | <sup>7</sup> AKTAS     | 06          | H1   | $e^{\pm} p  ightarrow ~ \overline{ u}_e( u_e) X, \ \sqrt{s} pprox 300 \; { m GeV}$ |  |

<sup>1</sup>ANDREEV 18A obtain this result in a combined electroweak and QCD analysis using all deep-inelastic  $e^+p$  and  $e^-p$  neutral current and charged current scattering cross sections published by the H1 Collaboration, including data with longitudinally polarized lepton beams.

<sup>2</sup>ABAZOV 11D study  $p\overline{p} \rightarrow Z/\gamma^* e^+ e^-$  events using 5 fb<sup>-1</sup> data at  $\sqrt{s} = 1.96$  TeV. The candidate events are selected by requiring two isolated electromagnetic showers with  $E_T > 25$  GeV, at least one electron in the central region and the di-electron mass in the range 50-1000 GeV. From the forward-backward asymmetry, determined as a function of

HTTP://PDG.LBL.GOV Page 36

the di-electron mass, they derive the axial and vector couplings of the *u*- and *d*- quarks and the value of  $\sin^2 \theta_{eff}^{\ell} = 0.2309 \pm 0.0008(\text{stat}) \pm 0.0006(\text{syst})$ .

- <sup>3</sup>LEP-SLC 06 is a combination of the results from LEP and SLC experiments using light quark tagging. s- and d-quark couplings are assumed to be identical.
- <sup>4</sup> ACOSTA 05M determine the forward-backward asymmetry of  $e^+e^-$  pairs produced via  $q \overline{q} \rightarrow Z/\gamma^* \rightarrow e^+e^-$  in 15 M( $e^+e^-$ ) effective mass bins ranging from 40 GeV to 600 GeV. These results are used to obtain the vector and axial-vector couplings of the Z to the light quarks, assuming the electron couplings are as predicted by the Standard Model. Higher order radiative corrections have not been taken into account.
- <sup>5</sup> ABRAMOWICZ 16A determine the  $Z^0$  couplings to *u* and *d*-quarks using the ZEUS polarised data from Run II together with the unpolarised data from both ZEUS and H1 Collaborations for Run I and unpolarised H1 data from Run II.
- <sup>6</sup>ABT 16 determine the  $Z^0$  couplings to u- and d-quarks using the same techniques and data as ABRAMOWICZ 16A but additionally use the published H1 polarised data.
- $^7$  AKTAS 06 fit the neutral current (1.5  $\leq$  Q<sup>2</sup>  $\leq$  30,000 GeV<sup>2</sup>) and charged current (1.5  $\leq$  Q<sup>2</sup>  $\leq$  15,000 GeV<sup>2</sup>) differential cross sections. In the determination of the *u*-quark couplings the electron and *d*-quark couplings are fixed to their standard model values.

| <b>BV</b><br>VALUE                                         | <u>EVTS</u>   | DOCUMENT ID            |              | TECN      | COMMENT                                            | _ |
|------------------------------------------------------------|---------------|------------------------|--------------|-----------|----------------------------------------------------|---|
| $-0.38 \begin{array}{c} +0.04 \\ -0.05 \end{array}$ our an | <b>VERAGE</b> |                        |              |           |                                                    |   |
| $-0.488 \pm 0.092$                                         |               | <sup>1</sup> ANDREEV   | -            |           | $e^{\pm}p$                                         |   |
| $-0.351\!\pm\!0.251$                                       | 156k          | <sup>2</sup> ABAZOV    | <b>11</b> D  | D0        | $E^{p\overline{p}}_{ m cm}=$ 1.97 TeV              |   |
| $-0.33 \begin{array}{c} +0.05 \\ -0.07 \end{array}$        |               | <sup>3</sup> LEP-SLC   | 06           |           | $E_{\rm cm}^{ee}=$ 88–94 GeV                       |   |
| $-0.226^{+0.635}_{-0.290}{\pm}0.090$                       | 5026          | <sup>4</sup> ACOSTA    | 05м          | CDF       | $E_{\rm cm}^{p\overline{p}}$ = 1.96 TeV            |   |
| $\bullet \bullet \bullet$ We do not use th                 | e following   | g data for averages    | s, fits,     | limits, e | etc. • • •                                         |   |
| $-0.41 \ \begin{array}{c} +0.25 \\ -0.20 \end{array}$      |               | <sup>5</sup> ABRAMOWIC | <b>Z16</b> A | ZEUS      |                                                    |   |
| $-0.503 \substack{+0.171 \\ -0.103}$                       |               | <sup>6</sup> ABT       | 16           |           |                                                    |   |
| $-0.33 \pm 0.33$                                           | 1500          | <sup>7</sup> AKTAS     | 06           | H1        | $e^{\pm} p  ightarrow ~ \overline{ u}_e( u_e) X$ , |   |

- <sup>1</sup> ANDREEV 18A obtain this result in a combined electroweak and QCD analysis using all deep-inelastic  $e^+ p$  and  $e^- p$  neutral current and charged current scattering cross sections published by the H1 Collaboration, including data with longitudinally polarized lepton beams.
- <sup>2</sup>ABAZOV 11D study  $p\overline{p} \rightarrow Z/\gamma^* e^+ e^-$  events using 5 fb<sup>-1</sup> data at  $\sqrt{s} = 1.96$  TeV. The candidate events are selected by requiring two isolated electromagnetic showers with  $E_T > 25$  GeV, at least one electron in the central region and the di-electron mass in the range 50–1000 GeV. From the forward-backward asymmetry, determined as a function of the di-electron mass, they derive the axial and vector couplings of the *u* and *d* quarks and the value of  $\sin^2\theta_{eff}^{\ell} = 0.2309 \pm 0.0008(\text{stat}) \pm 0.0006(\text{syst})$ .

<sup>3</sup>LEP-SLC 06 is a combination of the results from LEP and SLC experiments using light quark tagging. s- and d-quark couplings are assumed to be identical.

<sup>4</sup> ACOSTA 05M determine the forward-backward asymmetry of  $e^+e^-$  pairs produced via  $q \overline{q} \rightarrow Z/\gamma^* \rightarrow e^+e^-$  in 15 M( $e^+e^-$ ) effective mass bins ranging from 40 GeV to 600 GeV. These results are used to obtain the vector and axial-vector couplings of the Z to the light quarks, assuming the electron couplings are as predicted by the Standard Model. Higher order radiative corrections have not been taken into account.

HTTP://PDG.LBL.GOV

--d

 $\sqrt{s} \approx 300 \text{ GeV}$ 

- <sup>5</sup> ABRAMOWICZ 16A determine the  $Z^0$  couplings to *u* and *d*-quarks using the ZEUS polarised data from Run II together with the unpolarised data from both ZEUS and H1 Collaborations for Run I and unpolarised H1 data from Run II.
- <sup>6</sup>ABT 16 determine the  $Z^0$  couplings to u- and d-quarks using the same techniques and \_data as ABRAMOWICZ 16A but additionally use the published H1 polarised data.
- <sup>7</sup>AKTAS 06 fit the neutral current (1.5  $\leq$  Q<sup>2</sup>  $\leq$  30,000 GeV<sup>2</sup>) and charged current (1.5  $\leq$  Q<sup>2</sup>  $\leq$  15,000 GeV<sup>2</sup>) differential cross sections. In the determination of the *d*-quark couplings the electron and *u*-quark couplings are fixed to their standard model values.

## Z AXIAL-VECTOR COUPLINGS

These quantities are the effective axial-vector couplings of the Z to charged leptons and quarks. Their magnitude is derived from a measurement of the Z lineshape and the forward-backward lepton asymmetries as a function of energy around the Z mass. The relative sign among the vector to axial-vector couplings is obtained from a measurement of the Z asymmetry parameters,  $A_e$ ,  $A_{\mu}$ , and  $A_{\tau}$ . By convention the sign of  $g_A^e$  is fixed to be negative (and opposite to that of  $g^{\nu_e}$  obtained using  $\nu_e$  scattering measurements). For the light quarks, the sign of the couplings is assigned consistently with this assumption. The LEP/SLD-based fit values quoted below correspond to global nine- or five-parameter fits to lineshape, lepton forward-backward asymmetry, and  $A_e$ ,  $A_{\mu}$ , and  $A_{\tau}$  measurements. See the note "The Z boson" and ref. LEP-SLC 06 for details. Where  $p\overline{p}$  and ep data is quoted, OUR FIT value corresponds to a weighted average of this with the LEP/SLD fit result.

# g<sub>A</sub>

| VALUE                            | EVTS   | DOCUMENT ID           | TE     | ECN | COMMENT                                |
|----------------------------------|--------|-----------------------|--------|-----|----------------------------------------|
| $-0.50111 \pm 0.00035$ OUR Fi    | Т      |                       |        |     |                                        |
| $-0.528$ $\pm 0.123$ $\pm 0.059$ | 5026   | <sup>1</sup> ACOSTA   | 05м CI | DF  | $E_{ m cm}^{p\overline{p}}$ = 1.96 TeV |
| $-0.50062\!\pm\!0.00062$         | 137.0K | <sup>2</sup> ABBIENDI | 010 O  | PAL | $E_{\rm cm}^{ee}$ = 88–94 GeV          |
| $-0.5015 \pm 0.0007$             | 124.4k | <sup>3</sup> ACCIARRI | 00C L3 | 3   | $E_{\rm cm}^{ee}$ = 88–94 GeV          |
| $-0.50166 \pm 0.00057$           |        | BARATE                | 00C AI | LEP | $E_{\rm cm}^{ee}$ = 88–94 GeV          |
| $-0.4977 \pm 0.0045$             |        | <sup>4</sup> ABE      | 95J SL | D   | $E_{\rm cm}^{ee} = 91.31 {\rm GeV}$    |

<sup>1</sup> ACOSTA 05M determine the forward-backward asymmetry of  $e^+e^-$  pairs produced via  $q\overline{q} \rightarrow Z/\gamma^* \rightarrow e^+e^-$  in 15 M( $e^+e^-$ ) effective mass bins ranging from 40 GeV to 600 GeV. These results are used to obtain the vector and axial-vector couplings of the Z to  $e^+e^-$ , assuming the quark couplings are as predicted by the standard model. Higher order radiative corrections have not been taken into account.

<sup>2</sup>ABBIENDI 010 use their measurement of the  $\tau$  polarization in addition to the lineshape and forward-backward lepton asymmetries.

 $^3\,\rm ACCIARRI$  00C use their measurement of the  $\tau$  polarization in addition to forward-backward lepton asymmetries.

<sup>4</sup> ABE 95J obtain this result combining polarized Bhabha results with the  $A_{LR}$  measurement of ABE 94C. The Bhabha results alone give  $-0.4968 \pm 0.0039 \pm 0.0027$ .

| $g^{\mu}_{A}$              |             |                       |             |           |                                                 |
|----------------------------|-------------|-----------------------|-------------|-----------|-------------------------------------------------|
| VALUE                      | EVTS        | DOCUMENT ID           |             | TECN      | <u>COMMENT</u>                                  |
| $-0.50120\pm0.00054$ O     | UR FIT      |                       |             |           |                                                 |
| $-0.50117 \!\pm\! 0.00099$ | 182.8K      | <sup>1</sup> ABBIENDI | 010         | OPAL      | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |
| $-0.5009 \pm 0.0014$       | 113.4k      | <sup>2</sup> ACCIARRI | <b>00</b> C | L3        | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |
| $-0.50046 \!\pm\! 0.00093$ |             | BARATE                | <b>00</b> C | ALEP      | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |
| • • • We do not use t      | he followin | g data for average    | s, fits,    | limits, e | etc. ● ● ●                                      |
|                            |             |                       |             |           |                                                 |

 $-0.520 \pm 0.015$  66143 <sup>3</sup> ABBIENDI 01K OPAL  $E_{cm}^{ee} = 89-93$  GeV

<sup>1</sup>ABBIENDI 010 use their measurement of the  $\tau$  polarization in addition to the lineshape and forward-backward lepton asymmetries.

 $^2\,{\rm ACCIARRI}$  00C use their measurement of the  $\tau$  polarization in addition to forward-backward lepton asymmetries.

<sup>3</sup>ABBIENDI 01K obtain this from an angular analysis of the muon pair asymmetry which takes into account effects of initial state radiation on an event by event basis and of initial-final state interference.

## $g_A^{\tau}$

\_l

...

| VALUE                    | EVTS   | DOCUMENT ID           |             | TECN | COMMENT                                         |
|--------------------------|--------|-----------------------|-------------|------|-------------------------------------------------|
| $-0.50204 \pm 0.00064$ O | UR FIT |                       |             |      |                                                 |
| $-0.50165 \pm 0.00124$   | 151.5K | <sup>1</sup> ABBIENDI | 010         | OPAL | $E_{\rm cm}^{ee}$ = 88–94 GeV                   |
| $-0.5023\ \pm 0.0017$    | 103.0k | <sup>2</sup> ACCIARRI | <b>00</b> C | L3   | <i>E<sup>ee</sup></i> <sub>cm</sub> = 88–94 GeV |
| $-0.50216\!\pm\!0.00100$ |        | BARATE                | <b>00</b> C | ALEP | $E_{\rm cm}^{ee}$ = 88–94 GeV                   |

<sup>1</sup>ABBIENDI 010 use their measurement of the  $\tau$  polarization in addition to the lineshape and forward-backward lepton asymmetries.

 $^2\,{\rm ACCIARRI}$  00C use their measurement of the  $\tau$  polarization in addition to forward-backward lepton asymmetries.

| <i>B</i> <sub>A</sub>      |        |                       |             |      |                                                  |
|----------------------------|--------|-----------------------|-------------|------|--------------------------------------------------|
| VALUE                      | EVTS   | DOCUMENT ID           |             | TECN | COMMENT                                          |
| -0.50123±0.00026 OUR FIT   |        |                       |             |      |                                                  |
| $-0.50089 \!\pm\! 0.00045$ | 471.3K | <sup>1</sup> ABBIENDI | 010         | OPAL | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $-0.5007 \pm 0.0005$       | 379.4k | ABREU                 | 00F         | DLPH | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $-0.50153 \!\pm\! 0.00053$ | 340.8k | <sup>2</sup> ACCIARRI | <b>00</b> C | L3   | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |
| $-0.50150 \pm 0.00046$     | 500k   | BARATE                | <b>00</b> C | ALEP | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |

 $^{1}\,{\rm ABBIENDI}$  010 use their measurement of the  $\tau$  polarization in addition to the lineshape and forward-backward lepton asymmetries.

 $^2\,{\rm ACCIARRI}$  00C use their measurement of the  $\tau$  polarization in addition to forward-backward lepton asymmetries.

| <i>B</i> <sup><i>U</i></sup><br><u>VALUE</u><br>0.519 <sup>+0.028</sup> OUR AVE | <u>EVTS</u> | DOCUMENT ID          |             | <u>TECN</u> | COMMENT                                 | _ |
|---------------------------------------------------------------------------------|-------------|----------------------|-------------|-------------|-----------------------------------------|---|
| $0.548 \pm 0.036$                                                               |             | <sup>1</sup> ANDREEV | 18A         |             | $e^{\pm} p$                             |   |
| $0.501\!\pm\!0.110$                                                             | 156k        | <sup>2</sup> ABAZOV  | <b>11</b> D | D0          | $E_{ m cm}^{p\overline{p}}=$ 1.97 TeV   |   |
| $0.47 \begin{array}{c} +0.05 \\ -0.33 \end{array}$                              |             | <sup>3</sup> LEP-SLC | 06          |             | $E_{\rm cm}^{ee}=$ 88–94 GeV            |   |
| $0.441^{+0.207}_{-0.173}{\pm}0.067$                                             | 5026        | <sup>4</sup> ACOSTA  | 05м         | CDF         | $E_{\sf cm}^{p\overline{p}}$ = 1.96 TeV |   |

• • • We do not use the following data for averages, fits, limits, etc. • • •

| $0.50 \begin{array}{c} +0.12 \\ -0.05 \end{array}$ |      | <sup>5</sup> ABRAMOWIC | Z16A | ZEUS |                                                      |
|----------------------------------------------------|------|------------------------|------|------|------------------------------------------------------|
| $0.532 \substack{+ 0.107 \\ - 0.063}$              |      | <sup>6</sup> ABT       | 16   |      |                                                      |
| $0.57\ \pm 0.08$                                   | 1500 | <sup>7</sup> AKTAS     | 06   | H1   | $e^{\pm}p \rightarrow \overline{\nu}_{e}(\nu_{e})X,$ |

<sup>1</sup> ANDREEV 18A obtain this result in a combined electroweak and QCD analysis using all deep-inelastic  $e^+ p$  and  $e^- p$  neutral current and charged current scattering cross sections published by the H1 Collaboration, including data with longitudinally polarized lepton beams.

- <sup>2</sup>ABAZOV 11D study  $p\overline{p} \rightarrow Z/\gamma^* e^+ e^-$  events using 5 fb<sup>-1</sup> data at  $\sqrt{s} = 1.96$  TeV. The candidate events are selected by requiring two isolated electromagnetic showers with  $E_T > 25$  GeV, at least one electron in the central region and the di-electron mass in the range 50–1000 GeV. From the forward-backward asymmetry, determined as a function of the di-electron mass, they derive the axial and vector couplings of the *u* and *d* quarks and the value of  $\sin^2 \theta_{eff}^{\ell} = 0.2309 \pm 0.0008(\text{stat}) \pm 0.0006(\text{syst})$ .
- <sup>3</sup>LEP-SLC 06 is a combination of the results from LEP and SLC experiments using light quark tagging. s- and d-quark couplings are assumed to be identical.
- <sup>4</sup> ACOSTA 05M determine the forward-backward asymmetry of  $e^+e^-$  pairs produced via  $q \overline{q} \rightarrow Z/\gamma^* \rightarrow e^+e^-$  in 15 M( $e^+e^-$ ) effective mass bins ranging from 40 GeV to 600 GeV. These results are used to obtain the vector and axial-vector couplings of the Z to the light quarks, assuming the electron couplings are as predicted by the Standard Model. Higher order radiative corrections have not been taken into account.
- <sup>5</sup> ABRAMOWICZ 16A determine the  $Z^0$  couplings to *u* and *d*-quarks using the ZEUS polarised data from Run II together with the unpolarised data from both ZEUS and H1 Collaborations for Run I and unpolarised H1 data from Run II.
- <sup>6</sup>ABT 16 determine the  $Z^0$  couplings to u- and d-quarks using the same techniques and data as ABRAMOWICZ 16A but additionally use the published H1 polarised data.
- $^7$  AKTAS 06 fit the neutral current (1.5  $\leq$  Q<sup>2</sup>  $\leq$  30,000 GeV<sup>2</sup>) and charged current (1.5  $\leq$  Q<sup>2</sup>  $\leq$  15,000 GeV<sup>2</sup>) differential cross sections. In the determination of the *u*-quark couplings the electron and *d*-quark couplings are fixed to their standard model values.

| <b>gd</b><br>VALUE                                    | EVTS        | DOCUMENT ID                 |             | TECN        | COMMENT                                                                                 |
|-------------------------------------------------------|-------------|-----------------------------|-------------|-------------|-----------------------------------------------------------------------------------------|
| $-0.527 + 0.040_{-0.028}$ OUR AV                      |             | DOCOMENT ID                 |             | <u>TLCN</u> |                                                                                         |
| $-0.619 \pm 0.108$                                    |             | <sup>1</sup> ANDREEV        | 18A         |             | $e^{\pm}p$                                                                              |
| $-0.497 \pm 0.165$                                    | 156k        | <sup>2</sup> ABAZOV         | <b>11</b> D | D0          | $E_{ m cm}^{p\overline{p}}=1.97~ m TeV$                                                 |
| $-0.52 \   {+0.05 \atop -0.03}$                       |             | <sup>3</sup> LEP-SLC        | 06          |             | $E_{\rm cm}^{ee}=$ 88–94 GeV                                                            |
| $-0.016^{+0.346}_{-0.536}{\pm}0.091$                  | 5026        | <sup>4</sup> ACOSTA         | 05м         | CDF         | $E_{cm}^{p\overline{p}}$ = 1.96 TeV                                                     |
| $\bullet \bullet \bullet$ We do not use th            | e following | g data for averages         | s, fits,    | limits, e   | etc. • • •                                                                              |
| $-0.56 \ \begin{array}{c} +0.41 \\ -0.15 \end{array}$ |             | <sup>5</sup> ABRAMOWIC      | Z16A        | ZEUS        |                                                                                         |
| $-0.409\substack{+0.373 \\ -0.213}$                   |             | <sup>6</sup> <sub>ABT</sub> | 16          |             |                                                                                         |
| $-0.80 \pm 0.24$                                      | 1500        | <sup>7</sup> AKTAS          | 06          | H1          | $e^{\pm} p  ightarrow rac{\overline{ u}_{e}( u_{e})X,}{\sqrt{s}pprox 300 \; { m GeV}}$ |

HTTP://PDG.LBL.GOV

- <sup>1</sup>ANDREEV 18A obtain this result in a combined electroweak and QCD analysis using all deep-inelastic  $e^+p$  and  $e^-p$  neutral current and charged current scattering cross sections published by the H1 Collaboration, including data with longitudinally polarized lepton beams.
- <sup>2</sup>ABAZOV 11D study  $p\overline{p} \rightarrow Z/\gamma^* e^+ e^-$  events using 5 fb<sup>-1</sup> data at  $\sqrt{s} = 1.96$  TeV. The candidate events are selected by requiring two isolated electromagnetic showers with  $E_T > 25$  GeV, at least one electron in the central region and the di-electron mass in the range 50–1000 GeV. From the forward-backward asymmetry, determined as a function of the di-electron mass, they derive the axial and vector couplings of the *u* and *d* quarks and the value of  $\sin^2\theta_{eff}^{\ell} = 0.2309 \pm 0.0008(\text{stat}) \pm 0.0006(\text{syst})$ .
- <sup>3</sup>LEP-SLC 06 is a combination of the results from LEP and SLC experiments using light quark tagging. s- and d-quark couplings are assumed to be identical.
- <sup>4</sup> ACOSTA 05M determine the forward-backward asymmetry of  $e^+e^-$  pairs produced via  $q \overline{q} \rightarrow Z/\gamma^* \rightarrow e^+e^-$  in 15 M( $e^+e^-$ ) effective mass bins ranging from 40 GeV to 600 GeV. These results are used to obtain the vector and axial-vector couplings of the Z to the light quarks, assuming the electron couplings are as predicted by the Standard Model. Higher order radiative corrections have not been taken into account.
- <sup>5</sup> ABRAMOWICZ 16A determine the  $Z^0$  couplings to *u* and *d*-quarks using the ZEUS polarised data from Run II together with the unpolarised data from both ZEUS and H1 Collaborations for Run I and unpolarised H1 data from Run II.
- <sup>6</sup>ABT 16 determine the  $Z^0$  couplings to u- and d-quarks using the same techniques and data as ABRAMOWICZ 16A but additionally use the published H1 polarised data.
- <sup>7</sup>AKTAS 06 fit the neutral current (1.5  $\leq$  Q<sup>2</sup>  $\leq$  30,000 GeV<sup>2</sup>) and charged current (1.5  $\leq$  Q<sup>2</sup>  $\leq$  15,000 GeV<sup>2</sup>) differential cross sections. In the determination of the *d*-quark couplings the electron and *u*-quark couplings are fixed to their standard model values.

### Z COUPLINGS TO NEUTRAL LEPTONS

Averaging over neutrino species, the invisible Z decay width determines the effective neutrino coupling  $g^{\nu_{\ell}}$ . For  $g^{\nu_{e}}$  and  $g^{\nu_{\mu}}$ ,  $\nu_{e}e$  and  $\nu_{\mu}e$  scattering results are combined with  $g^{e}_{A}$  and  $g^{e}_{V}$  measurements at the Z mass to obtain  $g^{\nu_{e}}$  and  $g^{\nu_{\mu}}$  following NOVIKOV 93C.

## gνℓ

| VALUE           | DOCUMENT ID          |    | COMMENT                      |  |  |
|-----------------|----------------------|----|------------------------------|--|--|
| 0.50076±0.00076 | <sup>1</sup> LEP-SLC | 06 | $E_{\rm cm}^{ee}=$ 88–94 GeV |  |  |

<sup>1</sup> From invisible Z-decay width.

## $g^{\nu_e}$

| VALUE                                                        | DOCUMENT ID            | TECN           | <u>СОММ</u>          | ENT                                    |
|--------------------------------------------------------------|------------------------|----------------|----------------------|----------------------------------------|
| $0.528 \pm 0.085$                                            | <sup>1</sup> VILAIN 94 | CHM2           | From                 | $ u_{\mu} e$ and $ u_{e} e$ scattering |
| $^1$ VILAIN 94 derive this $1.05 \substack{+0.15 \\ -0.18}.$ | value from their va    | lue of $g^{l}$ | ${}^{\prime\mu}$ and | their ratio $g^{ u_e}/g^{ u_\mu} =$    |
| $g^{ u_{\mu}}$                                               |                        |                |                      |                                        |
| VALUE                                                        | DOCUMENT I             | D              | TECN                 | COMMENT                                |
| 0.502±0.017                                                  | <sup>1</sup> VILAIN    | 94             | CHM2                 | From $ u_{\mu} e$ scattering           |

 $^1$  VILAIN 94 derive this value from their measurement of the couplings  $g_{\it A}^{e\,\nu_\mu}=-0.503\pm$ 0.017 and  $g_V^{e 
u \mu} = -$  0.035  $\pm$  0.017 obtained from  $u_\mu e$  scattering. We have re-evaluated

this value using the current PDG values for  $g^e_A$  and  $g^e_V$ .

## Z ASYMMETRY PARAMETERS

For each fermion-antifermion pair coupling to the Z these quantities are defined as

$$A_{f} = rac{2g_{V}^{f}g_{A}^{f}}{(g_{V}^{f})^{2} + (g_{A}^{f})^{2}}$$

where  $g_V^f$  and  $g_A^f$  are the effective vector and axial-vector couplings. For their relation to the various lepton asymmetries see the note "The Z boson" and ref. LEP-SLC 06.

## Ae

Using polarized beams, this quantity can also be measured as  $(\sigma_I - \sigma_R)/(\sigma_I + \sigma_R)$ , where  $\sigma_L$  and  $\sigma_R$  are the  $e^+e^-$  production cross sections for Z bosons produced with left-handed and right-handed electrons respectively.

| VALUE                                  | <u>EVTS</u> | DOCUMENT ID           |             | TECN | COMMENT                             |
|----------------------------------------|-------------|-----------------------|-------------|------|-------------------------------------|
| $0.1515 \pm 0.0019$ OUR AVER/          | AGE         |                       |             |      |                                     |
| $0.1454 \pm 0.0108 \pm 0.0036$         | 144810      | <sup>1</sup> ABBIENDI | 010         | OPAL | $E_{\rm cm}^{ee}$ = 88–94 GeV       |
| $0.1516 \!\pm\! 0.0021$                | 559000      | <sup>2</sup> ABE      | <b>01</b> B | SLD  | $E_{\rm cm}^{ee} = 91.24  { m GeV}$ |
| $0.1504 \pm 0.0068 \pm 0.0008$         |             | <sup>3</sup> HEISTER  | 01          | ALEP | $E_{\rm cm}^{ee}$ = 88–94 GeV       |
| $0.1382\!\pm\!0.0116\!\pm\!0.0005$     | 105000      | <sup>4</sup> ABREU    | 00e         | DLPH | $E_{\rm cm}^{ee}$ = 88–94 GeV       |
| $0.1678 \!\pm\! 0.0127 \!\pm\! 0.0030$ | 137092      | <sup>5</sup> ACCIARRI | 98H         | L3   | $E_{\rm cm}^{ee}$ = 88–94 GeV       |
| $0.162\ \pm 0.041\ \pm 0.014$          | 89838       | <sup>6</sup> ABE      | 97          | SLD  | $E_{\rm Cm}^{ee} = 91.27  { m GeV}$ |
| $0.202 \ \pm 0.038 \ \pm 0.008$        |             | <sup>7</sup> ABE      | 95J         | SLD  | $E_{\rm Cm}^{ee}=$ 91.31 GeV        |

<sup>1</sup>ABBIENDI 010 fit for  $A_e$  and  $A_{\tau}$  from measurements of the  $\tau$  polarization at varying  $\tau$  production angles. The correlation between  $A_e$  and  $A_{\tau}$  is less than 0.03.

 $^2$  ABE 01B use the left-right production and left-right forward-backward decay asymmetries in leptonic Z decays to obtain a value of 0.1544  $\pm$  0.0060. This is combined with leftright production asymmetry measurement using hadronic Z decays (ABE 00B) to obtain the quoted value.

- $^3$ HEISTER 01 obtain this result fitting the au polarization as a function of the polar production angle of the  $\tau$ .
- $^4$ ABREU 00E obtain this result fitting the au polarization as a function of the polar au production angle. This measurement is a combination of different analyses (exclusive  $\tau$  decay modes, inclusive hadronic 1-prong reconstruction, and a neural network analysis).
- $^5$  Derived from the measurement of forward-backward au polarization asymmetry.
- <sup>6</sup>ABE 97 obtain this result from a measurement of the observed left-right charge asymmetry,  $A_{O}^{\rm obs}$  = 0.225  $\pm$  0.056  $\pm$  0.019, in hadronic Z decays. If they combine this value of  $A_Q^{obs}$  with their earlier measurement of  $A_{LR}^{obs}$  they determine  $A_e$  to be 0.1574  $\pm$  0.0197  $\pm$  0.0067 independent of the beam polarization.

<sup>7</sup>ABE 95J obtain this result from polarized Bhabha scattering.

HTTP://PDG.LBL.GOV Page 42 Created: 8/2/2019 16:43

# $A_{\mu}$

This quantity is directly extracted from a measurement of the left-right forwardbackward asymmetry in  $\mu^+\mu^-$  production at SLC using a polarized electron beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter A<sub>o</sub>.

| VALUE                                                                       | EVTS  | DOCUMENT IL      | 7           | TECN | COMMENT                                          |  |  |  |
|-----------------------------------------------------------------------------|-------|------------------|-------------|------|--------------------------------------------------|--|--|--|
| 0.142±0.015                                                                 | 16844 | <sup>1</sup> ABE | <b>01</b> B | SLD  | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 91.24 GeV |  |  |  |
| ● ● ● We do not use the following data for averages, fits, limits, etc. ● ● |       |                  |             |      |                                                  |  |  |  |
|                                                                             |       | •                |             |      |                                                  |  |  |  |

15BT ATLS  $E^{pp}_{cm} =$  7 TeV  $^{2}$  AAD 1.7M  $0.153 \pm 0.012$ 

 $^1 {\sf ABE}$  01B obtain this direct measurement using the left-right production and left-right forward-backward polar angle asymmetries in  $\mu^+\mu^-$  decays of the Z boson obtained with a polarized electron beam.

<sup>2</sup>AAD 15BT study  $pp \rightarrow Z \rightarrow \ell^+ \ell^-$  events where  $\ell$  is an electron or a muon in the dilepton mass region 70–1000 GeV. The background in the Z peak region is estimated to be < 1% for the muon channel. The muon asymmetry parameter is derived from the measured forward-backward asymmetry assuming the value of the quark asymmetry parameter from the SM. For this reason it is not used in the average.

## $A_{\tau}$

The LEP Collaborations derive this quantity from the measurement of the  $\tau$  polarization in  $Z \rightarrow \tau^+ \tau^-$ . The SLD Collaboration directly extracts this quantity from its measured left-right forward-backward asymmetry in  $Z \rightarrow \tau^+ \tau^-$  produced using a polarized  $e^-$  beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter  $A_e$ .

| VALUE                                  | <u>EVTS</u> | DOCUMENT ID           |             | TECN | COMMENT                                          |  |  |
|----------------------------------------|-------------|-----------------------|-------------|------|--------------------------------------------------|--|--|
| 0.143 ±0.004 OUR AVERAGE               |             |                       |             |      |                                                  |  |  |
| $0.1456\!\pm\!0.0076\!\pm\!0.0057$     | 144810      | <sup>1</sup> ABBIENDI | 010         | OPAL | $E_{\rm cm}^{ee}$ = 88–94 GeV                    |  |  |
| $0.136\ \pm 0.015$                     | 16083       | <sup>2</sup> ABE      | <b>01</b> B | SLD  | $E_{\rm cm}^{ee}$ = 91.24 GeV                    |  |  |
| $0.1451\!\pm\!0.0052\!\pm\!0.0029$     |             | <sup>3</sup> HEISTER  | 01          | ALEP | $E_{\rm cm}^{ee}$ = 88–94 GeV                    |  |  |
| $0.1359 \!\pm\! 0.0079 \!\pm\! 0.0055$ | 105000      | <sup>4</sup> ABREU    | 00E         | DLPH | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 88–94 GeV |  |  |
| $0.1476 \!\pm\! 0.0088 \!\pm\! 0.0062$ | 137092      | ACCIARRI              | 98H         | L3   | $E_{\rm cm}^{ee}$ = 88–94 GeV                    |  |  |

<sup>1</sup>ABBIENDI 010 fit for  $A_e$  and  $A_{\tau}$  from measurements of the  $\tau$  polarization at varying  $\tau$  production angles. The correlation between  $A_e$  and  $A_{\tau}$  is less than 0.03.

- $^2$ ABE 01B obtain this direct measurement using the left-right production and left-right forward-backward polar angle asymmetries in  $\tau^+\tau^-$  decays of the Z boson obtained with a polarized electron beam.
- $^3\,{\sf HEISTER}$  01 obtain this result fitting the  $\tau$  polarization as a function of the polar production angle of the  $\tau$ .
- $^4$ ABREU 00E obtain this result fitting the au polarization as a function of the polar au production angle. This measurement is a combination of different analyses (exclusive au decay modes, inclusive hadronic 1-prong reconstruction, and a neural network analysis).

#### A۶

The SLD Collaboration directly extracts this quantity by a simultaneous fit to four measured s-quark polar angle distributions corresponding to two states of  $e^-$  polarization (positive and negative) and to the  $K^+K^-$  and  $K^{\pm}K^0_S$  strange particle tagging modes in the hadronic final states.

| VALUE             | EVTS | DOCUMENT ID TECN |             | DOCUMENT ID TECN COMMENT |                                                |
|-------------------|------|------------------|-------------|--------------------------|------------------------------------------------|
| 0.895±0.066±0.062 | 2870 | <sup>1</sup> ABE | <b>00</b> D | SLD                      | <i>E<sup>ee</sup></i> <sub>cm</sub> = 91.2 GeV |

<sup>1</sup>ABE 00D tag  $Z \rightarrow s\bar{s}$  events by an absence of B or D hadrons and the presence in each hemisphere of a high momentum  $K^{\pm}$  or  $K^{0}_{S}$ .

#### Ac

This quantity is directly extracted from a measurement of the left-right forwardbackward asymmetry in  $c\overline{c}$  production at SLC using polarized electron beam. This double asymmetry eliminates the dependence on the *Z*-*e*-*e* coupling parameter  $A_e$ . OUR FIT is obtained by a simultaneous fit to several *c*- and *b*-quark measurements as explained in the note "The *Z* boson" and ref. LEP-SLC 06.

| VALUE                                                | <u>DOCUMENT ID</u> |             | TECN      | COMMENT                                          |
|------------------------------------------------------|--------------------|-------------|-----------|--------------------------------------------------|
| 0.670 ±0.027 OUR FIT                                 |                    |             |           |                                                  |
| $0.6712 \!\pm\! 0.0224 \!\pm\! 0.0157$               | <sup>1</sup> ABE   | 05          | SLD       | <i>E<sup>ee</sup></i> <sub>cm</sub> = 91.24 GeV  |
| $\bullet \bullet \bullet$ We do not use the followin | g data for average | s, fits,    | limits, o | etc. • • •                                       |
| $0.583 \ \pm 0.055 \ \pm 0.055$                      | <sup>2</sup> ABE   | <b>0</b> 2G | SLD       | <i>E</i> <sup>ee</sup> <sub>cm</sub> = 91.24 GeV |
| $0.688 \pm 0.041$                                    | <sup>3</sup> ABE   | <b>01</b> C | SLD       | <i>E<sup>ee</sup></i> <sub>cm</sub> = 91.25 GeV  |

<sup>1</sup> ABE 05 use hadronic Z decays collected during 1996–98 to obtain an enriched sample of  $c\overline{c}$  events tagging on the invariant mass of reconstructed secondary decay vertices. The charge of the underlying c-quark is obtained with an algorithm that takes into account the net charge of the vertex as well as the charge of tracks emanating from the vertex and identified as kaons. This yields (9970 events)  $A_c = 0.6747 \pm 0.0290 \pm 0.0233$ . Taking into account all correlations with earlier results reported in ABE 02G and ABE 01C, they obtain the quoted overall SLD result.

<sup>2</sup> ABE 02G tag *b* and *c* quarks through their semileptonic decays into electrons and muons. A maximum likelihood fit is performed to extract simultaneously  $A_b$  and  $A_c$ .

<sup>3</sup> ABE 01C tag  $Z \rightarrow c\overline{c}$  events using two techniques: exclusive reconstruction of  $D^{*+}$ ,  $D^+$ and  $D^0$  mesons and the soft pion tag for  $D^{*+} \rightarrow D^0 \pi^+$ . The large background from D mesons produced in  $b\overline{b}$  events is separated efficiently from the signal using precision vertex information. When combining the  $A_c$  values from these two samples, care is taken to avoid double counting of events common to the two samples, and common systematic errors are properly taken into account.

#### Ab

This quantity is directly extracted from a measurement of the left-right forwardbackward asymmetry in  $b\overline{b}$  production at SLC using polarized electron beam. This double asymmetry eliminates the dependence on the Z-e-e coupling parameter  $A_e$ . OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06.

| VALUE                                       | EVTS      | DOCUMENT ID       |             | TECN      | COMMENT                                         |
|---------------------------------------------|-----------|-------------------|-------------|-----------|-------------------------------------------------|
| 0.923 ±0.020 OUR FIT                        | -         |                   |             |           |                                                 |
| $0.9170 \!\pm\! 0.0147 \!\pm\! 0.0145$      |           | <sup>1</sup> ABE  | 05          | SLD       | $E_{\rm Cm}^{ee}$ = 91.24 GeV                   |
| $\bullet \bullet \bullet$ We do not use the | following | data for averages | , fits, li  | mits, etc | C. ● ● ●                                        |
| $0.907\ \pm 0.020\ \pm 0.024$               | 48028     | <sup>2</sup> ABE  | 03F         | SLD       | <i>E<sup>ee</sup></i> <sub>cm</sub> = 91.24 GeV |
| $0.919\ \pm 0.030\ \pm 0.024$               |           | <sup>3</sup> ABE  | <b>0</b> 2G | SLD       | $E_{\rm cm}^{ee}$ = 91.24 GeV                   |
| $0.855\ \pm 0.088\ \pm 0.102$               | 7473      | <sup>4</sup> ABE  | 99L         | SLD       | E <sup>ee</sup> <sub>cm</sub> = 91.27 GeV       |

<sup>1</sup> ABE 05 use hadronic Z decays collected during 1996–98 to obtain an enriched sample of  $b \overline{b}$  events tagging on the invariant mass of reconstructed secondary decay vertices. The charge of the underlying b-quark is obtained with an algorithm that takes into account the net charge of the vertex as well as the charge of tracks emanating from the vertex and identified as kaons. This yields (25917 events)  $A_b = 0.9173 \pm 0.0184 \pm 0.0173$ . Taking into account all correlations with earlier results reported in ABE 03F, ABE 02G and ABE 99L, they obtain the quoted overall SLD result.

 $^2$  ABE 03F obtain an enriched sample of  $b\overline{b}$  events tagging on the invariant mass of a 3-dimensional topologically reconstructed secondary decay. The charge of the underlying b quark is obtained using a self-calibrating track-charge method. For the 1996–1998 data sample they measure  $A_b=0.906\pm0.022\pm0.023$ . The value quoted here is obtained combining the above with the result of ABE 98I (1993–1995 data sample).

- <sup>3</sup>ABE 02G tag *b* and *c* quarks through their semileptonic decays into electrons and muons. A maximum likelihood fit is performed to extract simultaneously  $A_b$  and  $A_c$ .
- <sup>4</sup> ABE 99L obtain an enriched sample of  $b\overline{b}$  events tagging with an inclusive vertex mass cut. For distinguishing *b* and  $\overline{b}$  quarks they use the charge of identified  $K^{\pm}$ .

# TRANSVERSE SPIN CORRELATIONS IN $Z \rightarrow \tau^+ \tau^-$

The correlations between the transverse spin components of  $\tau^+ \tau^-$  produced in Z decays may be expressed in terms of the vector and axial-vector couplings:

$$C_{TT} = \frac{|g_A^{\tau}|^2 - |g_V^{\tau}|^2}{|g_A^{\tau}|^2 + |g_V^{\tau}|^2}$$
$$C_{TN} = -2 \frac{|g_A^{\tau}| |g_V^{\tau}|}{|g_A^{\tau}|^2 + |g_V^{\tau}|^2} \sin(\Phi_{g_V^{\tau}} - \Phi_{g_A^{\tau}})$$

 $C_{TT}$  refers to the transverse-transverse (within the collision plane) spin correlation and  $C_{TN}$  refers to the transverse-normal (to the collision plane) spin correlation.

The longitudinal  $\tau$  polarization  $P_{\tau}$  (=  $-A_{\tau}$ ) is given by:

$$P_{\tau} = -2 \frac{|g_A^{\tau}| |g_V^{\tau}|}{|g_A^{\tau}|^2 + |g_V^{\tau}|^2} \cos(\Phi_{g_V^{\tau}} - \Phi_{g_A^{\tau}})$$

Here  $\Phi$  is the phase and the phase difference  $\Phi_{g_V^{\tau}} - \Phi_{g_A^{\tau}}$  can be obtained using both the measurements of  $C_{TN}$  and  $P_{\tau}$ .

| VALUE                                     | EVTS              | DOCUMENT ID |             | TECN | COMMENT                      |
|-------------------------------------------|-------------------|-------------|-------------|------|------------------------------|
| $1.01\pm0.12$ OUR AVERA                   | GE                |             |             |      |                              |
| $0.87 \!\pm\! 0.20 \!+\! 0.10 \!-\! 0.12$ | 9.1k              | ABREU       | <b>97</b> G | DLPH | $E_{\rm cm}^{ee}$ = 91.2 GeV |
| $1.06\!\pm\!0.13\!\pm\!0.05$              | 120k              | BARATE      | <b>97</b> D | ALEP | $E_{\rm cm}^{ee}$ = 91.2 GeV |
| C <sub>TN</sub>                           |                   |             |             |      |                              |
| VALUE                                     | EVTS              | DOCUMENT ID |             | TECN | COMMENT                      |
| $0.08 {\pm} 0.13 {\pm} 0.04$              | 120k <sup>1</sup> | BARATE      | <b>97</b> D | ALEP | $E_{\rm cm}^{ee}$ = 91.2 GeV |
| _                                         |                   |             |             |      |                              |

<sup>1</sup>BARATE 97D combine their value of  $C_{TN}$  with the world average  $P_{\tau} = -0.140 \pm 0.007$  to obtain  $\tan(\Phi_{g_V^{\tau}} - \Phi_{g_A^{\tau}}) = -0.57 \pm 0.97$ .

# FORWARD-BACKWARD $e^+e^- \rightarrow f\overline{f}$ CHARGE ASYMMETRIES

These asymmetries are experimentally determined by tagging the respective lepton or quark flavor in  $e^+\,e^-$  interactions. Details of heavy flavor (c- or b-quark) tagging at LEP are described in the note on "The Z boson" and ref. LEP-SLC 06. The Standard Model predictions for LEP data have been (re)computed using the ZFITTER package (version 6.36) with input parameters  $M_Z=91.187~{\rm GeV},~M_{\rm top}=174.3~{\rm GeV},~M_{\rm Higgs}=150~{\rm GeV},~\alpha_s=0.119,~\alpha^{(5)}~(M_Z)=1/128.877$  and the Fermi constant  $G_F=1.16637\times 10^{-5}~{\rm GeV}^{-2}$  (see the note on "The Z boson" for references).

For non-LEP data the Standard Model predictions are as given by the authors of the respective publications.



# $A_{FB}^{(0,e)}$ CHARGE ASYMMETRY IN $e^+e^- \rightarrow e^+e^- -$

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). For the Z peak, we report the pole asymmetry defined by  $(3/4)A_e^2$  as determined by the nine-parameter fit to cross-section and lepton forward-backward asymmetry data.

| ASYMMETRY (%)     | STD.<br>MODEL | $\sqrt{s}$ (GeV) | DOCUMENT ID           |             | TECN |
|-------------------|---------------|------------------|-----------------------|-------------|------|
| 1.45±0.25 OUR FIT |               |                  |                       |             |      |
| $0.89 \pm 0.44$   | 1.57          | 91.2             | <sup>1</sup> ABBIENDI | 01A         | OPAL |
| $1.71 \pm 0.49$   | 1.57          | 91.2             | ABREU                 | 00F         | DLPH |
| $1.06 \pm 0.58$   | 1.57          | 91.2             | ACCIARRI              | <b>00</b> C | L3   |
| $1.88 \pm 0.34$   | 1.57          | 91.2             | <sup>2</sup> BARATE   | <b>00</b> C | ALEP |

<sup>1</sup>ABBIENDI 01A error includes approximately 0.38 due to statistics, 0.16 due to event selection systematics, and 0.18 due to the theoretical uncertainty in *t*-channel prediction. <sup>2</sup> BARATE 00C error includes approximately 0.31 due to statistics, 0.06 due to experimental

systematics, and 0.13 due to the theoretical uncertainty in *t*-channel prediction.

# — $A^{(0,\mu)}_{FB}$ CHARGE ASYMMETRY IN $e^+e^- ightarrow \mu^+\mu^-$ -

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). For the Z peak, we report the pole asymmetry defined by  $(3/4)A_eA_\mu$  as determined by the nine-parameter fit to cross-section and lepton forward-backward asymmetry data.

| ASYMMETRY (%)                                                     | STD.<br>MODEL | $\sqrt{s}$ (GeV) | DOCUMENT ID               | TECN       |
|-------------------------------------------------------------------|---------------|------------------|---------------------------|------------|
| 1.69 $\pm$ 0.13 OUR FIT                                           |               |                  | 1                         |            |
| $1.59\pm$ 0.23                                                    | 1.57          | 91.2             | <sup>1</sup> ABBIENDI 01A | OPAL       |
| $1.65\pm$ 0.25                                                    | 1.57          | 91.2             | ABREU 00F                 | DLPH       |
| $1.88\pm$ 0.33                                                    | 1.57          | 91.2             | ACCIARRI 00C              | L3         |
| $1.71\pm~0.24$                                                    | 1.57          | 91.2             | <sup>2</sup> BARATE 00C   | ALEP       |
| $\bullet$ • • We do not use the follow                            | wing data fo  | r averages,      | fits, limits, etc. • • •  |            |
| 9 ±30                                                             | -1.3          | 20               | <sup>3</sup> ABREU 95м    | DLPH       |
| $7 \pm 26$                                                        | -8.3          | 40               | <sup>3</sup> ABREU 95м    | DLPH       |
| $-11 \pm 33$                                                      | -24.1         | 57               | <sup>3</sup> ABREU 95м    | DLPH       |
| $-62 \pm 17$                                                      | -44.6         | 69               | <sup>3</sup> ABREU 95м    | DLPH       |
| $-56 \pm 10$                                                      | -63.5         | 79               | <sup>3</sup> ABREU 95м    | DLPH       |
| $-13$ $\pm$ 5                                                     | -34.4         | 87.5             | <sup>3</sup> ABREU 95м    | DLPH       |
| $-29.0 \ \begin{array}{c} + \ 5.0 \\ - \ 4.8 \end{array} \pm 0.5$ | -32.1         | 56.9             | <sup>4</sup> ABE 901      | VNS        |
| $-$ 9.9 $\pm$ 1.5 $\pm$ 0.5                                       | -9.2          | 35               | HEGNER 90                 | JADE       |
| $0.05 \pm 0.22$                                                   | 0.026         | 91.14            | <sup>5</sup> ABRAMS 89D   | MRK2       |
| $-43.4 \pm 17.0$                                                  | -24.9         | 52.0             | <sup>6</sup> BACALA 89    | AMY        |
| $-11.0 \pm 16.5$                                                  | -29.4         | 55.0             | <sup>6</sup> BACALA 89    | AMY        |
| $-30.0 \pm 12.4$                                                  | -31.2         | 56.0             | <sup>6</sup> BACALA 89    | AMY        |
| 00.0 - 12.1                                                       | 01.2          | 00.0             |                           | ,          |
| HTTP://PDG.LBL.GOV                                                | Pa            | age 46           | Created: 8/2/2            | 2019 16:43 |

| $-46.2 \pm 14.9$                                                  | -33.0 | 57.0 | <sup>6</sup> BACALA | 89          | AMY  |
|-------------------------------------------------------------------|-------|------|---------------------|-------------|------|
| $-29 \pm 13$                                                      | -25.9 | 53.3 | ADACHI              | 88C         | TOPZ |
| $+$ 5.3 $\pm$ 5.0 $\pm$ 0.5                                       | -1.2  | 14.0 | ADEVA               | 88          | MRKJ |
| $-10.4~\pm~1.3~\pm0.5$                                            | -8.6  | 34.8 | ADEVA               | 88          | MRKJ |
| $-12.3~\pm~5.3~\pm0.5$                                            | -10.7 | 38.3 | ADEVA               | 88          | MRKJ |
| $-15.6~\pm~3.0~\pm0.5$                                            | -14.9 | 43.8 | ADEVA               | 88          | MRKJ |
| $-$ 1.0 $\pm$ 6.0                                                 | -1.2  | 13.9 | BRAUNSCH            | <b>88</b> D | TASS |
| $-$ 9.1 $\pm$ 2.3 $\pm 0.5$                                       | -8.6  | 34.5 | BRAUNSCH            | <b>88</b> D | TASS |
| $-10.6 \ + \ 2.2 \ \pm 0.5$                                       | -8.9  | 35.0 | BRAUNSCH            | <b>88</b> D | TASS |
| $-17.6 \ \begin{array}{c} + & 4.4 \\ - & 4.3 \end{array} \pm 0.5$ | -15.2 | 43.6 | BRAUNSCH            | <b>88</b> D | TASS |
| $-$ 4.8 $\pm$ 6.5 $\pm 1.0$                                       | -11.5 | 39   | BEHREND             | 87C         | CELL |
| $-18.8~\pm~4.5~\pm1.0$                                            | -15.5 | 44   | BEHREND             | 87C         | CELL |
| $+$ 2.7 $\pm$ 4.9                                                 | -1.2  | 13.9 | BARTEL              | 86C         | JADE |
| $-11.1~\pm~1.8~\pm1.0$                                            | -8.6  | 34.4 | BARTEL              | 86C         | JADE |
| $-17.3$ $\pm$ 4.8 $\pm1.0$                                        | -13.7 | 41.5 | BARTEL              | 86C         | JADE |
| $-22.8~\pm~5.1~\pm1.0$                                            | -16.6 | 44.8 | BARTEL              | 86C         | JADE |
| $-$ 6.3 $\pm$ 0.8 $\pm$ 0.2                                       | -6.3  | 29   | ASH                 | 85          | MAC  |
| $-$ 4.9 $\pm$ 1.5 $\pm$ 0.5                                       | -5.9  | 29   | DERRICK             | 85          | HRS  |
| $-$ 7.1 $\pm$ 1.7                                                 | -5.7  | 29   | LEVI                | 83          | MRK2 |
| $-16.1~\pm~3.2$                                                   | -9.2  | 34.2 | BRANDELIK           | 82C         | TASS |
| 1                                                                 |       |      |                     |             |      |

<sup>1</sup>ABBIENDI 01A error is almost entirely on account of statistics.

<sup>2</sup> BARATE 00C error is almost entirely on account of statistics.

<sup>3</sup> ABREU 95M perform this measurement using radiative muon-pair events associated with high-energy isolated photons.

<sup>4</sup>ABE 901 measurements in the range 50  $\leq \sqrt{s} \leq$  60.8 GeV.

<sup>5</sup>ABRAMS 89D asymmetry includes both  $9 \mu^+ \mu^-$  and 15  $\tau^+ \tau^-$  events.

<sup>6</sup>BACALA 89 systematic error is about 5%.

# - $A^{(0, au)}_{FB}$ CHARGE ASYMMETRY IN $e^+e^- \rightarrow \tau^+\tau^-$ -------

OUR FIT is obtained using the fit procedure and correlations as determined by the LEP Electroweak Working Group (see the note "The Z boson" and ref. LEP-SLC 06). For the Z peak, we report the pole asymmetry defined by  $(3/4)A_eA_{\tau}$  as determined by the nine-parameter fit to cross-section and lepton forward-backward asymmetry data.

| ASYMMETRY (%)                                      | STD.<br>MODEL | $\sqrt{s}$ (GeV) | DOCUMENT ID                  |             | TECN       |
|----------------------------------------------------|---------------|------------------|------------------------------|-------------|------------|
| 1.88 $\pm$ 0.17 OUR FIT                            |               |                  |                              |             |            |
| $1.45\pm$ 0.30                                     | 1.57          | 91.2             | <sup>1</sup> ABBIENDI        | 01A         | OPAL       |
| $2.41\pm$ 0.37                                     | 1.57          | 91.2             | ABREU                        | 00F         | DLPH       |
| $2.60\pm$ 0.47                                     | 1.57          | 91.2             | ACCIARRI                     | <b>00</b> C | L3         |
| $1.70\pm~0.28$                                     | 1.57          | 91.2             | <sup>2</sup> BARATE          | <b>00</b> C | ALEP       |
| $\bullet \bullet \bullet$ We do not use the follow | wing data fo  | or averages,     | , fits, limits, etc. $ullet$ | • •         |            |
| $-32.8 \ + \ 6.4 \ \pm 1.5$                        | -32.1         | 56.9             | <sup>3</sup> ABE             | 901         | VNS        |
| $-$ 8.1 $\pm$ 2.0 $\pm$ 0.6                        | -9.2          | 35               | HEGNER                       | 90          | JADE       |
| $-18.4 \pm 19.2$                                   | -24.9         | 52.0             | <sup>4</sup> BACALA          | 89          | AMY        |
| $-17.7 \pm 26.1$                                   | -29.4         | 55.0             | <sup>4</sup> BACALA          | 89          | AMY        |
| $-45.9 \pm 16.6$                                   | -31.2         | 56.0             | <sup>4</sup> BACALA          | 89          | AMY        |
| $-49.5 \pm 18.0$                                   | -33.0         | 57.0             | <sup>4</sup> BACALA          | 89          | AMY        |
| HTTP://PDG.LBL.GOV                                 | F             | age 47           | Created:                     | 8/2/2       | 2019 16:43 |

| $-20 \pm 14$                | -25.9  | 53.3 | ADACHI    | 88C | TOPZ |
|-----------------------------|--------|------|-----------|-----|------|
| $-10.6~\pm~3.1~\pm1.5$      | -8.5   | 34.7 | ADEVA     | 88  | MRKJ |
| $-$ 8.5 $\pm$ 6.6 $\pm 1.5$ | -15.4  | 43.8 | ADEVA     | 88  | MRKJ |
| $-$ 6.0 $\pm$ 2.5 $\pm1.0$  | 8.8    | 34.6 | BARTEL    | 85F | JADE |
| $-11.8$ $\pm$ 4.6 $\pm1.0$  | 14.8   | 43.0 | BARTEL    | 85F | JADE |
| $-$ 5.5 $\pm$ 1.2 $\pm$ 0.5 | -0.063 | 29.0 | FERNANDEZ | 85  | MAC  |
| $-$ 4.2 $\pm$ 2.0           | 0.057  | 29   | LEVI      | 83  | MRK2 |
| $-10.3~\pm~5.2$             | -9.2   | 34.2 | BEHREND   | 82  | CELL |
| $-$ 0.4 $\pm$ 6.6           | -9.1   | 34.2 | BRANDELIK | 82C | TASS |

<sup>1</sup>ABBIENDI 01A error includes approximately 0.26 due to statistics and 0.14 due to event selection systematics.

- <sup>2</sup>BARATE 00C error includes approximately 0.26 due to statistics and 0.11 due to experimental systematics.
- <sup>3</sup>ABE 901 measurements in the range 50  $\leq \sqrt{s} \leq$  60.8 GeV. <sup>4</sup>BACALA 89 systematic error is about 5%.

# ------ $A_{FB}^{(0,\ell)}$ CHARGE ASYMMETRY IN $e^+e^- \rightarrow \ell^+\ell^-$ -------

For the Z peak, we report the pole asymmetry defined by  $(3/4)A_\ell^2$  as determined by the five-parameter fit to cross-section and lepton forwardbackward asymmetry data assuming lepton universality. For details see the note "The Z boson" and ref. LEP-SLC 06.

| ASYMMETRY (%)         | STD.<br>MODEL | √ <i>s</i><br>(GeV) | DOCUMENT ID           |             | TECN |
|-----------------------|---------------|---------------------|-----------------------|-------------|------|
| $1.71\pm0.10$ OUR FIT |               |                     |                       |             |      |
| $1.45 \pm 0.17$       | 1.57          | 91.2                | <sup>1</sup> ABBIENDI | 01A         | OPAL |
| $1.87 \pm 0.19$       | 1.57          | 91.2                | ABREU                 | 00F         | DLPH |
| $1.92 \pm 0.24$       | 1.57          | 91.2                | ACCIARRI              | 00C         | L3   |
| $1.73 \pm 0.16$       | 1.57          | 91.2                | <sup>2</sup> BARATE   | <b>00</b> C | ALEP |

<sup>1</sup>ABBIENDI 01A error includes approximately 0.15 due to statistics, 0.06 due to event selection systematics, and 0.03 due to the theoretical uncertainty in *t*-channel prediction. <sup>2</sup> BARATE 00C error includes approximately 0.15 due to statistics, 0.04 due to experimental systematics, and 0.02 due to the theoretical uncertainty in *t*-channel prediction.

 $----- A_{FB}^{(0,u)}$  CHARGE ASYMMETRY IN  $e^+e^- \rightarrow u\overline{u}$ 

| 4.0±6.7±2.8   | 7.2           | 91.2                | 1 ACKERSTAFF 97T | OPAL |
|---------------|---------------|---------------------|------------------|------|
| ASYMMETRY (%) | STD.<br>MODEL | √ <i>s</i><br>(GeV) | DOCUMENT ID      | TECN |

<sup>1</sup>ACKERSTAFF 97<sup>T</sup> measure the forward-backward asymmetry of various fast hadrons made of light quarks. Then using SU(2) isospin symmetry and flavor independence for down and strange quarks authors solve for the different quark types.

 $- A_{FB}^{(0,s)} \text{ CHARGE ASYMMETRY IN } e^+ e^- \rightarrow s\overline{s} - \cdots$ 

The *s*-quark asymmetry is derived from measurements of the forward-backward asymmetry of fast hadrons containing an *s* quark.

| ASYMMETRY (%)                 | STD.<br>MODEL | $\sqrt{s}$ (GeV) | DOCUMENT ID                 | TECN |
|-------------------------------|---------------|------------------|-----------------------------|------|
| 9.8 $\pm$ 1.1 OUR AVERAGE     |               |                  |                             |      |
| $10.08\!\pm\!1.13\!\pm\!0.40$ | 10.1          | 91.2             | <sup>1</sup> ABREU 00B      | DLPH |
| $6.8\ \pm 3.5\ \pm 1.1$       | 10.1          | 91.2             | <sup>2</sup> ACKERSTAFF 97T | OPAL |

<sup>1</sup> ABREU 00B tag the presence of an *s* quark requiring a high-momentum-identified charged kaon. The *s*-quark pole asymmetry is extracted from the charged-kaon asymmetry taking the expected *d*- and *u*-quark asymmetries from the Standard Model and using the measured values for the *c*- and *b*-quark asymmetries.

<sup>2</sup> ACKERSTAFF 97T measure the forward-backward asymmetry of various fast hadrons made of light quarks. Then using SU(2) isospin symmetry and flavor independence for down and strange quarks authors solve for the different quark types. The value reported here corresponds then to the forward-backward asymmetry for "down-type" quarks.

# $----- A_{FB}^{(0,c)} \text{ CHARGE ASYMMETRY IN } e^+ e^- \rightarrow c \overline{c} ---$

OUR FIT, which is obtained by a simultaneous fit to several c- and bquark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06, refers to the **Z pole** asymmetry. The experimental values, on the other hand, correspond to the measurements carried out at the respective energies.

| ASYMMETRY (%)                                | STD.<br>MODEL | $\sqrt{s}$ (GeV)         | DOCUMENT ID            |             | TECN |
|----------------------------------------------|---------------|--------------------------|------------------------|-------------|------|
| 7.07± 0.35 OUR FIT                           |               |                          | 1                      |             |      |
| $6.31 \pm \ 0.93 \pm 0.65$                   | 6.35          | 91.26                    | <sup>1</sup> ABDALLAH  | 04F         | DLPH |
| $5.68 \pm 0.54 \pm 0.39$                     | 6.3           | 91.25                    | <sup>2</sup> ABBIENDI  | <b>03</b> P | OPAL |
| $6.45 \pm 0.57 \pm 0.37$                     | 6.10          | 91.21                    | <sup>3</sup> HEISTER   | 02н         | ALEP |
| $6.59 \pm 0.94 \pm 0.35$                     | 6.2           | 91.235                   | <sup>4</sup> ABREU     | 99Y         | DLPH |
| $6.3~\pm~0.9~\pm0.3$                         | 6.1           | 91.22                    | <sup>5</sup> BARATE    | 980         | ALEP |
| $6.3~\pm~1.2~\pm0.6$                         | 6.1           | 91.22                    | <sup>6</sup> ALEXANDER | <b>97</b> C | OPAL |
| $8.3~\pm~3.8~\pm2.7$                         | 6.2           | 91.24                    | <sup>7</sup> ADRIANI   | <b>9</b> 2D | L3   |
| $\bullet$ $\bullet$ We do not use the follow | wing data for | <sup>,</sup> averages, f | its, limits, etc. •    | • •         |      |
| $3.1~\pm~3.5~\pm0.5$                         | - 3.5         | 89.43                    | <sup>1</sup> ABDALLAH  | 04F         | DLPH |
| 11.0 $\pm$ 2.8 $\pm$ 0.7                     | 12.3          | 92.99                    | <sup>1</sup> ABDALLAH  | 04F         | DLPH |
| $-$ 6.8 $\pm$ 2.5 $\pm$ 0.9                  | -3.0          | 89.51                    | <sup>2</sup> ABBIENDI  | <b>03</b> P | OPAL |
| 14.6 $\pm$ 2.0 $\pm$ 0.8                     | 12.2          | 92.95                    | <sup>2</sup> ABBIENDI  | <b>03</b> P | OPAL |
| $-12.4 \ \pm 15.9 \ \pm 2.0$                 | -9.6          | 88.38                    | <sup>3</sup> HEISTER   | 02H         | ALEP |
| $-$ 2.3 $\pm$ 2.6 $\pm$ 0.2                  | -3.8          | 89.38                    | <sup>3</sup> HEISTER   | 02H         | ALEP |
| $-$ 0.3 $\pm$ 8.3 $\pm$ 0.6                  | 0.9           | 90.21                    | <sup>3</sup> HEISTER   | 02H         | ALEP |
| 10.6 $\pm$ 7.7 $\pm$ 0.7                     | 9.6           | 92.05                    | <sup>3</sup> HEISTER   | 02H         | ALEP |
| 11.9 $\pm$ 2.1 $\pm$ 0.6                     | 12.2          | 92.94                    | <sup>3</sup> HEISTER   | 02H         | ALEP |
| $12.1\ \pm 11.0\ \pm 1.0$                    | 14.2          | 93.90                    | <sup>3</sup> HEISTER   | 02H         | ALEP |
| $-$ 4.96 $\pm$ 3.68 $\pm$ 0.53               | - 3.5         | 89.434                   | <sup>4</sup> ABREU     | 99Y         | DLPH |
| $11.80\pm~3.18\pm0.62$                       | 12.3          | 92.990                   | <sup>4</sup> ABREU     | 99Y         | DLPH |
| $-$ 1.0 $\pm$ 4.3 $\pm$ 1.0                  | -3.9          | 89.37                    | <sup>5</sup> BARATE    | 980         | ALEP |

| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                              | 12.3<br>- 3.4<br>12.4   | 89.45<br>93.00 | <sup>6</sup> ALEXANDER<br><sup>6</sup> ALEXANDER | 97C<br>97C     | OPAL                 |
|-------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|--------------------------------------------------|----------------|----------------------|
| $egin{array}{rl} -12.9 \ \pm \ 7.8 \ \pm 5.5 \ 7.7 \ \pm 13.4 \ \pm 5.0 \end{array}$                              | -13.6<br>-22.1          | 35<br>43       | BEHREND<br>BEHREND                               |                | CELL<br>CELL         |
| $\begin{array}{rrrrr} -12.8 \ \pm \ 4.4 \ \pm 4.1 \\ -10.9 \ \pm 12.9 \ \pm 4.6 \\ -14.9 \ \pm \ 6.7 \end{array}$ | -13.6<br>-23.2<br>-13.3 | 35<br>44<br>35 | ELSEN<br>ELSEN<br>OULD-SAADA                     | 90<br>90<br>89 | JADE<br>JADE<br>JADE |

<sup>1</sup>ABDALLAH 04F tag *b*- and *c*-quarks using semileptonic decays combined with charge flow information from the hemisphere opposite to the lepton. Enriched samples of  $c\overline{c}$  and  $b\overline{b}$  events are obtained using lifetime information.

- <sup>2</sup>ABBIENDI 03P tag heavy flavors using events with one or two identified leptons. This allows the simultaneous fitting of the *b* and *c* quark forward-backward asymmetries as well as the average  $B^0-\overline{B}^0$  mixing.
- <sup>3</sup> HEISTER 02H measure simultaneously b and c quark forward-backward asymmetries using their semileptonic decays to tag the quark charge. The flavor separation is obtained with a discriminating multivariate analysis.
- <sup>4</sup>ABREU 99Y tag  $Z \rightarrow b\overline{b}$  and  $Z \rightarrow c\overline{c}$  events by an exclusive reconstruction of several D meson decay modes ( $D^{*+}$ ,  $D^0$ , and  $D^+$  with their charge-conjugate states).
- <sup>5</sup> BARATE 980 tag  $Z \rightarrow c\overline{c}$  events requiring the presence of high-momentum reconstructed  $D^{*+}$ ,  $D^+$ , or  $D^0$  mesons.
- <sup>6</sup>ALEXANDER 97C identify the *b* and *c* events using a  $D/D^*$  tag.
- <sup>7</sup>ADRIANI 92D use both electron and muon semileptonic decays.

 $----- A_{FB}^{(0,b)}$  CHARGE ASYMMETRY IN  $e^+e^- \rightarrow b\overline{b}$  ----

OUR FIT, which is obtained by a simultaneous fit to several c- and bquark measurements as explained in the note "The Z boson" and ref. LEP-SLC 06, refers to the **Z pole** asymmetry. The experimental values, on the other hand, correspond to the measurements carried out at the respective energies.

| ASYMMETRY (%)                                      | STD.<br>MODEL | $\sqrt{s}$ (GeV) | DOCUMENT ID                  |             | TECN       |
|----------------------------------------------------|---------------|------------------|------------------------------|-------------|------------|
| 9.92 $\pm$ 0.16 OUR FIT                            |               |                  |                              |             |            |
| $9.58 \pm \ 0.32 \pm \ 0.14$                       | 9.68          | 91.231           | <sup>1</sup> ABDALLAH        | 05          | DLPH       |
| $10.04 \pm \ 0.56 \pm \ 0.25$                      | 9.69          | 91.26            | <sup>2</sup> ABDALLAH        | 04F         | DLPH       |
| $9.72 \pm \ 0.42 \pm \ 0.15$                       | 9.67          | 91.25            | <sup>3</sup> ABBIENDI        | <b>03</b> P | OPAL       |
| $9.77 \pm \ 0.36 \pm \ 0.18$                       | 9.69          | 91.26            | <sup>4</sup> ABBIENDI        | 021         | OPAL       |
| $9.52\pm~0.41\pm~0.17$                             | 9.59          | 91.21            | <sup>5</sup> HEISTER         | 02H         | ALEP       |
| $10.00 \pm \ 0.27 \pm \ 0.11$                      | 9.63          | 91.232           | <sup>6</sup> HEISTER         | <b>01</b> D | ALEP       |
| $7.62 \pm \ 1.94 \pm \ 0.85$                       | 9.64          | 91.235           | <sup>7</sup> ABREU           | 99Y         | DLPH       |
| $9.60\pm~0.66\pm~0.33$                             | 9.69          | 91.26            | <sup>8</sup> ACCIARRI        | <b>99</b> D | L3         |
| $9.31 \pm \ 1.01 \pm \ 0.55$                       | 9.65          | 91.24            | <sup>9</sup> ACCIARRI        | <b>98</b> U | L3         |
| 9.4 $\pm$ 2.7 $\pm$ 2.2                            | 9.61          | 91.22            | <sup>10</sup> ALEXANDER      | <b>97</b> C | OPAL       |
| $\bullet \bullet \bullet$ We do not use the follow | wing data fo  | r averages,      | fits, limits, etc. $\bullet$ | • •         |            |
| $6.37 \pm \ 1.43 \pm \ 0.17$                       | 5.8           | 89.449           | <sup>1</sup> ABDALLAH        | 05          | DLPH       |
| $10.41 \pm \ 1.15 \pm \ 0.24$                      | 12.1          | 92.990           | <sup>1</sup> ABDALLAH        | 05          | DLPH       |
| $6.7 ~\pm~ 2.2 ~\pm~ 0.2$                          | 5.7           | 89.43            | <sup>2</sup> ABDALLAH        | 04F         | DLPH       |
| 11.2 $\pm$ 1.8 $\pm$ 0.2                           | 12.1          | 92.99            | <sup>2</sup> ABDALLAH        | 04F         | DLPH       |
| $4.7~\pm~1.8~\pm~0.1$                              | 5.9           | 89.51            | <sup>3</sup> ABBIENDI        | <b>03</b> P | OPAL       |
| 10.3 $\pm$ 1.5 $\pm$ 0.2                           | 12.0          | 92.95            | <sup>3</sup> ABBIENDI        | <b>03</b> P | OPAL       |
| HTTP://PDG.LBL.GOV                                 | P             | age 50           | Created: 8                   | 8/2/2       | 2019 16:43 |

| $5.82 \pm \ 1.53 \pm \ 0.12$     | 5.9    | 89.50  | <sup>4</sup> ABBIENDI   | 021         | OPAL |
|----------------------------------|--------|--------|-------------------------|-------------|------|
| $12.21 \pm \ 1.23 \pm \ 0.25$    | 12.0   | 92.91  | <sup>4</sup> ABBIENDI   | 021         | OPAL |
| $-13.1 \ \pm 13.5 \ \pm \ 1.0$   | 3.2    | 88.38  | <sup>5</sup> HEISTER    | 02н         | ALEP |
| 5.5 $\pm$ 1.9 $\pm$ 0.1          | 5.6    | 89.38  | <sup>5</sup> HEISTER    | 02н         | ALEP |
| $-$ 0.4 $\pm$ 6.7 $\pm$ 0.8      | 7.5    | 90.21  | <sup>5</sup> HEISTER    | 02н         | ALEP |
| 11.1 $\pm$ 6.4 $\pm$ 0.5         | 11.0   | 92.05  | <sup>5</sup> HEISTER    | 02н         | ALEP |
| 10.4 $\pm$ 1.5 $\pm$ 0.3         | 12.0   | 92.94  | <sup>5</sup> HEISTER    | 02н         | ALEP |
| 13.8 $\pm$ 9.3 $\pm$ 1.1         | 12.9   | 93.90  | <sup>5</sup> HEISTER    | 02н         | ALEP |
| $4.36 \pm \ 1.19 \pm \ 0.11$     | 5.8    | 89.472 | <sup>6</sup> HEISTER    | <b>01</b> D | ALEP |
| $11.72\pm~0.97\pm~0.11$          | 12.0   | 92.950 | <sup>6</sup> HEISTER    | <b>01</b> D | ALEP |
| $5.67 \pm \ 7.56 \pm \ 1.17$     | 5.7    | 89.434 | <sup>7</sup> ABREU      | <b>99</b> Y | DLPH |
| $8.82\pm~6.33\pm~1.22$           | 12.1   | 92.990 | <sup>7</sup> ABREU      | 99Y         | DLPH |
| $6.11\pm~2.93\pm~0.43$           | 5.9    | 89.50  | <sup>8</sup> ACCIARRI   | <b>99</b> D | L3   |
| $13.71\pm~2.40\pm~0.44$          | 12.2   | 93.10  | <sup>8</sup> ACCIARRI   | <b>99</b> D | L3   |
| $4.95 \pm 5.23 \pm 0.40$         | 5.8    | 89.45  | <sup>9</sup> ACCIARRI   | <b>98</b> U | L3   |
| $11.37 \pm \ 3.99 \pm \ 0.65$    | 12.1   | 92.99  | <sup>9</sup> ACCIARRI   | <b>98</b> U | L3   |
| $-$ 8.6 $\pm 10.8$ $\pm$ 2.9     | 5.8    | 89.45  | <sup>10</sup> ALEXANDER | <b>97</b> C | OPAL |
| $-$ 2.1 $\pm$ 9.0 $\pm$ 2.6      | 12.1   | 93.00  | <sup>10</sup> ALEXANDER | <b>97</b> C | OPAL |
| $-71$ $\pm 34$ $+$ $\frac{7}{8}$ | - 58   | 58.3   | SHIMONAKA               | 91          | TOPZ |
| $-22.2 \pm 7.7 \pm 3.5$          | -26.0  | 35     | BEHREND                 | <b>90</b> D | CELL |
| $-49.1 \ \pm 16.0 \ \pm \ 5.0$   | - 39.7 | 43     | BEHREND                 | <b>90</b> D | CELL |
| $-28 \pm 11$                     | -23    | 35     | BRAUNSCH                | 90          | TASS |
| $-16.6 \pm 7.7 \pm 4.8$          | -24.3  | 35     | ELSEN                   | 90          | JADE |
| $-33.6 \pm 22.2 \pm 5.2$         | - 39.9 | 44     | ELSEN                   | 90          | JADE |
| $3.4 \pm 7.0 \pm 3.5$            | -16.0  | 29.0   | BAND                    | 89          | MAC  |
| $-72 \pm 28 \pm 13$              | - 56   | 55.2   | SAGAWA                  | 89          | AMY  |
|                                  |        |        |                         |             |      |

<sup>1</sup> ABDALLAH 05 obtain an enriched samples of  $b\overline{b}$  events using lifetime information. The quark (or antiquark) charge is determined with a neural network using the secondary vertex charge, the jet charge and particle identification.

<sup>2</sup>ABDALLAH 04F tag *b*- and *c*-quarks using semileptonic decays combined with charge flow information from the hemisphere opposite to the lepton. Enriched samples of  $c\overline{c}$  and  $b\overline{b}$  events are obtained using lifetime information.

- <sup>3</sup>ABBIENDI 03P tag heavy flavors using events with one or two identified leptons. This allows the simultaneous fitting of the *b* and *c* quark forward-backward asymmetries as well as the average  $B^0-\overline{B}^0$  mixing.
- <sup>4</sup>ABBIENDI 02I tag  $Z^0 \rightarrow b\overline{b}$  decays using a combination of secondary vertex and lepton tags. The sign of the *b*-quark charge is determined using an inclusive tag based on jet, vertex, and kaon charges.

<sup>5</sup> HEISTER 02H measure simultaneously b and c quark forward-backward asymmetries using their semileptonic decays to tag the quark charge. The flavor separation is obtained with a discriminating multivariate analysis.

<sup>6</sup> HEISTER 01D tag  $Z \rightarrow b\overline{b}$  events using the impact parameters of charged tracks complemented with information from displaced vertices, event shape variables, and lepton identification. The *b*-quark direction and charge is determined using the hemisphere charge method along with information from fast kaon tagging and charge estimators of primary and secondary vertices. The change in the quoted value due to variation of  $A_{FR}^c$ 

and  $R_b$  is given as +0.103 ( $A_{FB}^c$  - 0.0651) -0.440 ( $R_b$  - 0.21585).

<sup>7</sup> ABREU 99Y tag  $Z \rightarrow b\overline{b}$  and  $\overline{Z} \rightarrow c\overline{c}$  events by an exclusive reconstruction of several D meson decay modes ( $D^{*+}$ ,  $D^{0}$ , and  $D^{+}$  with their charge-conjugate states).

<sup>8</sup> ACCIARRI 99D tag  $Z \rightarrow b\overline{b}$  events using high p and p<sub>T</sub> leptons. The analysis determines simultaneously a mixing parameter  $\chi_b = 0.1192 \pm 0.0068 \pm 0.0051$  which is used to correct the observed asymmetry.

<sup>9</sup> ACCIARRI 980 tag  $Z \rightarrow b\overline{b}$  events using lifetime and measure the jet charge using the hemisphere charge.

<sup>10</sup>ALEXANDER 97C identify the *b* and *c* events using a  $D/D^*$  tag.

# CHARGE ASYMMETRY IN $e^+e^- \rightarrow q\overline{q}$

Summed over five lighter flavors.

Experimental and Standard Model values are somewhat event-selection dependent. Standard Model expectations contain some assumptions on  $B^0$ - $\overline{B}^0$  mixing and on other electroweak parameters.

| ASYMMETRY (%)                                             | STD.<br>MODEL | $\sqrt{s}$ (GeV) | DOCUMENT ID           |             | TECN |
|-----------------------------------------------------------|---------------|------------------|-----------------------|-------------|------|
| $\bullet$ $\bullet$ $\bullet$ We do not use the following | owing data fo | r averages, f    | its, limits, etc. • • | •           |      |
| $-$ 0.76 $\pm$ 0.12 $\pm$ 0.15                            |               | 91.2             | <sup>1</sup> ABREU    | 92ı         | DLPH |
| $4.0 \pm 0.4 \pm 0.63$                                    | 4.0           | 91.3             | <sup>2</sup> ACTON    | 92L         | OPAL |
| $9.1 \ \pm 1.4 \ \pm 1.6$                                 | 9.0           | 57.9             | ADACHI                | 91          | TOPZ |
| $- 0.84 \!\pm\! 0.15 \!\pm\! 0.04$                        |               | 91               | DECAMP                | <b>91</b> B | ALEP |
| $8.3\ \pm 2.9\ \pm 1.9$                                   | 8.7           | 56.6             | STUART                | 90          | AMY  |
| $11.4\ \pm 2.2\ \pm 2.1$                                  | 8.7           | 57.6             | ABE                   | 89L         | VNS  |
| $6.0 \pm 1.3$                                             | 5.0           | 34.8             | GREENSHAW             | 89          | JADE |
| 8.2 ±2.9                                                  | 8.5           | 43.6             | GREENSHAW             | 89          | JADE |
| -                                                         |               |                  |                       |             |      |

 $^{1}$ ABREU 921 has 0.14 systematic error due to uncertainty of quark fragmentation.

<sup>2</sup> ACTON 92L use the weight function method on 259k selected  $Z \rightarrow$  hadrons events. The systematic error includes a contribution of 0.2 due to  $B^{0}-\overline{B}^{0}$  mixing effect, 0.4 due to Monte Carlo (MC) fragmentation uncertainties and 0.3 due to MC statistics. ACTON 92L derive a value of  $\sin^{2}\theta_{W}^{\text{eff}}$  to be 0.2321 ± 0.0017 ± 0.0028.

| CHARGE ASYMMETRY IN $p\overline{p} \rightarrow Z \rightarrow e^+ e^-$                                   |               |                                 |             |     |      |  |
|---------------------------------------------------------------------------------------------------------|---------------|---------------------------------|-------------|-----|------|--|
| ASYMMETRY (%)                                                                                           | STD.<br>MODEL | $\frac{\sqrt{s}}{(\text{GeV})}$ | DOCUMENT ID |     | TECN |  |
| ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$ |               |                                 |             |     |      |  |
| $5.2{\pm}5.9{\pm}0.4$                                                                                   |               | 91                              | ABE         | 91E | CDF  |  |

# ANOMALOUS $ZZ\gamma$ , $Z\gamma\gamma$ , AND ZZV COUPLINGS See the related review(s):

Anomalous  $ZZ\gamma$ ,  $Z\gamma\gamma$ , and ZZV Couplings

# h<sub>i</sub>V

Combining the LEP-2 results taking into account the correlations, the following 95% CL limits are derived [SCHAEL 13A]:

| $-0.12 < h_1^Z < +0.11$ ,                           | $-0.07 < h_2^Z < +0.07$ ,                |
|-----------------------------------------------------|------------------------------------------|
| $-0.19 < h_{\overline{3}}^{\overline{Z}} < +0.06$ , | $-0.04 < h_{4}^{\overline{Z}} < +0.13$ , |
| $-0.05 <  h_1^{\gamma} < +0.05$ ,                   | $-0.04 < h_2^\gamma \; < +0.02$ ,        |
| $-0.05 < h_3^{\gamma} < +0.00$ ,                    | $+0.01 < h_4^{\gamma} < +0.05.$          |

Some of the recent results from the Tevatron and LHC experiments individually surpass the combined LEP-2 results in precision (see below).

| VALUE                                           | DOCUMENT ID              |                | TECN      | COMMENT                                      |
|-------------------------------------------------|--------------------------|----------------|-----------|----------------------------------------------|
| $\bullet$ $\bullet$ We do not use the following | g data for averages      | , fits,        | limits, e | tc. ● ● ●                                    |
|                                                 | <sup>1</sup> AAD         | 16Q            | ATLS      | $E^{pp}_{cm} = 8 \text{ TeV}$                |
|                                                 | <sup>2</sup> KHACHATRY   | .16AE          | CMS       | $E_{cm}^{pp}=$ 8 TeV                         |
|                                                 | <sup>3</sup> KHACHATRY   | . <b>15</b> AC | CMS       | $E^{pp}_{cm} = 8 \text{ TeV}$                |
|                                                 | <sup>4</sup> CHATRCHYAN  | <b>14</b> AB   | CMS       | $E_{cm}^{pp}=$ 7 TeV                         |
|                                                 | <sup>5</sup> AAD         | 13AN           | ATLS      | $E_{ m cm}^{pp}=$ 7 TeV                      |
|                                                 | <sup>6</sup> CHATRCHYAN  | <b>13</b> BI   | CMS       | $E_{\rm cm}^{pp} =$ 7 TeV                    |
|                                                 | <sup>7</sup> ABAZOV      | 12s            | D0        | $E_{\sf cm}^{p\overline{p}}=1.96\;{\sf TeV}$ |
|                                                 | <sup>8</sup> AALTONEN    | 11s            | CDF       | $E_{\sf cm}^{p\overline{p}}=1.96\;{\sf TeV}$ |
|                                                 | <sup>9</sup> CHATRCHYAN  | 11M            | CMS       | $E_{\rm cm}^{pp} =$ 7 TeV                    |
|                                                 | <sup>10</sup> ABAZOV     | 09L            | D0        | $E_{\sf cm}^{p\overline{p}}=1.96\;{\sf TeV}$ |
|                                                 | $^{11}$ ABAZOV           | <b>07</b> M    | D0        | $E_{\sf cm}^{p\overline{p}}=1.96\;{\sf TeV}$ |
|                                                 | <sup>12</sup> ABDALLAH   | <b>07</b> C    | DLPH      | $E_{\rm cm}^{ee}=$ 183–208 GeV               |
|                                                 | <sup>13</sup> ACHARD     | 04H            | L3        | $E_{\rm cm}^{ee} = 183$ –208 GeV             |
|                                                 | <sup>14</sup> ABBIENDI,G | <b>00</b> C    | OPAL      | $E_{\rm cm}^{ee} = 189 \; { m GeV}$          |
|                                                 | <sup>15</sup> ABBOTT     | 98M            | D0        | $E_{\sf cm}^{p\overline{p}}=1.8\;{\sf TeV}$  |
|                                                 | <sup>16</sup> ABREU      | 98K            | DLPH      | $E_{Cm}^{ee}=$ 161, 172 GeV                  |

- <sup>1</sup> AAD 16Q study  $Z\gamma$  production in pp collisions. In events with no additional jets, 10268 (12738) Z decays to electron (muon) pairs are selected, with an expected background of 1291 ± 340 (1537 ± 408) events, as well as 1039 Z decays to neutrino pairs with an expected background of 450 ± 96 events. Analyzing the photon transverse momentum distribution above 250 GeV (400 GeV) for lepton (neutrino) events, yields the 95% C.L. limits:  $-7.8 \times 10^{-4} < h_3^Z < 8.6 \times 10^{-4}$ ,  $-3.0 \times 10^{-6} < h_4^Z < 2.9 \times 10^{-6}$ ,  $-9.5 \times 10^{-4} < h_3^{\gamma} < 9.9 \times 10^{-4}$ ,  $-3.2 \times 10^{-6} < h_4^{\gamma} < 3.2 \times 10^{-6}$ .
- <sup>2</sup> KHACHATRYAN 16AE determine the  $Z\gamma \rightarrow \nu \overline{\nu} \gamma$  cross section by selecting events with a photon of  $E_T$  > 145 GeV and  $E_T$  > 140 GeV. 630 candidate events are observed with an expected SM background of 269 ± 26. The  $E_T$  spectrum of the photon is used to set 95% C.L. limits as follows:  $-1.5 \times 10^{-3} < h_3^Z < 1.6 \times 10^{-3}, -3.9 \times 10^{-6} < h_4^Z < 4.5 \times 10^{-6}, -1.1 \times 10^{-3} < h_3^{\gamma} < 0.9 \times 10^{-3}, -3.8 \times 10^{-6} < h_4^{\gamma} < 4.3 \times 10^{-6}.$ <sup>3</sup> KHACHATRYAN 15AC study  $Z\gamma$  events in 8 TeV pp interactions, where the Z decays into 2 same-flavor, opposite sign leptons (e or  $\mu$ ) and a photon with  $p_T$  > 15 GeV. The  $n_T$  of a lepton is required to be > 20 GeV/c, their effective mass > 50 GeV and
- The  $p_T$  of a lepton is required to be > 20 GeV/c, their effective mass > 50 GeV, and the photon should have a separation  $\Delta R > 0.7$  with each lepton. The observed  $p_T$  distribution of the photons is used to extract the 95% C.L. limits:  $-3.8 \times 10^{-3} < h_3^Z < 3.7 \times 10^{-3}, -3.1 \times 10^{-5} < h_4^Z < 3.0 \times 10^{-5}, -4.6 \times 10^{-3} < h_3^\gamma < 4.6 \times 10^{-3}, -3.6 \times 10^{-5} < h_4^\gamma < 3.5 \times 10^{-5}$ .
- <sup>4</sup> CHATRCHYAN 14AB measure  $Z\gamma$  production cross section for  $p_T^{\gamma} > 15$  GeV and  $R(\ell\gamma) > 0.7$ , which is the separation between the  $\gamma$  and the final state charged lepton (e or  $\mu$ ) in the azimuthal angle-pseudorapidity ( $\phi \eta$ ) plane. The di-lepton mass is required to be > 50 GeV. After background subtraction the number of  $ee\gamma$  and  $\mu\mu\gamma$  events is determined to be  $3160 \pm 120$  and  $5030 \pm 233$  respectively, compatible with expectations

from the SM. This leads to a 95% CL limits of  $-1 \times 10^{-2} < h_3^{\gamma} < 1 \times 10^{-2}$ ,  $-9 \times 10^{-5} < h_4^{\gamma} < 9 \times 10^{-5}$ ,  $-9 \times 10^{-3} < h_3^Z < 9 \times 10^{-3}$ ,  $-8 \times 10^{-5} < h_4^Z < 8 \times 10^{-5}$ , assuming  $h_1^V$  and  $h_2^V$  have SM values,  $V = \gamma$  or Z.

- <sup>5</sup> AAD 13AN study  $Z\gamma$  production in pp collisions. In events with no additional jet, 1417 (2031) Z decays to electron (muon) pairs are selected, with an expected background of 156 ± 54 (244 ± 64) events, as well as 662 Z decays to neutrino pairs with an expected background of 302 ± 42 events. Analysing the photon  $p_T$  spectrum above 100 GeV yields the 95% C.L. limts:  $-0.013 < h_3^Z < 0.014$ ,  $-8.7 \times 10^{-5} < h_4^Z < 8.7 \times 10^{-5}$ ,  $-0.015 < h_3^{\gamma} < 0.016$ ,  $-9.4 \times 10^{-5} < h_4^{\gamma} < 9.2 \times 10^{-5}$ . Supersedes AAD 12BX.
- <sup>6</sup> CHATRCHYAN 13BI determine the  $Z\gamma \rightarrow \nu \overline{\nu} \gamma$  cross section by selecting events with a photon of  $E_T > 145$  GeV and a  $\not\!\!E_T > 130$  GeV. 73 candidate events are observed with an expected SM background of  $30.2 \pm 6.5$ . The  $E_T$  spectrum of the photon is used to set 95% C.L. limits as follows:  $|h_3^Z| < 2.7 \times 10^{-3}$ ,  $|h_4^Z| < 1.3 \times 10^{-5}$ ,  $|h_3^\gamma| < 2.9 \times 10^{-3}$ ,
- $|h_{A}^{\gamma}| < 1.5 \times 10^{-5}.$
- <sup>7</sup> ABAZOV 12S study  $Z\gamma$  production in  $p\overline{p}$  collisions at  $\sqrt{s} = 1.96$  TeV using 6.2 fb<sup>-1</sup> of data where the Z decays to electron (muon) pairs and the photon has at least 10 GeV of transverse momentum. In data, 304 (308) di-electron (di-muon) events are observed with an expected background of 255  $\pm$  16 (285  $\pm$  24) events. Based on the photon  $p_T$  spectrum, and including also earlier data and the  $Z \rightarrow \nu\overline{\nu}$  decay mode (from ABAZOV 09L), the following 95% C.L. limits are reported:  $|h_{03}^Z| < 0.026$ ,  $|h_{04}^Z| < 0.0013$ ,  $|h_{03}^\gamma| < 0.027$ ,  $|h_{04}^\gamma| < 0.0014$  for a form factor scale of  $\Lambda = 1.5$  TeV.
- <sup>8</sup> AALTONEN 11S study  $Z\gamma$  events in  $p\overline{p}$  interactions at  $\sqrt{s} = 1.96$  TeV with integrated luminosity 5.1 fb<sup>-1</sup> for  $Z \rightarrow e^+e^-/\mu^+\mu^-$  and 4.9 fb<sup>-1</sup> for  $Z \rightarrow \nu\overline{\nu}$ . For the charged lepton case, the two leptons must be of the same flavor with the transverse momentum/energy of one > 20 GeV and the other > 10 GeV. The isolated photon must have  $E_T > 50$  GeV. They observe 91 events with 87.2  $\pm$  7.8 events expected from standard model processes. For the  $\nu\overline{\nu}$  case they require solitary photons with  $E_T > 25$  GeV and observe 85 events with standard model expectation of 85.9  $\pm$  5.6 events. Taking the form factor  $\Lambda = 1.5$  TeV they derive 95% C.L. limits as  $|h_3^{\gamma}, Z| < 0.022$  and  $|h_4^{\gamma}, Z| < 0.0009$ .
- <sup>9</sup> CHATRCHYAN 11M study  $Z\gamma$  production in pp collisions at  $\sqrt{s} = 7$  TeV using 36 pb<sup>-1</sup> pp data, where the Z decays to  $e^+e^-$  or  $\mu^+\mu^-$ . The total cross sections are measured for photon transverse energy  $E_T^{\gamma} > 10$  GeV and spatial separation from charged leptons in the plane of pseudo rapidity and azimuthal angle  $\Delta R(\ell,\gamma) > 0.7$  with the dilepton invariant mass requirement of  $M_{\ell\ell} > 50$  GeV. The number of  $e^+e^-\gamma$  and  $\mu^+\mu^-\gamma$  candidates is 81 and 90 with estimated backgrounds of  $20.5 \pm 2.5$  and  $27.3 \pm 3.2$  events respectively. The 95% CL limits for  $ZZ\gamma$  couplings are  $-0.05 < h_3^{\gamma} < 0.06$  and  $-0.0005 < h_4^{\gamma} < 0.0005$ , and for  $Z\gamma\gamma$  couplings are  $-0.07 < h_3^{\gamma} < 0.07$  and  $-0.0005 < h_4^{\gamma} < 0.0006$ .
- <sup>10</sup> ABAZOV 09L study  $Z\gamma$ ,  $Z \rightarrow \nu \overline{\nu}$  production in  $p\overline{p}$  collisions at 1.96 TeV C.M. energy. They select 51 events with a photon of transverse energy  $E_T$  larger than 90 GeV, with an expected background of 17 events. Based on the photon  $E_T$  spectrum and including also Z decays to charged leptons (from ABAZOV 07M), the following 95% CL limits are reported:  $|h_{30}^{\gamma}| < 0.033$ ,  $|h_{40}^{\gamma}| < 0.0017$ ,  $|h_{30}^{Z}| < 0.033$ ,  $|h_{40}^{\gamma}| < 0.0017$ .
- <sup>11</sup> ABAZOV 07M use 968  $p\overline{p} \rightarrow e^+e^-/\mu^+\mu^-\gamma X$  candidates, at 1.96 TeV center of mass energy, to tag  $p\overline{p} \rightarrow Z\gamma$  events by requiring  $E_T(\gamma) > 7$  GeV, lepton-gamma separation  $\Delta R_{\ell\gamma} > 0.7$ , and di-lepton invariant mass > 30 GeV. The cross section is in agreement with the SM prediction. Using these  $Z\gamma$  events they obtain 95% C.L. limits on each

 $h_i^V$ , keeping all others fixed at their SM values. They report:  $-0.083 < h_{30}^Z < 0.082$ ,  $-0.0053 < h_{40}^Z < 0.0054$ ,  $-0.085 < h_{30}^\gamma < 0.084$ ,  $-0.0053 < h_{40}^\gamma < 0.0054$ , for the form factor scale  $\Lambda = 1.2$  TeV.

- <sup>12</sup> Using data collected at  $\sqrt{s} = 183-208$ , ABDALLAH 07C select 1,877  $e^+e^- \rightarrow Z\gamma$ events with  $Z \rightarrow q\overline{q}$  or  $\nu\overline{\nu}$ , 171  $e^+e^- \rightarrow ZZ$  events with  $Z \rightarrow q\overline{q}$  or lepton pair (except an explicit  $\tau$  pair), and 74  $e^+e^- \rightarrow Z\gamma^*$  events with a  $q\overline{q}\mu^+\mu^-$  or  $q\overline{q}e^+e^$ signature, to derive 95% CL limits on  $h_i^V$ . Each limit is derived with other parameters set to zero. They report:  $-0.23 < h_1^Z < 0.23$ ,  $-0.30 < h_3^Z < 0.16$ ,  $-0.14 < h_1^{\gamma} < 0.14$ ,  $-0.049 < h_3^{\gamma} < 0.044$ .
- <sup>13</sup> ACHARD 04H select 3515  $e^+e^- \rightarrow Z\gamma$  events with  $Z \rightarrow q \overline{q}$  or  $\nu \overline{\nu}$  at  $\sqrt{s} = 189-209$  GeV to derive 95% CL limits on  $h_i^V$ . For deriving each limit the other parameters are fixed at zero. They report:  $-0.153 < h_1^Z < 0.141$ ,  $-0.087 < h_2^Z < 0.079$ ,  $-0.220 < h_3^Z < 0.112$ ,  $-0.068 < h_4^Z < 0.148$ ,  $-0.057 < h_1^\gamma < 0.057$ ,  $-0.050 < h_2^\gamma < 0.023$ ,  $-0.059 < h_3^\gamma < 0.004$ ,  $-0.004 < h_4^\gamma < 0.042$ .
- <sup>14</sup> ABBIENDI,G 00C study  $e^+e^- \rightarrow Z\gamma$  events (with  $Z \rightarrow q\overline{q}$  and  $Z \rightarrow \nu\overline{\nu}$ ) at 189 GeV to obtain the central values (and 95% CL limits) of these couplings:  $h_1^Z = 0.000 \pm 0.100 \ (-0.190, 0.190), \ h_2^Z = 0.000 \pm 0.068 \ (-0.128, 0.128), \ h_3^Z = -0.074^{+0.102}_{-0.103} \ (-0.269, 0.119), \ h_4^Z = 0.046 \pm 0.068 \ (-0.084, 0.175), \ h_1^{\gamma} = 0.000 \pm 0.061 \ (-0.115, 0.115), \ h_2^{\gamma} = 0.000 \pm 0.041 \ (-0.077, 0.077), \ h_3^{\gamma} = -0.080^{+0.039}_{-0.041} \ (-0.164, -0.006), \ h_4^{\gamma} = 0.064^{+0.033}_{-0.030} \ (+0.007, +0.134).$  The results are derived assuming that only one coupling at a time is different from zero.
- <sup>15</sup> ABBOTT 98M study  $p\overline{p} \to Z\gamma + X$ , with  $Z \to e^+e^-$ ,  $\mu^+\mu^-$ ,  $\overline{\nu}\nu$  at 1.8 TeV, to obtain 95% CL limits at  $\Lambda = 750 \text{ GeV}$ :  $|h_{30}^Z| < 0.36$ ,  $|h_{40}^Z| < 0.05$  (keeping  $h_i^{\gamma} = 0$ ), and  $|h_{30}^{\gamma}| < 0.37$ ,  $|h_{40}^{\gamma}| < 0.05$  (keeping  $h_i^Z = 0$ ). Limits on the *CP*-violating couplings are  $|h_{10}^Z| < 0.36$ ,  $|h_{20}^Z| < 0.05$  (keeping  $h_i^{\gamma} = 0$ ), and  $|h_{10}^{\gamma}| < 0.37$ ,  $|h_{20}^{\gamma}| < 0.05$  (keeping  $h_i^{\gamma} = 0$ ).

<sup>16</sup> ABREU 98K determine a 95% CL upper limit on  $\sigma(e^+e^- \rightarrow \gamma + \text{invisible particles}) < 2.5 \text{ pb using 161 and 172 GeV data}$ . This is used to set 95% CL limits on  $|h_{30}^{\gamma}| < 0.8$  and  $|h_{30}^{Z}| < 1.3$ , derived at a scale  $\Lambda = 1$  TeV and with n = 3 in the form factor representation.

## f

Combining the LEP-2 results taking into account the correlations, the following 95% CL limits are derived [SCHAEL 13A]:

$$\begin{aligned} -0.28 < f_4^Z < +0.32, & -0.34 < f_5^Z < +0.35, \\ -0.17 < f_4^\gamma < +0.19, & -0.35 < f_5^\gamma < +0.32. \end{aligned}$$

Some of the recent results from the Tevatron and LHC experiments individually surpass the combined LEP-2 results in precision (see below).

| VALUE                                                 | DOCUMENT ID           | TECN COMMENT                            |    |
|-------------------------------------------------------|-----------------------|-----------------------------------------|----|
| $\bullet \bullet \bullet$ We do not use the following | g data for averages   | es, fits, limits, etc. • • •            |    |
|                                                       | <sup>1</sup> AABOUD   | CIII                                    |    |
|                                                       | <sup>2</sup> SIRUNYAN | 18BT CMS $E_{cm}^{pp} = 13 \text{ TeV}$ |    |
| HTTP://PDG.LBL.GOV                                    | Page 55               | Created: 8/2/2019 16:                   | 43 |

| <sup>3</sup> KHACHATRY  | . <b>15</b> B  | CMS  | $E^{pp}_{cm} = 8 \; \text{TeV}$         |
|-------------------------|----------------|------|-----------------------------------------|
| <sup>4</sup> KHACHATRY  | . <b>15</b> BC | CMS  | $E^{pp}_{cm}=$ 7, 8 TeV                 |
| <sup>5</sup> AAD        | 13z            | ATLS | $E_{\rm cm}^{pp} =$ 7 TeV               |
| <sup>6</sup> CHATRCHYAN | <b>13</b> B    | CMS  | $E_{\rm cm}^{pp} =$ 7 TeV               |
| <sup>7</sup> SCHAEL     | 09             |      | $E_{\rm cm}^{ee} = 192209~{ m GeV}$     |
| <sup>8</sup> ABAZOV     | 08K            | D0   | $E_{ m cm}^{p\overline{p}}=1.96~ m TeV$ |
| <sup>9</sup> ABDALLAH   | <b>07</b> C    | DLPH | $E_{\rm cm}^{ee} = 183-208  {\rm GeV}$  |
| <sup>10</sup> ABBIENDI  | 04C            | OPAL |                                         |
| <sup>11</sup> ACHARD    | <b>03</b> D    | L3   |                                         |

- <sup>1</sup>AABOUD 18Q study  $pp \rightarrow ZZ$  events at  $\sqrt{s} = 13$  TeV with  $Z \rightarrow e^+e^-$  or  $Z \rightarrow \mu^+\mu^-$ . The number of events observed in the 4e, 2e 2 $\mu$ , and 4 $\mu$  channels is 249, 465, and 303 respectively. Analysing the  $p_T$  spectrum of the leading Z boson, the following the following 95% C.L. limits are derived in units of  $10^{-4}$ :  $-1.8 < f_4^{\gamma} < 1.8$ ,  $-1.5 < f_4^Z < 1.5$ ,  $-1.8 < f_5^{\gamma} < 1.8$ ,  $-1.5 < f_5^Z < 1.5$ .
- <sup>2</sup>SIRUNYAN 18BT study ppZZ events at  $\sqrt{s} = 13$  TeV with  $Z \rightarrow e^+e^-$  or  $Z \rightarrow \mu^+\mu^-$ . The number of events observed in the 4e,  $2e2\mu$ , and  $4\mu$  channels is 220, 543 and 335 respectively. Analysing the 4-lepton invariant mass spectrum, the following 95% C.L. limits are derived in units of  $10^{-3}$ :  $-1.2 < f_4^{\gamma} < 1.3$ ,  $-1.2 < f_4^Z < 1.0$ ,  $-1.2 < f_5^{\gamma} < 1.3$ ,  $-1.0 < f_5^Z < 1.3$ .
- <sup>3</sup> KHACHATRYAN 15B study ZZ production in 8 TeV pp collisions. In the decay modes  $ZZ \rightarrow 4e, 4\mu, 2e2\mu, 54, 75, 148$  events are observed, with an expected background of  $2.2 \pm 0.9, 1.2 \pm 0.6$ , and  $2.4 \pm 1.0$  events, respectively. Analysing the 4-lepton invariant mass spectrum in the range from 110 GeV to 1200 GeV, the following 95% C.L. limits are obtained:  $|f_A^Z| < 0.004, |f_5^Z| < 0.004, |f_A^\gamma| < 0.005, |f_5^\gamma| < 0.005.$
- <sup>4</sup> KHACHATRYAN 15BC use the cross section measurement of the final state  $pp \rightarrow ZZ \rightarrow 2\ell 2\nu$ , ( $\ell$  being an electron or a muon) at 7 and 8 TeV to put limits on these triple gauge couplings. Effective mass of the charged lepton pair is required to be in the range 83.5–98.5 GeV and the dilepton  $p_T > 45$  GeV. The reduced missing  $E_T$  is required to be > 65 GeV, which takes into account the fake missing  $E_T$  due to detector effects. The numbers of  $e^+e^-$  and  $\mu^+\mu^-$  events selected are 35 and 40 at 7 TeV and 176 and 271 at 8 TeV respectively. The production cross sections so obtained are in agreement with SM predictions. The following 95% C.L. limits are set:  $-0.0028 < f_4^Z < 0.0032$ ,  $-0.0037 < f_4^{\gamma} < 0.0033$ ,  $-0.0029 < f_5^Z < 0.0031$ ,  $-0.0033 < f_5^{\gamma} < 0.0037$ . Combining with previous results (KHACHATRYAN 15B and CHATRCHYAN 13B) which include 7 TeV and 8 TeV data on the final states  $pp \rightarrow ZZ \rightarrow 2\ell 2\ell'$  where  $\ell$  and  $\ell'$  are an electron or a muon, the best limits are  $-0.0022 < f_4^Z < 0.0026$ ,  $-0.0023 < f_5^Z < 0.0023$ ,  $-0.0026 < f_5^{\gamma} < 0.0027$ .
- <sup>5</sup> AAD 13Z study ZZ production in pp collisions at  $\sqrt{s} = 7$  TeV. In the ZZ  $\rightarrow \ell^+ \ell^- \ell'^+ \ell'^-$  final state they observe a total of 66 events with an expected background of  $0.9 \pm 1.3$ . In the ZZ  $\rightarrow \ell^+ \ell^- \nu \nu$  final state they observe a total of 87 events with an expected background of  $46.9 \pm 5.2$ . The limits on anomalous TGCs are determined using the observed and expected numbers of these ZZ events binned in  $p_T^Z$ . The 95% C.L. are as follows: for form factor scale  $\Lambda = \infty$ ,  $-0.015 < f_4^{\gamma} < 0.015$ ,  $-0.013 < f_5^Z < 0.013$ ; for form factor scale  $\Lambda = \infty$

- 3 TeV,  $-0.022 < f_4^{\gamma} < 0.023$ ,  $-0.019 < f_4^Z < 0.019$ ,  $-0.023 < f_5^{\gamma} < 0.023$ ,  $-0.020 < f_5^Z < 0.019$ .
- <sup>6</sup> CHATRCHYAN 13B study ZZ production in pp collisions and select 54 ZZ candidates in the Z decay channel with electrons or muons with an expected background of  $1.4 \pm 0.5$ events. The resulting 95% C.L. ranges are:  $-0.013 < f_4^{\gamma} < 0.015, -0.011 < f_4^{Z} < 0.012, -0.014 < f_5^{\gamma} < 0.014, -0.012 < f_5^{Z} < 0.012.$
- <sup>7</sup> Using data collected in the center of mass energy range 192–209 GeV, SCHAEL 09 select 318  $e^+e^- \rightarrow ZZ$  events with 319.4 expected from the standard model. Using this data they derive the following 95% CL limits:  $-0.321 < f_4^{\gamma} < 0.318$ ,  $-0.534 < f_4^Z < 0.534$ ,  $-0.724 < f_5^{\gamma} < 0.733$ ,  $-1.194 < f_5^Z < 1.190$ .
- <sup>8</sup> ABAZOV 08K search for ZZ and  $Z\gamma^*$  events with  $1 \text{ fb}^{-1} p\overline{p}$  data at  $\sqrt{s} = 1.96 \text{ TeV}$  in (ee)(ee),  $(\mu\mu)(\mu\mu)$ ,  $(ee)(\mu\mu)$  final states requiring the lepton pair masses to be > 30 GeV. They observe 1 event, which is consistent with an expected signal of  $1.71 \pm 0.15$  events and a background of  $0.13 \pm 0.03$  events. From this they derive the following limits, for a form factor ( $\Lambda$ ) value of 1.2 TeV:  $-0.28 < f_{40}^Z < 0.28$ ,  $-0.31 < f_{50}^Z < 0.28$

 $0.29, \, -0.26 < f_{40}^{\gamma} < 0.26, \, -0.30 < f_{50}^{\gamma} < 0.28.$ 

<sup>9</sup> Using data collected at  $\sqrt{s} = 183-208$  GeV, ABDALLAH 07C select 171  $e^+e^- \rightarrow ZZ$ events with  $Z \rightarrow q\bar{q}$  or lepton pair (except an explicit  $\tau$  pair), and 74  $e^+e^- \rightarrow Z\gamma^*$ events with a  $q\bar{q}\mu^+\mu^-$  or  $q\bar{q}e^+e^-$  signature, to derive 95% CL limits on  $f_i^V$ . Each limit is derived with other parameters set to zero. They report:  $-0.40 < f_A^Z < 0.42$ ,

$$-0.38 < f_5^Z < 0.62, -0.23 < f_4^\gamma < 0.25, -0.52 < f_5^\gamma < 0.48.$$

<sup>10</sup> ABBIENDI 04C study ZZ production in  $e^+e^-$  collisions in the C.M. energy range 190–209 GeV. They select 340 events with an expected background of 180 events. Including the ABBIENDI 00N data at 183 and 189 GeV (118 events with an expected background of 65 events) they report the following 95% CL limits:  $-0.45 < f_4^Z < 0.58$ ,

$$-0.94 < f_5^Z < 0.25, -0.32 < f_4^{\gamma} < 0.33, \text{ and } -0.71 < f_5^{\gamma} < 0.59.$$

<sup>11</sup> ACHARD 03D study Z-boson pair production in  $e^+e^-$  collisions in the C.M. energy range 200–209 GeV. They select 549 events with an expected background of 432 events. Including the ACCIARRI 99G and ACCIARRI 990 data (183 and 189 GeV respectively, 286 events with an expected background of 241 events) and the 192–202 GeV ACCIARRI 011 results (656 events, expected background of 512 events), they report the following 95% CL limits:  $-0.48 \le f_4^Z \le 0.46$ ,  $-0.36 \le f_5^Z \le 1.03$ ,  $-0.28 \le f_4^\gamma \le 0.28$ , and  $-0.40 \le f_5^\gamma \le 0.47$ .

## ANOMALOUS W/Z QUARTIC COUPLINGS

## See the related review(s):

Anomalous W/Z Quartic Couplings (QGCs)

# $a_0/\Lambda^2$ , $a_c/\Lambda^2$

Combining published and unpublished preliminary LEP results the following 95% CL intervals for the QGCs associated with the  $ZZ\gamma\gamma$  vertex are derived (CERN-PH-EP/2005-051 or hep-ex/0511027):

$$-0.008 < a_0^Z / \Lambda^2 < +0.021$$
  
$$-0.029 < a_C^Z / \Lambda^2 < +0.039$$

Anomalous Z quartic couplings have also been measured by the Tevatron and LHC experiments. As discussed in the review on "Anomalous W/Z quartic couplings," the coupling parameters in the Anomalous QGC Lagrangian may relate to processes involving only the W or only to the Z or to both. Thus, results on all other AQGCs are reported together in the W listings.

| VALUE                               | DOCUMENT ID              | TECN         |  |
|-------------------------------------|--------------------------|--------------|--|
| • • • We do not use the following d | lata for averages, fits, | limits, etc. |  |

| <sup>1</sup> ABBIENDI | 04L | OPAL |
|-----------------------|-----|------|
| <sup>2</sup> HEISTER  | 04A | ALEP |
| <sup>3</sup> ACHARD   | 026 | 13   |

- <sup>1</sup>ABBIENDI 04L select 20  $e^+e^- \rightarrow \nu \overline{\nu} \gamma \gamma$  acoplanar events in the energy range 180–209 GeV and 176  $e^+e^- \rightarrow q \bar{q} \gamma \gamma$  events in the energy range 130–209 GeV. These samples are used to constrain possible anomalous  $W^+W^-\gamma\gamma$  and  $ZZ\gamma\gamma$  quartic couplings. Further combining with the  $W^+W^-\gamma$  sample of ABBIENDI 04B the following oneparameter 95% CL limits are obtained:  $-0.007 < a_0^Z/\Lambda^2 < 0.023 \text{ GeV}^{-2}$ ,  $-0.029 < 0.023 \text{ GeV}^{-2}$  $a_c^Z/\Lambda^2 < 0.029 \; {
  m GeV}^{-2}$ ,  $-0.020 < a_0^W/\Lambda^2 < 0.020 \; {
  m GeV}^{-2}$ ,  $-0.052 < a_c^W/\Lambda^2 < 0.020 \; {
  m GeV}^{-2}$ ,  $-0.052 < a_c^W/\Lambda^2 < 0.020 \; {
  m GeV}^{-2}$  $0.037 \text{ GeV}^{-2}$ .
- <sup>2</sup> In the CM energy range 183 to 209 GeV HEISTER 04A select 30  $e^+e^- \rightarrow \nu \overline{\nu} \gamma \gamma$  events with two acoplanar, high energy and high transverse momentum photons. The photonphoton acoplanarity is required to be  $>5^{\circ},~E_{\gamma}/\sqrt{s}~>0.025$  (the more energetic photon having energy > 0.2  $\sqrt{s}),~{\rm p}_{T_{\gamma}}/{\rm E_{beam}}~>$  0.05 and  $\left|\cos\,\theta_{\gamma}\right|~<$  0.94. A likelihood fit to the photon energy and recoil missing mass yields the following one-parameter 95% CL limits:  $-0.012 < a_0^Z/\Lambda^2 < 0.019 \text{ GeV}^{-2}$ ,  $-0.041 < a_c^Z/\Lambda^2 < 0.044 \text{ GeV}^{-2}$ ,  $-0.060 < a_0^W/\Lambda^2 < 0.055 \text{ GeV}^{-2}$ ,  $-0.099 < a_c^W/\Lambda^2 < 0.093 \text{ GeV}^{-2}$ .
- <sup>3</sup>ACHARD 02G study  $e^+e^- \rightarrow Z\gamma\gamma \rightarrow q\overline{q}\gamma\gamma$  events using data at center-of-mass energies from 200 to 209 GeV. The photons are required to be isolated, each with energy >5 GeV and  $|\cos\theta| < 0.97$ , and the di-jet invariant mass to be compatible with that of the Z boson (74–111 GeV). Cuts on Z velocity ( $\beta < 0.73$ ) and on the energy of the most energetic photon reduce the backgrounds due to non-resonant production of the  $q \bar{q} \gamma \gamma$  state and due to ISR respectively, yielding a total of 40 candidate events of which 8.6 are expected to be due to background. The energy spectra of the least energetic photon are fitted for all ten center-of-mass energy values from 130 GeV to 209 GeV (as obtained adding to the present analysis 130–202 GeV data of ACCIARRI 01E, for a total of 137 events with an expected background of 34.1 events) to obtain the fitted values  $a_0/\Lambda^2 = 0.00 \stackrel{+0.02}{_{-0.01}} \text{ GeV}^{-2}$  and  $a_c/\Lambda^2 = 0.03 \stackrel{+0.01}{_{-0.02}} \text{ GeV}^{-2}$ , where the other parameter is kept fixed to its Standard Model value (0). A simultaneous fit to both parameters yields the 95% CL limits  $-0.02 \text{ GeV}^{-2} < a_0/\Lambda^2 < 0.03 \text{ GeV}^{-2}$  and -0.07 $GeV^{-2} < a_c/\Lambda^2 < 0.05 GeV^{-2}$ .

#### Z REFERENCES

| RAINBOLT | 19   | PR D99 013004  | J.L. Rainbolt, M. Schmitt   |        | (NWES)   |
|----------|------|----------------|-----------------------------|--------|----------|
| AABOUD   | 18AU | JHEP 1807 127  | M. Aaboud <i>et al.</i>     | (ATLAS | Collab.) |
| AABOUD   | 18BL | PL B786 134    | M. Aaboud <i>et al.</i>     | ATLAS  | Collab.) |
| AABOUD   | 18CN | PR D98 092010  | M. Aaboud <i>et al.</i>     | (ATLAS | Collab.) |
| AABOUD   |      | PR D97 032005  | M. Aaboud <i>et al.</i>     | (ATLAS | Collab.) |
| AAIJ     | 18AR | JHEP 1809 159  | R. Aaij <i>et al.</i>       | (LHCb  | Collab.) |
| ANDREEV  | 18A  | EPJ C78 777    | V. Andreev et al.           | (H1    | Collab.) |
| SIRUNYAN | 18BT | EPJ C78 165    | A.M. Sirunyan <i>et al.</i> | (CMS   | Collab.) |
| SIRUNYAN | 18DZ | PRL 121 141801 | A.M. Sirunyan <i>et al.</i> | (CMS   | Collab.) |
| AABOUD   | 16K  | PRL 117 111802 | M. Aaboud <i>et al.</i>     | (ATLAS | Collab.) |
| AAD      | 16L  | EPJ C76 210    | G. Aad <i>et al.</i>        | (ATLAS | Collab.) |
| AAD      | 16Q  | PR D93 112002  | G. Aad <i>et al.</i>        | (ATLAS | Collab.) |
|          |      |                |                             |        |          |

HTTP://PDG.LBL.GOV

```
Page 58
```

Created: 8/2/2019 16:43

ABRAMOWICZ 16A PR D93 092002 PR D94 052007 ABT 16 KHACHATRY... 16AE PL B760 448 KHACHATRY... 16CC PL B763 280 15BT JHEP 1509 049 AAD AAD PRL 114 121801 15I KHACHATRY... 15AC JHEP 1504 164 KHACHATRY... 15B PL B740 250 KHACHATRY... 15BC EPJ C75 511 AAD 14AU PR D90 072010 AAD 14N PRL 112 231806 AALTONEN 14E PRL 112 111803 CHATRCHYAN 14AB PR D89 092005 13AN PR D87 112003 AAD PR D91 119901 (e Also JHEP 1303 128 AAD 13Z CHATRCHYAN 13B JHEP 1301 063 CHATRCHYAN 13BI JHEP 1310 164 SCHAEL PRPL 532 119 13A AAD 12BX PL B717 49 ABAZOV 12S PR D85 052001 CHATRCHYAN 12BN JHEP 1212 034 AALTONEN PRL 107 051802 11S PR D84 012007 ABAZOV 11D CHATRCHYAN 11M PL B701 535 PRL 102 201802 ABAZOV 09L BEDDALL 09 PL B670 300 SCHAEL 09 JHEP 0904 124 PRL 100 131801 ABAZOV 08K ABAZOV PL B653 378 07M ABDALLAH EPJ C51 525 07C ABDALLAH 06E PL B639 179 AKTAS 06 PL B632 35 LEP-SLC PRPL 427 257 06 SCHAEL 06A PL B639 192 ABDALLAH 05 EPJ C40 1 ABDALLAH EPJ C44 299 05C PRL 94 091801 ABE 05 ABE 05F PR D71 112004 PR D71 052002 ACOSTA 05M ABBIENDI 04B PL B580 17 ABBIENDI 04C EPJ C32 303 04E PL B586 167 ABBIENDI ABBIENDI 04G EPJ C33 173 ABBIENDI PR D70 032005 04L ABDALLAH 04F EPJ C34 109 PR D69 072003 ABE 04C ACHARD PL B585 42 04C ACHARD 04H PL B597 119 HEISTER 04A PL B602 31 03P PL B577 18 ABBIENDI PL B569 129 ABDALLAH 03H ABDALLAH 03K PL B576 29 ABE 03F PRL 90 141804 ACHARD PL B572 133 03D ACHARD 03G PL B577 109 ABBIENDI 02I PL B546 29 ABE 02G PRL 88 151801 ACHARD PL B540 43 02G HEISTER 02B PL B526 34 PL B528 19 HEISTER 02C HEISTER 02H EPJ C24 177 EPJ C19 587 ABBIENDI 01A EPJ C18 447 ABBIENDI 01G ABBIENDI 01K PL B516 1 EPJ C20 445 ABBIENDI 01N ABBIENDI 010 EPJ C21 1 PRL 86 1162 ABE 01B ABE 01C PR D63 032005 ACCIARRI 01E PL B505 47 ACCIARRI 011 PL B497 23

|         | U Abramowicz at al           | (7EUS Collab.)                        |
|---------|------------------------------|---------------------------------------|
|         | H. Abramowicz <i>et al.</i>  | (ZEUS Collab.)                        |
|         | I. Abt <i>et al.</i>         | (MPIM, OXF, HAMB, DESY)               |
|         | V Khachatrian at al          | (CMS Collab.)                         |
|         | V. Khachatryan <i>et al.</i> |                                       |
|         | V. Khachatryan <i>et al.</i> | (CMS Collab.)                         |
|         | G. Aad <i>et al.</i>         | (ATLAS Collab.)                       |
|         |                              |                                       |
|         | G. Aad <i>et al.</i>         | (ATLAS Collab.)                       |
|         | V. Khachatryan <i>et al.</i> | (CMS Collab.)                         |
|         |                              |                                       |
|         | V. Khachatryan <i>et al.</i> | (CMS Collab.)                         |
|         | V. Khachatryan et al.        | (CMS Collab.)                         |
|         |                              |                                       |
|         | G. Aad <i>et al.</i>         | (ATLAS Collab.)                       |
|         | G. Aad <i>et al.</i>         | (ATLAS Collab.)                       |
|         |                              |                                       |
|         | T. Aaltonen <i>et al.</i>    | (CDF Collab.)                         |
|         | S. Chatrchyan <i>et al.</i>  | (CMS Collab.)                         |
|         |                              |                                       |
|         | G. Aad <i>et al.</i>         | (ATLAS Collab.)                       |
| errat.) | G. Aad <i>et al.</i>         | (ATLAS Collab.)                       |
|         |                              |                                       |
|         | G. Aad <i>et al.</i>         | (ATLAS Collab.)                       |
|         | S. Chatrchyan <i>et al.</i>  | (CMS Collab.)                         |
|         |                              |                                       |
|         | S. Chatrchyan <i>et al.</i>  | (CMS Collab.)                         |
|         | S. Schael <i>et al.</i>      | (ALEPH Collab., DELPHI, L3+)          |
|         | G. Aad <i>et al.</i>         | (ATLAS Collab.)                       |
|         |                              |                                       |
|         | V.M. Abazov <i>et al.</i>    | (D0 Collab.)                          |
|         | S. Chatrchyan <i>et al.</i>  | (CMS Collab.)                         |
|         |                              |                                       |
|         | T. Aaltonen <i>et al.</i>    | (CDF Collab.)                         |
|         | V.M. Abazov <i>et al.</i>    | (D0 Collab.)                          |
|         |                              |                                       |
|         | S. Chatrchyan <i>et al.</i>  | (CMS Collab.)                         |
|         | V.M. Abazov et al.           | ) (D0 Collab.)                        |
|         |                              |                                       |
|         | A. Beddall, A. Beddall,      | A. Bingul (UGAZ)                      |
|         | S. Schael <i>et al.</i>      | (ALEPH Collab.)                       |
|         |                              |                                       |
|         | V.M. Abazov <i>et al.</i>    | (D0 Collab.)                          |
|         | V.M. Abazov <i>et al.</i>    | (D0 Collab.)                          |
|         |                              |                                       |
|         | J. Abdallah <i>et al.</i>    | (DELPHI Collab.)                      |
|         | J. Abdallah <i>et al.</i>    | (DELPHI Collab.)                      |
|         |                              | · · · · · · · · · · · · · · · · · · · |
|         | A. Aktas <i>et al.</i>       | (H1 Collab.)                          |
|         | ALEPH, DELPHI, L3, O         | PAL, SLD and working groups           |
|         | S. Schael <i>et al.</i>      | (ALEPH Collab.)                       |
|         |                              |                                       |
|         | J. Abdallah <i>et al.</i>    | (DELPHI Collab.)                      |
|         | J. Abdallah <i>et al.</i>    | (DELPHI Collab.)                      |
|         |                              |                                       |
|         | K. Abe <i>et al.</i>         | (SLD Collab.)                         |
|         | K. Abe <i>et al.</i>         | (SLD Collab.)                         |
|         |                              |                                       |
|         | D. Acosta <i>et al.</i>      | (CDF Collab.)                         |
|         | G. Abbiendi <i>et al.</i>    | (OPAL Collab.)                        |
|         |                              |                                       |
|         | G. Abbiendi <i>et al.</i>    | (OPAL Collab.)                        |
|         | G. Abbiendi <i>et al.</i>    | (OPAL Collab.)                        |
|         |                              |                                       |
|         | G. Abbiendi <i>et al.</i>    | (OPAL Collab.)                        |
|         | G. Abbiendi <i>et al.</i>    | (OPAL Collab.)                        |
|         | J. Abdallah <i>et al.</i>    |                                       |
|         |                              | (DELPHI Collab.)                      |
|         | K. Abe <i>et al.</i>         | (SLD Collab.)                         |
|         | P. Achard <i>et al.</i>      | (L3 Collab.)                          |
|         |                              |                                       |
|         | P. Achard <i>et al.</i>      | (L3 Collab.)                          |
|         | A. Heister <i>et al.</i>     | (ALEPH Collab.)                       |
|         |                              |                                       |
|         | G. Abbiendi <i>et al.</i>    | (OPAL Collab.)                        |
|         | J. Abdallah <i>et al.</i>    | (DELPHI Collab.)                      |
|         | J. Abdallah <i>et al.</i>    | (DELPHI Collab.)                      |
|         |                              | · · · · · · · · · · · · · · · · · · · |
|         | K. Abe <i>et al.</i>         | (SLD Collab.)                         |
|         | P. Achard <i>et al.</i>      | (L3 Collab.)                          |
|         |                              |                                       |
|         | P. Achard <i>et al.</i>      | (L3 Collab.)                          |
|         | G. Abbiendi <i>et al.</i>    | (OPAL Collab.)                        |
|         |                              |                                       |
|         | K. Abe <i>et al.</i>         | (SLD Collab.)                         |
|         | P. Achard <i>et al.</i>      | (L3 Collab.)                          |
|         |                              |                                       |
|         | A. Heister <i>et al.</i>     | (ALEPH Collab.)                       |
|         | A. Heister <i>et al.</i>     | (ALEPH Collab.)                       |
|         | A. Heister <i>et al.</i>     |                                       |
|         |                              | (ALEPH Collab.)                       |
|         | G. Abbiendi <i>et al.</i>    | (OPAL Collab.)                        |
|         | G. Abbiendi <i>et al.</i>    |                                       |
|         |                              | (OPAL Collab.)                        |
|         | G. Abbiendi <i>et al.</i>    | (OPAL Collab.)                        |
|         | G. Abbiendi et al.           | (OPAL Collab.)                        |
|         |                              |                                       |
|         | G. Abbiendi <i>et al.</i>    | (OPAL Collab.)                        |
|         | K. Abe <i>et al.</i>         | (SLD Collab.)                         |
|         |                              |                                       |
|         | K. Abe <i>et al.</i>         | (SLD Collab.)                         |
|         | M. Acciarri <i>et al.</i>    | (L3 Collab.)                          |
|         |                              |                                       |
|         | M. Acciarri <i>et al.</i>    | (L3 Collab.)                          |
|         |                              |                                       |
|         |                              |                                       |

HTTP://PDG.LBL.GOV

Page 59

| HEISTER    | 01         | EPJ C20 401                | A. Heister <i>et al.</i>                               | (ALEPH Collab.)  |
|------------|------------|----------------------------|--------------------------------------------------------|------------------|
| HEISTER    | 01D        | EPJ C22 201                | A. Heister <i>et al.</i>                               | (ALEPH Collab.)  |
| ABBIENDI   | 00N        | PL B476 256                | G. Abbiendi <i>et al.</i>                              | (OPAL Collab.)   |
| ABBIENDI,G | 00C        | EPJ C17 553                | G. Abbiendi <i>et al.</i>                              | (OPAL Collab.)   |
| ABE        | 00B        | PRL 84 5945                | K. Abe <i>et al.</i>                                   | (SLD Collab.)    |
| ABE        | 00D        | PRL 85 5059                | K. Abe <i>et al.</i>                                   | (SLD Collab.)    |
| ABREU      | 00         | EPJ C12 225                | P. Abreu <i>et al.</i>                                 | (DELPHI Collab.) |
| ABREU      | 00B        | EPJ C14 613                | P. Abreu <i>et al.</i>                                 | (DELPHI Collab.) |
| ABREU      | 00B        | EPJ C14 585                | P. Abreu <i>et al.</i>                                 | (DELPHI Collab.) |
|            | 00E        |                            | P. Abreu <i>et al.</i>                                 |                  |
| ABREU      |            | EPJ C16 371                | P. Abreu <i>et al.</i>                                 | (DELPHI Collab.) |
| ABREU      | 00P        | PL B475 429                |                                                        | (DELPHI Collab.) |
| ACCIARRI   | 00         | EPJ C13 47                 | M. Acciarri <i>et al.</i>                              | (L3 Collab.)     |
| ACCIARRI   | 00C        | EPJ C16 1                  | M. Acciarri <i>et al.</i>                              | (L3 Collab.)     |
| ACCIARRI   | 00J        | PL B479 79                 | M. Acciarri <i>et al.</i>                              | (L3 Collab.)     |
| ACCIARRI   | 00Q        | PL B489 93                 | M. Acciarri <i>et al.</i>                              | (L3 Collab.)     |
| BARATE     | 00B        | EPJ C16 597                | R. Barate <i>et al.</i>                                | (ALEPH Collab.)  |
| BARATE     | 00C        | EPJ C14 1                  | R. Barate <i>et al.</i>                                | (ALEPH Collab.)  |
| BARATE     | 000        | EPJ C16 613                | R. Barate <i>et al.</i>                                | (ALEPH Collab.)  |
| ABBIENDI   | 99B        | EPJ C8 217                 | G. Abbiendi <i>et al.</i>                              | (OPAL Collab.)   |
| ABBIENDI   | 991        | PL B447 157                | G. Abbiendi <i>et al.</i>                              | (OPAL Collab.)   |
| ABE        | 99E        | PR D59 052001              | K. Abe <i>et al.</i>                                   | (SLD Collab.)    |
| ABE        | 99L        | PRL 83 1902                | K. Abe <i>et al.</i>                                   | (SLD Collab.)    |
| ABREU      | 99         | EPJ C6 19                  | P. Abreu <i>et al.</i>                                 | (DELPHI Collab.) |
| ABREU      | 99B        | EPJ C10 415                | P. Abreu <i>et al.</i>                                 | (DELPHI Collab.) |
| ABREU      | 99 J       | PL B449 364                | P. Abreu <i>et al.</i>                                 | (DELPHI Collab.) |
| ABREU      | 99U        | PL B462 425                | P. Abreu <i>et al.</i>                                 | (DELPHI Collab.) |
| ABREU      | 99Y        | EPJ C10 219                | P. Abreu <i>et al.</i>                                 | (DELPHI Collab.) |
| ACCIARRI   | 99D        | PL B448 152                | M. Acciarri et al.                                     | (L3 Collab.)     |
| ACCIARRI   | 99F        | PL B453 94                 | M. Acciarri <i>et al.</i>                              | (L3 Collab.)     |
| ACCIARRI   | 99G        | PL B450 281                | M. Acciarri <i>et al.</i>                              | (L3 Collab.)     |
| ACCIARRI   | 990        | PL B465 363                | M. Acciarri <i>et al.</i>                              | (L3 Collab.)     |
| ABBOTT     | 98M        | PR D57 3817                | B. Abbott <i>et al.</i>                                | (D0 Collab.)     |
| ABE        | 98D        | PRL 80 660                 | K. Abe <i>et al.</i>                                   | (SLD Collab.)    |
| ABE        | 98I        | PRL 81 942                 | K. Abe et al.                                          | (SLD Collab.)    |
| ABREU      | 98K        | PL B423 194                | P. Abreu <i>et al.</i>                                 | (DELPHI Collab.) |
| ABREU      | 98L        | EPJ C5 585                 | P. Abreu <i>et al.</i>                                 | (DELPHI Collab.) |
| ACCIARRI   | 98C<br>98G | PL B431 199                | M. Acciarri <i>et al.</i>                              | (L3 Collab.)     |
| ACCIARRI   | 98G<br>98H | PL B431 199<br>PL B429 387 | M. Acciarri <i>et al.</i><br>M. Acciarri <i>et al.</i> |                  |
|            | 98U        | PL B439 225                | M. Acciarri <i>et al.</i><br>M. Acciarri <i>et al.</i> | (L3 Collab.)     |
| ACCIARRI   |            |                            |                                                        | (L3 Collab.)     |
| ACKERSTAFF | 98A        | EPJ C5 411                 | K. Ackerstaff <i>et al.</i>                            | (OPAL Collab.)   |
| ACKERSTAFF | 98E        | EPJ C1 439                 | K. Ackerstaff <i>et al.</i>                            | (OPAL Collab.)   |
| ACKERSTAFF | 980        | PL B420 157                | K. Ackerstaff <i>et al.</i>                            | (OPAL Collab.)   |
| ACKERSTAFF | 98Q        | EPJ C4 19                  | K. Ackerstaff <i>et al.</i>                            | (OPAL Collab.)   |
| BARATE     | 980<br>00T | PL B434 415                | R. Barate <i>et al.</i>                                | (ALEPH Collab.)  |
| BARATE     | 98T        | EPJ C4 557                 | R. Barate <i>et al.</i>                                | (ALEPH Collab.)  |
| BARATE     | 98V        | EPJ C5 205                 | R. Barate <i>et al.</i>                                | (ALEPH Collab.)  |
| ABE        | 97         | PRL 78 17                  | K. Abe <i>et al.</i>                                   | (SLD Collab.)    |
| ABREU      | 97C        | ZPHY C73 243               | P. Abreu <i>et al.</i>                                 | (DELPHI Collab.) |
| ABREU      | 97E        | PL B398 207                | P. Abreu <i>et al.</i>                                 | (DELPHI Collab.) |
| ABREU      | 97G        | PL B404 194                | P. Abreu <i>et al.</i>                                 | (DELPHI Collab.) |
| ACCIARRI   | 97D        | PL B393 465                | M. Acciarri <i>et al.</i>                              | (L3 Collab.)     |
| ACCIARRI   | 97J        | PL B407 351                | M. Acciarri <i>et al.</i>                              | (L3 Collab.)     |
| ACCIARRI   | 97L        | PL B407 389                | M. Acciarri <i>et al.</i>                              | (L3 Collab.)     |
| ACCIARRI   | 97R        | PL B413 167                | M. Acciarri <i>et al.</i>                              | (L3 Collab.)     |
| ACKERSTAFF |            | ZPHY C74 413               | K. Ackerstaff <i>et al.</i>                            | (OPAL Collab.)   |
| ACKERSTAFF | 97S        | PL B412 210                | K. Ackerstaff <i>et al.</i>                            | (OPAL Collab.)   |
| ACKERSTAFF |            | ZPHY C76 387               | K. Ackerstaff <i>et al.</i>                            | (OPAL Collab.)   |
| ACKERSTAFF | 97W        | ZPHY C76 425               | K. Ackerstaff <i>et al.</i>                            | (OPAL Collab.)   |
| ALEXANDER  | 97C        | ZPHY C73 379               | G. Alexander <i>et al.</i>                             | (OPAL Collab.)   |
| ALEXANDER  | 97D        | ZPHY C73 569               | G. Alexander <i>et al.</i>                             | (OPAL Collab.)   |
| ALEXANDER  | 97E        | ZPHY C73 587               | G. Alexander <i>et al.</i>                             | (OPAL Collab.)   |
| BARATE     | 97D        | PL B405 191                | R. Barate <i>et al.</i>                                | (ALEPH Collab.)  |
| BARATE     | 97E        | PL B401 150                | R. Barate <i>et al.</i>                                | (ALEPH Collab.)  |
| BARATE     | 97F        | PL B401 163                | R. Barate <i>et al.</i>                                | (ALEPH Collab.)  |
| BARATE     | 97H        | PL B402 213                | R. Barate <i>et al.</i>                                | (ALEPH Collab.)  |
| BARATE     | 97J        | ZPHY C74 451               | R. Barate <i>et al.</i>                                | (ALEPH Collab.)  |
| ABREU      | 96R        | ZPHY C72 31                | P. Abreu <i>et al.</i>                                 | (DELPHI Collab.) |
| ABREU      | 96S        | PL B389 405                | P. Abreu <i>et al.</i>                                 | (DELPHI Collab.) |
| ABREU      | 96U        | ZPHY C73 61                | P. Abreu <i>et al.</i>                                 | (DELPHI Collab.) |
| ACCIARRI   | 96         | PL B371 126                | M. Acciarri <i>et al.</i>                              | (L3 Collab.)     |
| ADAM       | 96         | ZPHY C69 561               | W. Adam <i>et al.</i>                                  | (DELPHI Collab.) |
|            |            |                            |                                                        |                  |

Page 60

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 06 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7DUV C70 271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ))/ Adams at al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADAM<br>ALEXANDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96B<br>96B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ZPHY C70 371<br>ZPHY C70 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W. Adam <i>et al.</i><br>G. Alexander <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ALEXANDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 906<br>96F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PL B370 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G. Alexander <i>et al.</i><br>G. Alexander <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (OPAL Collab.)<br>(OPAL Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ALEXANDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PL B384 343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G. Alexander <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (OPAL Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ALEXANDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZPHY C72 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | G. Alexander <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (OPAL Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BUSKULIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZPHY C69 393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D. Buskulic <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ALEPH Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BUSKULIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZPHY C69 379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D. Buskulic <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ALEPH Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BUSKULIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PL B384 449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D. Buskulic et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (ALEPH Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BUSKULIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PL B388 648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D. Buskulic <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ALEPH Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ABE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PRL 74 2880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K. Abe <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (SLD Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95<br>05 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (erratum)P. Abreu <i>et al.</i><br>P. Abreu <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ABREU<br>ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95D<br>95L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ZPHY C66 323<br>ZPHY C65 587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P. Abreu <i>et al.</i><br>P. Abreu <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (DELPHI Collab.)<br>(DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95L<br>95M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ZPHY C65 603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P. Abreu <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZPHY C67 543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P. Abreu <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZPHY C68 353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P. Abreu <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZPHY C68 541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P. Abreu <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PL B361 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P. Abreu <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZPHY C69 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P. Abreu <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ACCIARRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PL B345 589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M. Acciarri <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (L3 Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| acciarri<br>Acciarri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95C<br>95G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PL B345 609<br>PL B353 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M. Acciarri <i>et al.</i><br>M. Acciarri <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (L3 Collab.)<br>(L3 Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AKERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95G<br>95C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ZPHY C65 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R. Akers <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (OPAL Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AKERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZPHY C67 389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R. Akers <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (OPAL Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AKERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZPHY C67 555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R. Akers <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (OPAL Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AKERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZPHY C68 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R. Akers <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (OPAL Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AKERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZPHY C68 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R. Akers <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (OPAL Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ALEXANDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PL B358 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G. Alexander et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (OPAL Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BUSKULIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZPHY C69 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D. Buskulic <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ALEPH Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MIYABAYASHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PL B347 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K. Miyabayashi <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (TOPAZ Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ABE<br>ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94C<br>94B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PRL 73 25<br>PL B327 386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K. Abe <i>et al.</i><br>P. Abreu <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (SLD Collab.)<br>(DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 94D<br>94P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PL B341 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P. Abreu <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AKERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 94P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZPHY C63 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R. Akers <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (OPAL Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BUSKULIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZPHY C62 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D. Buskulic <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ÀLEPH Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BUSKULIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZPHY C62 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D. Buskulic et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (ALEPH Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| VILAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PL B320 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P. Vilain <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (CHARM II Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PL B298 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P. Abreu <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (CHARM II Collab.)<br>(DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ABREU<br>ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PL B298 236<br>ZPHY C59 533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P. Abreu <i>et al.</i><br>P. Abreu <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ABREU<br>ABREU<br>Also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93<br>93I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P. Abreu <i>et al.</i><br>P. Abreu <i>et al.</i><br>(erratum)P. Abreu <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ABREU<br>ABREU<br>Also<br>ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93<br>93I<br>93L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P. Abreu <i>et al.</i><br>P. Abreu <i>et al.</i><br>(erratum)P. Abreu <i>et al.</i><br>P. Abreu <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ABREU<br>ABREU<br>Also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93<br>93I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P. Abreu <i>et al.</i><br>P. Abreu <i>et al.</i><br>(erratum)P. Abreu <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93<br>931<br>93L<br>93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P. Abreu <i>et al.</i><br>P. Abreu <i>et al.</i><br>(erratum)P. Abreu <i>et al.</i><br>P. Abreu <i>et al.</i><br>P.D. Acton <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON<br>ACTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93<br>93I<br>93L<br>93<br>93D<br>93E<br>93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P. Abreu <i>et al.</i><br>P. Abreu <i>et al.</i><br>(erratum)P. Abreu <i>et al.</i><br>P. Abreu <i>et al.</i><br>P.D. Acton <i>et al.</i><br>P.D. Acton <i>et al.</i><br>P.D. Acton <i>et al.</i><br>O. Adriani <i>et al.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>ADRIANI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93<br>93I<br>93L<br>93<br>93D<br>93E<br>93<br>93I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P. Abreu et al.<br>P. Abreu et al.<br>(erratum)P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(DPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>ADRIANI<br>BUSKULIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93<br>93I<br>93L<br>93<br>93D<br>93E<br>93<br>93I<br>93I<br>93L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B313 520                                                                                                                                                                                                                                                                                                                                                                                                                                      | P. Abreu et al.<br>P. Abreu et al.<br>(erratum)P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>D. Buskulic et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>BUSKULIC<br>NOVIKOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93<br>93I<br>93L<br>93<br>93D<br>93E<br>93<br>93I<br>93L<br>93C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B313 520<br>PL B298 453                                                                                                                                                                                                                                                                                                                                                                                                                       | P. Abreu et al.<br>P. Abreu et al.<br>(erratum)P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93<br>93I<br>93L<br>93<br>93D<br>93E<br>93<br>93I<br>93L<br>93C<br>92I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B313 520<br>PL B298 453<br>PL B277 371                                                                                                                                                                                                                                                                                                                                                                                                        | P. Abreu et al.<br>P. Abreu et al.<br>(erratum)P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>M.I. Vysotsky (ITEP)<br>(DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU<br>ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93<br>93I<br>93L<br>93D<br>93E<br>93<br>93I<br>93L<br>93C<br>92I<br>92M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B311 136<br>PL B316 427<br>PL B313 520<br>PL B298 453<br>PL B277 371<br>PL B289 199                                                                                                                                                                                                                                                                                                                                                                                         | P. Abreu et al.<br>P. Abreu et al.<br>P. Abreu et al.<br>(erratum)P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.<br>P. Abreu et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(DPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93<br>93I<br>93L<br>93<br>93D<br>93E<br>93<br>93I<br>93L<br>93C<br>92I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B313 520<br>PL B298 453<br>PL B277 371                                                                                                                                                                                                                                                                                                                                                                                                        | P. Abreu et al.<br>P. Abreu et al.<br>(erratum)P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(DPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ABREU<br>ABREU<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU<br>ABREU<br>ACTON<br>ACTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93<br>93I<br>93L<br>93<br>93D<br>93E<br>93<br>93I<br>93L<br>93C<br>92I<br>92M<br>92B<br>92L<br>92N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B316 427<br>PL B313 520<br>PL B298 453<br>PL B277 371<br>PL B289 199<br>ZPHY C53 539<br>PL B294 436<br>PL B295 357                                                                                                                                                                                                                                                                                                                            | P. Abreu et al.<br>P. Abreu et al.<br>P. Abreu et al.<br>(erratum)P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.<br>P. Abreu et al.<br>D.P. Acton et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(DPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ABREU<br>ABREU<br>ALSO<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADEVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93<br>93I<br>93L<br>93<br>93D<br>93E<br>93<br>93I<br>93L<br>93L<br>92M<br>92B<br>92B<br>92L<br>92N<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B313 520<br>PL B298 453<br>PL B277 371<br>PL B289 199<br>ZPHY C53 539<br>PL B294 436<br>PL B295 357<br>PL B275 209                                                                                                                                                                                                                                                                                                                            | P. Abreu et al.<br>P. Abreu et al.<br>(erratum)P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.<br>D.P. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>B. Adeva et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADEVA<br>ADRIANI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93<br>93I<br>93L<br>93D<br>93E<br>93<br>93I<br>93L<br>93L<br>93C<br>92I<br>92M<br>92B<br>92B<br>92L<br>92N<br>92<br>92D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B313 520<br>PL B298 453<br>PL B277 371<br>PL B289 199<br>ZPHY C53 539<br>PL B294 436<br>PL B295 357<br>PL B275 209<br>PL B292 454                                                                                                                                                                                                                                                                                                             | P. Abreu et al.<br>P. Abreu et al.<br>(erratum)P. Abreu et al.<br>P. D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.<br>D.P. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>B. Adeva et al.<br>O. Adriani et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(DPAL Collab.)<br>(CPAL Collab.)<br>(CPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ADEVA<br>ADRIANI<br>ALITTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93<br>93I<br>93L<br>93<br>93D<br>93E<br>93<br>93I<br>93L<br>93L<br>93C<br>92I<br>92M<br>92B<br>92L<br>92N<br>92<br>92D<br>92B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B313 520<br>PL B298 453<br>PL B277 371<br>PL B289 199<br>ZPHY C53 539<br>PL B294 436<br>PL B295 357<br>PL B275 209<br>PL B292 454<br>PL B276 354                                                                                                                                                                                                                                                                                              | P. Abreu et al.<br>P. Abreu et al.<br>(erratum)P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>B. Adeva et al.<br>O. Adriani et al.<br>J. Alitti et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(DAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU<br>ABREU<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ADEVA<br>ADRIANI<br>ALITTI<br>BUSKULIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93<br>931<br>932<br>93<br>935<br>938<br>938<br>931<br>932<br>932<br>921<br>922<br>922<br>922<br>922<br>922<br>922<br>922<br>922<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B313 520<br>PL B298 453<br>PL B277 371<br>PL B289 199<br>ZPHY C53 539<br>PL B294 436<br>PL B295 357<br>PL B275 209<br>PL B292 454<br>PL B276 354<br>PL B292 210                                                                                                                                                                                                                                                                               | P. Abreu et al.<br>P. Abreu et al.<br>(erratum)P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>B. Adeva et al.<br>O. Adriani et al.<br>J. Alitti et al.<br>D. Buskulic et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(DAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(DPAL Collab.)<br>(CPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ALITTI<br>BUSKULIC<br>BUSKULIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93<br>931<br>932<br>93<br>935<br>933<br>931<br>932<br>932<br>921<br>922<br>922<br>922<br>922<br>922<br>922<br>922<br>922<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B316 427<br>PL B316 427<br>PL B298 453<br>PL B277 371<br>PL B289 199<br>ZPHY C53 539<br>PL B294 436<br>PL B295 357<br>PL B275 209<br>PL B292 454<br>PL B276 354<br>PL B292 210<br>PL B294 145                                                                                                                                                                                                                                                 | P. Abreu et al.<br>P. Abreu et al.<br>(erratum)P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>B. Adeva et al.<br>O. Adriani et al.<br>J. Alitti et al.<br>D. Buskulic et al.<br>D. Buskulic et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L4 Collab.)<br>(L4 Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ABREU<br>ABREU<br>ALso<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ADEVA<br>ADRIANI<br>ALITTI<br>BUSKULIC<br>BUSKULIC<br>DECAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93<br>93I<br>93L<br>93D<br>93E<br>93<br>93I<br>93L<br>93L<br>92M<br>92B<br>92L<br>92M<br>92B<br>92L<br>92N<br>92<br>92D<br>92D<br>92E<br>92<br>92<br>92<br>92<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B316 427<br>PL B318 520<br>PL B298 453<br>PL B277 371<br>PL B289 199<br>ZPHY C53 539<br>PL B294 436<br>PL B295 357<br>PL B295 357<br>PL B276 354<br>PL B292 210<br>PL B294 145<br>PRPL 216 253                                                                                                                                                                                                                                                | P. Abreu et al.<br>P. Abreu et al.<br>(erratum)P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.<br>D.P. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>B. Adeva et al.<br>O. Adriani et al.<br>J. Alitti et al.<br>D. Buskulic et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(DPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ALITTI<br>BUSKULIC<br>BUSKULIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93<br>931<br>932<br>93<br>935<br>933<br>931<br>932<br>932<br>921<br>922<br>922<br>922<br>922<br>922<br>922<br>922<br>922<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B316 427<br>PL B316 427<br>PL B298 453<br>PL B277 371<br>PL B289 199<br>ZPHY C53 539<br>PL B294 436<br>PL B295 357<br>PL B275 209<br>PL B292 454<br>PL B276 354<br>PL B292 210<br>PL B294 145                                                                                                                                                                                                                                                 | P. Abreu et al.<br>P. Abreu et al.<br>(erratum)P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>B. Adeva et al.<br>O. Adriani et al.<br>J. Alitti et al.<br>D. Buskulic et al.<br>D. Buskulic et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(DAL Collab.)<br>(DAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L4EPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ADEVA<br>ADRIANI<br>ALITTI<br>BUSKULIC<br>BUSKULIC<br>DECAMP<br>ABE<br>ABREU<br>ACTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93<br>93I<br>93L<br>93D<br>93E<br>93<br>93I<br>93L<br>93L<br>92B<br>92L<br>92B<br>92L<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B313 520<br>PL B298 453<br>PL B277 371<br>PL B289 199<br>ZPHY C53 539<br>PL B294 436<br>PL B295 357<br>PL B295 357<br>PL B292 454<br>PL B292 455<br>PRPL 216 253<br>PRL 67 1502<br>ZPHY C50 185<br>PL B273 338                                                                                         | P. Abreu et al.<br>P. Abreu et al.<br>(erratum)P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.<br>P. Abreu et al.<br>D.P. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>B. Adeva et al.<br>O. Adriani et al.<br>J. Alitti et al.<br>D. Buskulic et al.<br>D. Buskulic et al.<br>D. Buskulic et al.<br>D. Decamp et al.<br>F. Abe et al.<br>P. Acton et al.<br>P. Acton et al.<br>D.P. Acton et al.<br>D.P. Acton et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (CHARM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(DAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L4EPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(CDF Collab.)<br>(DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ADEVA<br>ADRIANI<br>ALITTI<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC                                                                                                                                                                                                                                                                                                                             | 93<br>93I<br>93L<br>93<br>93D<br>93E<br>93<br>93L<br>93L<br>93C<br>92I<br>92B<br>92L<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B313 520<br>PL B298 453<br>PL B277 371<br>PL B289 199<br>ZPHY C53 539<br>PL B294 436<br>PL B295 357<br>PL B275 209<br>PL B292 454<br>PL B276 354<br>PL B276 354<br>PL B292 210<br>PL B294 145<br>PRPL 216 253<br>PRL 67 1502<br>ZPHY C50 185<br>PL B273 338<br>PL B255 613                                                                                                                                                                    | P. Abreu et al.<br>P. Abreu et al.<br>(erratum)P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.<br>P. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>B. Adeva et al.<br>O. Adriani et al.<br>J. Alitti et al.<br>D. Buskulic et al.<br>D. Buskulic et al.<br>D. Buskulic et al.<br>D. Decamp et al.<br>F. Abreu et al.<br>D.P. Acton et al.<br>D.P. Acton et al.<br>D. Abreu et al.<br>D. Abreu et al.<br>D. Abreu et al.<br>D. Abreu et al.<br>D.P. Acton et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L4EPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(CDF Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)                                                                                                                                                                                                                                                                                                                                                                                                         |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ADEVA<br>ADRIANI<br>ALITTI<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUS                                                                                                                                                                                                                                                                                                                         | 93<br>93I<br>93L<br>93<br>93D<br>93E<br>93<br>93I<br>93L<br>93L<br>92L<br>92M<br>92B<br>92L<br>92D<br>92B<br>92D<br>92B<br>92D<br>92E<br>92D<br>92E<br>92<br>91E<br>91H<br>91B<br>91                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B313 520<br>PL B298 453<br>PL B277 371<br>PL B289 199<br>ZPHY C53 539<br>PL B294 436<br>PL B295 357<br>PL B275 209<br>PL B292 454<br>PL B276 354<br>PL B276 354<br>PL B292 210<br>PL B294 145<br>PRPL 216 253<br>PRL 67 1502<br>ZPHY C50 185<br>PL B273 338<br>PL B275 613<br>PL B255 613<br>PL B259 199                                                                                                                                      | P. Abreu et al.<br>P. Abreu et al.<br>(erratum)P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>B. Adeva et al.<br>O. Adriani et al.<br>J. Alitti et al.<br>D. Buskulic et al.<br>D. Abreu et al.<br>D. Acton et al.<br>D. Acton et al.<br>D. Acton et al.<br>D. Abreu et al.<br>D. Abreu et al.<br>D. P. Acton et al.<br>B. Adeva et al.<br>D.P. Acton et al.<br>B. Adeva et al.<br>B. Adeva et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(DPAL Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(DPAL Collab.)<br>(DAL Collab.)<br>(DAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)                                                                                                                                                                                                                                                                                                                                                                            |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ADEVA<br>ADRIANI<br>ALITTI<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>ABREU<br>ACTON<br>ADACHI<br>ADACHI<br>ADEVA<br>AKRAWY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93<br>93I<br>93L<br>93<br>93B<br>93E<br>93<br>93L<br>93L<br>93L<br>92L<br>92M<br>92B<br>92L<br>92D<br>92B<br>92D<br>92B<br>92D<br>92E<br>92D<br>92E<br>92<br>91H<br>91B<br>91<br>91I<br>91F                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PL B298 236<br>ZPHY C59 533<br>ZPHY C55 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B313 520<br>PL B298 453<br>PL B277 371<br>PL B289 199<br>ZPHY C53 539<br>PL B294 436<br>PL B295 357<br>PL B275 209<br>PL B292 454<br>PL B276 354<br>PL B276 354<br>PL B292 210<br>PL B292 4145<br>PRPL 216 253<br>PRL 67 1502<br>ZPHY C50 185<br>PL B273 338<br>PL B255 613<br>PL B259 199<br>PL B257 531                                                                                                                                     | P. Abreu et al.<br>P. Abreu et al.<br>P. Abreu et al.<br>P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>B. Adeva et al.<br>O. Adriani et al.<br>J. Alitti et al.<br>D. Buskulic et al.<br>D. Buskulic et al.<br>D. Buskulic et al.<br>D. Decamp et al.<br>F. Abreu et al.<br>D.P. Acton et al.<br>B. Adeva et al.<br>D. Decamp et al.<br>F. Abreu et al.<br>D.P. Acton et al.<br>B. Adeva et al.<br>M.Z. Akrawy et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (CHARM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(DAL Collab.)<br>(L3 Collab.)<br>(DAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L4 Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DAL Collab.)<br>(TOPAZ Collab.)<br>(L3 Collab.)                                                                                                                                                                                                                                                                                                                                                         |
| ABREU<br>ABREU<br>ALso<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ADEVA<br>ADRIANI<br>ALITTI<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>DECAMP<br>ABE<br>ABREU<br>ACTON<br>ADACHI<br>ADACHI<br>ADEVA<br>AKRAWY<br>DECAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93<br>93I<br>93L<br>93D<br>93E<br>93<br>93I<br>93L<br>93L<br>92B<br>92L<br>92M<br>92B<br>92L<br>92P<br>92D<br>92D<br>92D<br>92D<br>92E<br>92D<br>92E<br>91H<br>91H<br>91I<br>91I<br>91F<br>91B                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B316 427<br>PL B298 453<br>PL B277 371<br>PL B289 199<br>ZPHY C53 539<br>PL B294 436<br>PL B295 357<br>PL B295 436<br>PL B295 436<br>PL B292 210<br>PL B294 145<br>PRPL 216 253<br>PRL 67 1502<br>ZPHY C50 185<br>PL B273 338<br>PL B255 613<br>PL B259 199<br>PL B257 531<br>PL B259 377                                                                                                                                                     | P. Abreu et al.<br>P. Abreu et al.<br>(erratum)P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.<br>D.P. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>B. Adeva et al.<br>O. Adriani et al.<br>J. Alitti et al.<br>D. Buskulic et al.<br>D. Buskulic et al.<br>D. Buskulic et al.<br>D. Decamp et al.<br>F. Abe et al.<br>P. Acton et al.<br>B. Adeva et al.<br>D. P. Acton et al.<br>B. Adeva et al.<br>D. P. Acton et al.<br>B. Adeva et al.<br>M.Z. Akrawy et al.<br>D. Decamp et al.<br>D. Decamp et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(DAL Collab.)<br>(DAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L4 Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DAL Collab.)<br>(DAL Collab.)<br>(TOPAZ Collab.)<br>(COPAL Collab.)<br>(DAL Collab.)<br>(DAL Collab.)<br>(DAL Collab.)<br>(DAL Collab.)                                                                                                                                                                                                                                                     |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ADEVA<br>ADRIANI<br>ALITTI<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>ABREU<br>ACTON<br>ADACHI<br>ADACHI<br>ADEVA<br>AKRAWY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93<br>93I<br>93L<br>93<br>93B<br>93E<br>93<br>93L<br>93L<br>93L<br>92L<br>92M<br>92B<br>92L<br>92D<br>92B<br>92D<br>92B<br>92D<br>92E<br>92D<br>92E<br>92<br>91H<br>91B<br>91<br>91I<br>91F                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B316 427<br>PL B316 427<br>PL B298 453<br>PL B297 371<br>PL B299 199<br>ZPHY C53 539<br>PL B294 436<br>PL B295 357<br>PL B275 209<br>PL B294 436<br>PL B295 357<br>PL B275 209<br>PL B292 454<br>PL B276 254<br>PL B292 210<br>PL B294 145<br>PRPL 216 253<br>PRL 67 1502<br>ZPHY C50 185<br>PL B273 338<br>PL B255 613<br>PL B255 613<br>PL B259 377<br>PL B266 218                                                                          | P. Abreu et al.<br>P. Abreu et al.<br>P. Abreu et al.<br>P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>B. Adeva et al.<br>O. Adriani et al.<br>J. Alitti et al.<br>D. Buskulic et al.<br>D. Buskulic et al.<br>D. Buskulic et al.<br>D. Decamp et al.<br>F. Abreu et al.<br>D.P. Acton et al.<br>B. Adeva et al.<br>D. Decamp et al.<br>F. Abreu et al.<br>D.P. Acton et al.<br>B. Adeva et al.<br>M.Z. Akrawy et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(DPAL Collab.)<br>(DAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)<br>(TOPAZ Collab.)<br>(CDF Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)                                                                                                                                                                                                                                                    |
| ABREU<br>ABREU<br>ALso<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU<br>ABREU<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ADEVA<br>ADRIANI<br>ALITTI<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>ABE<br>ABREU<br>ACTON<br>ADACHI<br>ADEVA<br>AKRAWY<br>DECAMP<br>DECAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93<br>93I<br>93L<br>93D<br>93E<br>93<br>93I<br>93L<br>93L<br>92I<br>92M<br>92B<br>92D<br>92B<br>92D<br>92D<br>92D<br>92D<br>92E<br>92D<br>92E<br>91E<br>91H<br>91B<br>91<br>91F<br>91B<br>91J                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PL B298 236<br>ZPHY C59 533<br>ZPHY C65 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B316 427<br>PL B298 453<br>PL B277 371<br>PL B289 199<br>ZPHY C53 539<br>PL B294 436<br>PL B295 357<br>PL B295 436<br>PL B295 436<br>PL B292 210<br>PL B294 145<br>PRPL 216 253<br>PRL 67 1502<br>ZPHY C50 185<br>PL B273 338<br>PL B255 613<br>PL B259 199<br>PL B257 531<br>PL B259 377                                                                                                                                                     | P. Abreu et al.<br>P. Abreu et al.<br>P. Abreu et al.<br>P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.<br>D.P. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>B. Adeva et al.<br>O. Adriani et al.<br>J. Alitti et al.<br>D. Buskulic et al.<br>D. Buskulic et al.<br>D. Buskulic et al.<br>D. Decamp et al.<br>R. Adeva et al.<br>D.P. Acton et al.<br>Adachi et al.<br>B. Adeva et al.<br>D.P. Acton et al.<br>D.P. Acton et al.<br>D. Decamp et al.<br>B. Adeva et al.<br>M.Z. Akrawy et al.<br>D. Decamp et al.<br>D. Decamp et al.<br>D. Decamp et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(DPAL Collab.)<br>(DAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)                                                                                                                                   |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ADEVA<br>ADRIANI<br>ALITTI<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>DECAMP<br>ABE<br>ABREU<br>ACTON<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ACTON<br>ADEVA<br>ADEVA<br>ADEVA<br>ACTON<br>ADEVA<br>ACTON<br>ADEVA<br>ACTON<br>ADEVA<br>ACTON<br>ADEVA<br>ACTON<br>ADEVA<br>ACTON<br>ADEVA<br>ACTON<br>ADEVA<br>ACTON<br>ADEVA<br>ACTON<br>ADEVA<br>ACTON<br>ADEVA<br>ACTON<br>ADEVA<br>ACTON<br>ADEVA<br>ACTON<br>ADEVA<br>ACTON<br>ADEVA<br>ACTON<br>ADEVA<br>ACTON<br>ADEVA<br>ADEVA<br>ACTON<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>ADEVA<br>A | 93<br>93I<br>93L<br>93<br>93D<br>93E<br>93<br>93L<br>93L<br>93L<br>92B<br>92L<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92D<br>92B<br>92D<br>92D<br>92D<br>92D<br>92D<br>92D<br>92D<br>92D<br>92D<br>92D | PL B298 236<br>ZPHY C59 533<br>ZPHY C55 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B316 427<br>PL B298 453<br>PL B294 436<br>PL B295 357<br>PL B292 454<br>PL B292 10<br>PL B294 145<br>PRPL 216 253<br>PRL 67 1502<br>ZPHY C50 185<br>PL B275 513<br>PL B255 613<br>PL B259 377<br>PL B269 218<br>PRL 67 3347<br>PL B268 457<br>ZPHY C48 13 | P. Abreu et al.<br>P. Abreu et al.<br>P. Abreu et al.<br>P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.<br>P. Abreu et al.<br>P. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>B. Adeva et al.<br>O. Adriani et al.<br>J. Alitti et al.<br>D. Buskulic et al.<br>D. Buskulic et al.<br>D. Decamp et al.<br>F. Abe et al.<br>D.P. Acton et al.<br>B. Adeva et al.<br>D. Decamp et al.<br>Adriani et al.<br>D. Decamp et al.<br>B. Adeva et al.<br>Adeva et al.<br>Adeva et al.<br>Adeva et al.<br>Adeva et al.<br>Acton et al.<br>Adeva et al. | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(DPAL Collab.)<br>(DAL Collab.)<br>(DAL Collab.)<br>(DAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DAL Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.) |
| ABREU<br>ABREU<br>Also<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ADRIANI<br>BUSKULIC<br>NOVIKOV<br>ABREU<br>ABREU<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ACTON<br>ADEVA<br>ADRIANI<br>ALITTI<br>BUSKULIC<br>BUSKULIC<br>BUSKULIC<br>DECAMP<br>ABE<br>ABREU<br>ACTON<br>ADACHI<br>ADEVA<br>ACTON<br>ADACHI<br>ADEVA<br>AKRAWY<br>DECAMP<br>DECAMP<br>JACOBSEN<br>SHIMONAKA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93<br>93I<br>93L<br>93D<br>93E<br>93<br>93I<br>93L<br>93C<br>92I<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>92D<br>92B<br>91F<br>91H<br>91B<br>91J<br>91J<br>91<br>91                                                                                                                                                                                                                                                                                                                                                                                                                                      | PL B298 236<br>ZPHY C59 533<br>ZPHY C55 709<br>PL B318 249<br>PL B305 407<br>ZPHY C58 219<br>PL B311 391<br>PL B301 136<br>PL B316 427<br>PL B313 520<br>PL B298 453<br>PL B277 371<br>PL B289 199<br>ZPHY C53 539<br>PL B294 436<br>PL B295 357<br>PL B295 357<br>PL B292 454<br>PL B292 100<br>PL B292 454<br>PL B292 100<br>PL B292 100<br>PL B295 613<br>PL B255 613<br>PL B255 513<br>PL B259 377<br>PL B266 218<br>PRL 67 3347<br>PL B266 457                                              | P. Abreu et al.<br>P. Abreu et al.<br>P. Abreu et al.<br>P. Abreu et al.<br>P. Abreu et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>O. Adriani et al.<br>D. Buskulic et al.<br>V.A. Novikov, L.B. Okun,<br>P. Abreu et al.<br>D.P. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>P.D. Acton et al.<br>B. Adeva et al.<br>O. Adriani et al.<br>J. Alitti et al.<br>D. Buskulic et al.<br>D. Buskulic et al.<br>D. Decamp et al.<br>F. Abe et al.<br>P. Acton et al.<br>B. Adeva et al.<br>D.P. Acton et al.<br>D. Decamp et al.<br>Adachi et al.<br>B. Adeva et al.<br>D.P. Acton et al.<br>D.P. Acton et al.<br>D.D. Acton et al.<br>D.D. Acton et al.<br>D. Decamp et al.<br>B. Adeva et al.<br>M.Z. Akrawy et al.<br>D. Decamp et al.<br>A. Shimonaka et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (CHÀRM II Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(OPAL Collab.)<br>(DPAL Collab.)<br>(DAL Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(L3 Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DELPHI Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(DPAL Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)<br>(ALEPH Collab.)                                                                                                                                   |

Page 61

| AKRAWY<br>BEHREND<br>BRAUNSCH<br>ELSEN<br>HEGNER<br>STUART<br>ABE<br>ABE<br>ABE<br>ABRAMS<br>ALBAJAR<br>BACALA<br>BAND<br>GREENSHAW<br>OULD-SAADA<br>SAGAWA<br>ADACHI<br>ADEVA<br>BRAUNSCH<br>ANSARI<br>BEHREND<br>BARTEL<br>AISO<br>AISO<br>ASH<br>BARTEL<br>DERRICK<br>FERNANDEZ<br>LEVI<br>BEHREND<br>BRANDELIK | 90J<br>90D<br>90<br>90<br>89<br>89C<br>89L<br>89B<br>89<br>89<br>89<br>89<br>89<br>89<br>89<br>89<br>89<br>89<br>89<br>89<br>89 | PL B246 285<br>ZPHY C47 333<br>ZPHY C48 433<br>ZPHY C46 349<br>ZPHY C46 547<br>PRL 64 983<br>PRL 62 613<br>PRL 63 720<br>PL B232 425<br>PRL 63 2173<br>PRL 63 2780<br>ZPHY C44 15<br>PL B218 112<br>PL B218 112<br>PL B218 369<br>ZPHY C42 1<br>ZPHY C42 1<br>ZPHY C44 567<br>PRL 63 2341<br>PL B208 319<br>PR D38 2665<br>ZPHY C40 163<br>PL B186 440<br>PL B191 209<br>ZPHY C30 371<br>ZPHY C30 371<br>ZPHY C26 507<br>PL 108B 140<br>PRL 55 1831<br>PL 161B 188<br>PR D31 2352<br>PRL 54 1624<br>PRL 51 1941<br>PL 114B 282<br>PL 110B 173 | <ul> <li>M.Z. Akrawy et al.</li> <li>H.J. Behrend et al.</li> <li>W. Braunschweig et al.</li> <li>E. Elsen et al.</li> <li>S. Hegner et al.</li> <li>D. Stuart et al.</li> <li>F. Abe et al.</li> <li>F. Abe et al.</li> <li>K. Abe et al.</li> <li>G.S. Abrams et al.</li> <li>G.S. Abrams et al.</li> <li>G.S. Abrams et al.</li> <li>C. Albajar et al.</li> <li>A. Bacala et al.</li> <li>H.R. Band et al.</li> <li>T. Greenshaw et al.</li> <li>F. Ould-Saada et al.</li> <li>H. Sagawa et al.</li> <li>I. Adachi et al.</li> <li>W. Braunschweig et al.</li> <li>R. Ansari et al.</li> <li>W. Bartel et al.</li> <li>M. Derrick et al.</li> <li>E. Fernandez et al.</li> <li>H.J. Behrend et al.</li> <li>R. Levi et al.</li> <li>R. Brandelik et al.</li> <li>R. Brandelik et al.</li> </ul> | (OPAL Collab.)<br>(CELLO Collab.)<br>(TASSO Collab.)<br>(JADE Collab.)<br>(JADE Collab.)<br>(CDF Collab.)<br>(CDF Collab.)<br>(CDF Collab.)<br>(VENUS Collab.)<br>(Mark II Collab.)<br>(Mark II Collab.)<br>(MAC Collab.)<br>(JADE Collab.)<br>(JADE Collab.)<br>(JADE Collab.)<br>(TOPAZ Collab.)<br>(TASSO Collab.)<br>(UA2 Collab.)<br>(TASSO Collab.)<br>(JADE Collab.)<br>(MAC Collab.)<br>(MAC Collab.)<br>(MAC Collab.)<br>(MAC Collab.)<br>(MAC Collab.)<br>(MAC Collab.)<br>(MAC Collab.)<br>(MAC Collab.)<br>(MAC Collab.)<br>(CELLO Collab.)<br>(MAC Collab.)<br>(CELLO Collab.)<br>(CELLO Collab.) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|