70. $\rho(770)$

Updated September 2019 by S. Eidelman (Novosibirsk) and G. Venanzoni (Pisa).
The determination of the parameters of the $\rho(770)$ is beset with many difficulties because of its large width. In physical region fits, the line shape does not correspond to a relativistic Breit-Wigner function with a P-wave width, but requires some additional shape parameter. This dependence on parameterization was demonstrated long ago [1]. Bose-Einstein correlations are another source of shifts in the $\rho(770)$ line shape, particularly in multiparticle final-state systems [2].

The same model dependence afflicts any other source of resonance parameters, such as the energy dependence of the phase shift δ_{1}^{1}, or the pole position. It is, therefore, not surprising that a study of $\rho(770)$ dominance in the decays of the η and η^{\prime} reveals the need for specific dynamical effects, in addition to the $\rho(770)$ pole $[3,4]$.

The cleanest determination of the $\rho(770)$ mass and width comes from $e^{+} e^{-}$annihilation and τ-lepton decays. Analysis of ALEPH [5] showed that the charged $\rho(770)$ parameters measured from τ-lepton decays are consistent with those of the neutral one determined from $e^{+} e^{-}$data [6]. This conclusion is qualitatively supported by the later studies of CLEO [7] and Belle [8]. However, comparison of the two-pion mass spectrum in τ decays from OPAL [9], CLEO [7], and ALEPH [10,11], and the $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$cross section from CMD-2 [12,13], showed significant discrepancies between the two shapes which can be as high as 10% above the ρ meson [14,15]. This discrepancy remains after measurements of the two-pion cross section in $e^{+} e^{-}$annihilation at KLOE [16,17,18,19], SND [20,21], BaBar [22] and, more recently BESIII [23] The effect is not accounted for by isospin breaking [24,25,26,27], but the accuracy of its calculation may be overestimated [28,29].

This problem seems to be solved after a recent analysis in [30] which showed that after correcting the τ data for the missing $\rho-\gamma$ mixing contribution, besides the other known isospin symmetry violating corrections, the $\pi \pi \mathrm{I}=1$ part of the hadronic vacuum polarization contribution to the muon g-2 is fully compatible between τ based and $e^{+} e^{-}$ based evaluations. The global fit of the whole set of the ρ, ω, and ϕ decays, taking into account mixing effects in the hidden local symmetry model, also showed consistency of the data on τ decays to two pions and $e^{+} e^{-}$annihilation [31,32]. However, because of the progress in $e^{+} e^{-}$data, the τ input is now less precise and less reliable due to additional theoretical uncertainties [33] decreasing importance of τ versus $e^{+} e^{-}$comparison for the determination of $\rho(770)$ parameters and other applications, like, e.g., calculations of hadronic vacuum polarization.

References:

1. J. Pisut and M. Roos, Nucl. Phys. B6, 325 (1968).
2. G.D. Lafferty, Z. Phys. C60, 659 (1993).
3. A. Abele et al., Phys. Lett. B402, 195 (1997).
4. M. Benayoun et al., Eur. Phys. J. C31, 525 (2003).
5. R. Barate et al., Z. Phys. C76, 15 (1997).
6. L.M. Barkov et al., Nucl. Phys. B256, 365 (1985).
7. S. Anderson et al., Phys. Rev. D61, 112002 (2000).
M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update

2 70. $\rho(770)$

8. M. Fujikawa et al., Phys. Rev. D78, 072006 (2008).
9. K. Ackerstaff et al., Eur. Phys. J. C7, 571 (1999).
10. M. Davier et al., Nucl. Phys. (Proc. Supp.) B123, 47 (2003).
11. S. Schael et al., Phys. Reports 421, 191 (2005).
12. R.R. Akhmetshin et al., Phys. Lett. B527, 161 (2002).
13. R.R. Akhmetshin et al., Phys. Lett. B578, 285 (2004).
14. M. Davier et al., Eur. Phys. J. C27, 497 (2003).
15. M. Davier et al., Eur. Phys. J. C31, 503 (2003).
16. A. Aloisio et al., Phys. Lett. B606, 12 (2005).
17. F. Ambrosino et al., Phys. Lett. B670, 285 (2009).
18. F. Ambrosino et al., Phys. Lett. B700, 102 (2011).
19. D. Babusci et al., Phys. Lett. B720, 336 (2013).
20. M.N. Achasov et al., Sov. Phys. JETP 101, 1053 (2005).
21. M.N. Achasov et al., Sov. Phys. JETP 103, 380 (2006).
22. B. Aubert et al., Phys. Rev. Lett. 103, 231801 (2009).
23. M. Ablikim et al., Phys. Lett. B753, 629 (2016).
24. R. Alemany et al., Eur. Phys. J. C2, 123 (1998).
25. H. Czyz and J.J. Kuhn, Eur. Phys. J. C18, 497 (2001).
26. V. Cirigliano et al., Phys. Lett. B513, 361 (2001).
27. V. Cirigliano et al., Eur. Phys. J. C23, 121 (2002).
28. K. Maltman and C.E. Wolfe, Phys. Rev. D73, 013004 (2006).
29. C.E. Wolfe and K. Maltman, Phys. Rev. D80, 114024 (2009).
30. F. Jegerlehner and R. Szafron, Eur. Phys. J. C71, 1632 (2011).
31. M. Benayoun et al., Eur. Phys. J. C72, 1848 (2012).
32. M. Benayoun et al., Eur. Phys. J. C73, 2453 (2013).
33. M. Davier et al., Eur. Phys. J. C77, 827 (2017).
