## 45. SU(3) Isoscalar Factors and Representation Matrices

Written by R.L. Kelly (LBNL).
The most commonly used $\mathrm{SU}(3)$ isoscalar factors, corresponding to the singlet, octet, and decuplet content of $8 \otimes 8$ and $10 \otimes 8$, are shown at the right. The notation uses particle names to identify the coefficients, so that the pattern of relative couplings may be seen at a glance. We illustrate the use of the coefficients below. See J.J de Swart, Rev. Mod. Phys. 35, 916 (1963) for detailed explanations and phase conventions.
$A \sqrt{ }$ is to be understood over every integer in the matrices; the exponent $1 / 2$ on each matrix is a reminder of this. For example, the $\Xi \rightarrow \Omega K$ element of the $10 \rightarrow 10 \otimes 8$ matrix is $-\sqrt{6} / \sqrt{24}=-1 / 2$.

Intramultiplet relative decay strengths may be read directly from the matrices. For example, in decuplet $\rightarrow$ octet + octet decays, the ratio of $\Omega^{*} \rightarrow \Xi \bar{K}$ and $\Delta \rightarrow N \pi$ partial widths is, from the $10 \rightarrow 8 \times 8$ matrix,

$$
\begin{equation*}
\frac{\Gamma\left(\Omega^{*} \rightarrow \Xi \bar{K}\right)}{\Gamma(\Delta \rightarrow N \pi)}=\frac{12}{6} \times(\text { phase space factors }) \tag{45.1}
\end{equation*}
$$

Including isospin Clebsch-Gordan coefficients, we obtain, e.g.,

$$
\begin{equation*}
\frac{\Gamma\left(\Omega^{*-} \rightarrow \Xi^{0} K^{-}\right)}{\Gamma\left(\Delta^{+} \rightarrow p \pi^{0}\right)}=\frac{1 / 2}{2 / 3} \times \frac{12}{6} \times p . s . f .=\frac{3}{2} \times \text { p.s.f. } \tag{45.2}
\end{equation*}
$$

Partial widths for $8 \rightarrow 8 \otimes 8$ involve a linear superposition of $8_{1}$ (symmetric) and $8_{2}$ (antisymmetric) couplings. For example,

$$
\begin{equation*}
\Gamma\left(\Xi^{*} \rightarrow \Xi \pi\right) \sim\left(-\sqrt{\frac{9}{20}} g_{1}+\sqrt{\frac{3}{12}} g_{2}\right)^{2} \tag{45.3}
\end{equation*}
$$

The relations between $g_{1}$ and $g_{2}$ (with de Swart's normalization) and the standard $D$ and $F$ couplings that appear in the interaction Lagrangian,

$$
\begin{equation*}
\mathscr{L}=-\sqrt{2} D \operatorname{Tr}(\{\bar{B}, B\} M)+\sqrt{2} F \operatorname{Tr}([\bar{B}, B] M), \tag{45.4}
\end{equation*}
$$

where $[\bar{B}, B] \equiv \bar{B} B-B \bar{B}$ and $\{\bar{B}, B\} \equiv \bar{B} B+B \bar{B}$, are

$$
\begin{equation*}
D=\frac{\sqrt{30}}{40} g_{1}, \quad F=\frac{\sqrt{6}}{24} g_{2} . \tag{45.5}
\end{equation*}
$$

Thus, for example,

$$
\begin{equation*}
\Gamma\left(\Xi^{*} \rightarrow \Xi \pi\right) \sim(F-D)^{2} \sim(1-2 \alpha)^{2} \tag{45.6}
\end{equation*}
$$

where $\alpha \equiv F /(D+F)$. (This definition of $\alpha$ is de Swart's. The alternative $D /(D+F)$, due to Gell-Mann, is also used.)

The generators of $\mathrm{SU}(3)$ transformations, $\lambda_{a}(a=1,8)$, are $3 \times 3$ matrices that obey the following commutation and anticommutation relationships:

$$
\begin{gather*}
{\left[\lambda_{a}, \lambda_{b}\right] \equiv \lambda_{a} \lambda_{b}-\lambda_{b} \lambda_{a}=2 i f_{a b c} \lambda_{c}}  \tag{45.7}\\
\left\{\lambda_{a}, \lambda_{b}\right\} \equiv \lambda_{a} \lambda_{b}+\lambda_{b} \lambda_{a}=\frac{4}{3} \delta_{a b} I+2 d_{a b c} \lambda_{c} \tag{45.8}
\end{gather*}
$$

where $I$ is the $3 \times 3$ identity matrix, and $\delta_{a b}$ is the Kronecker delta symbol. The $f_{a b c}$ are odd under the permutation of any pair of indices, while the $d_{a b c}$ are even. The nonzero values are

## 2 45.SU(3) isoscalar factors and representation matrices

$1 \rightarrow 8 \otimes 8$
$(\Lambda) \rightarrow\left(\begin{array}{llll}N \bar{K} & \Sigma \pi & \Lambda \eta & \Xi K\end{array}\right) \quad=\frac{1}{\sqrt{8}}\left(\begin{array}{llll}2 & 3 & -1 & -2\end{array}\right)^{1 / 2}$
$8_{1} \rightarrow 8 \otimes 8$
$\left(\begin{array}{c}N \\ \Sigma \\ \Lambda \\ \Xi\end{array}\right) \rightarrow\left(\begin{array}{cccc}N \pi & N \eta & \Sigma K & \Lambda K \\ N \bar{K} & \Sigma \pi & \Lambda \pi & \Sigma \eta \\ N \bar{K} & \Sigma \pi & \Lambda \eta & \Xi K \\ \Sigma \bar{K} & \Lambda \bar{K} & \Xi \pi & \Xi \eta\end{array}\right)=\frac{1}{\sqrt{20}}\left(\begin{array}{cccc}9 & -1 & -9 & -1 \\ -6 & 0 & 4 & 4 \\ \hline & -12 & -4 & -2 \\ 2 & -1 & -9 & -1\end{array}\right)$
$8_{2} \rightarrow 8 \otimes 8$
$\left(\begin{array}{c}N \\ \Sigma \\ \Lambda \\ \Xi\end{array}\right) \rightarrow\left(\begin{array}{cccc}N \pi & N \eta & \Sigma K & \Lambda K \\ N \bar{K} & \Sigma \pi & \Lambda \pi & \Sigma \eta \\ \hline \bar{K} & \Sigma \pi & \Lambda \eta & \Xi K \\ \Sigma \bar{K} & \Lambda \bar{K} & \Xi \pi & \Xi \eta\end{array}\right)=\frac{1}{\sqrt{12}}\left(\begin{array}{cccc}3 & 3 & 3 & -3 \\ 2 & 8 & 0 & 0 \\ \hline 6 & 0 & 0 & -2 \\ 3 & 3 & 3 & -3\end{array}\right)$

$$
10 \rightarrow 8 \otimes 8
$$

$$
\left(\begin{array}{c}
\Delta \\
\Sigma \\
\Xi \\
\Omega
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
N \pi & \Sigma K & \\
N \bar{K} & \Sigma \pi & \Lambda \pi \\
\Sigma \bar{K} & \Sigma \eta & \Xi K \\
\bar{K} & \Xi \pi & \Xi \eta \\
\Xi \bar{K} &
\end{array}\right)=\frac{1}{\sqrt{12}}\left(\begin{array}{ccccc} 
& -6 & 6 & & \\
-2 & 2 & -3 & 3 & 2 \\
3 & -3 & 3 & 3 & \\
& 12 & &
\end{array}\right)^{1 / 2}
$$

$$
8 \rightarrow 10 \otimes 8
$$

$$
\left(\begin{array}{l}
N \\
\Sigma \\
\Lambda \\
\Xi
\end{array}\right) \rightarrow\left(\begin{array}{cccc} 
& \Delta \pi & \Sigma K & \\
\Delta \bar{K} & \Sigma \pi & \Sigma \eta & \Xi K \\
& \Sigma \pi & \Xi K & \\
\Sigma \bar{K} & \Xi \pi & \Xi \eta & \Omega K
\end{array}\right) \quad=\frac{1}{\sqrt{15}}\left(\begin{array}{rrrr} 
& -12 & 3 & \\
8 & -2 & -3 & 2 \\
& -9 & 6 & \\
3 & -3 & -3 & 6
\end{array}\right)^{1 / 2}
$$

$$
10 \rightarrow 10 \otimes 8
$$

$$
\left.\left.\left(\begin{array}{c}
\Delta \\
\Sigma \\
\Xi \\
\Omega
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
\Delta \pi & \Delta \eta & \Sigma K \\
\Delta \bar{K} & \Sigma \pi & \Sigma \eta & \Xi K \\
\Sigma \bar{K} & \Xi \pi & \Xi \eta & \Omega K \\
\Xi \bar{K} & \Omega \eta &
\end{array}\right) \quad \begin{array}{c}
\text { December 6, 2019 } \\
12: 04
\end{array}\right) \quad \begin{array}{rrrr} 
& 1 \\
8 & 3 & 3 & -6 \\
12 & 3 & 0 & -8 \\
& 12 & -3 & -6
\end{array}\right)^{1 / 2}
$$

## 45. $S U(3)$ isoscalar factors and representation matrices

| $a b c$ | $f_{a b c}$ | $a b c$ | $d_{a b c}$ | $a b c$ | $d_{a b c}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 123 | 1 | 118 | $1 / \sqrt{3}$ | 355 | 1/2 |
| 147 | 1/2 | 146 | 1/2 | 366 | $-1 / 2$ |
| 156 | -1/2 | 157 | 1/2 | 377 | $-1 / 2$ |
| 246 | 1/2 | 228 | $1 / \sqrt{3}$ | 448 | $-1 /(2 \sqrt{3})$ |
| 257 | 1/2 | 247 | $-1 / 2$ | 558 | $-1 /(2 \sqrt{3})$ |
| 345 | 1/2 | 256 | 1/2 | 668 | $-1 /(2 \sqrt{3})$ |
| 367 | $-1 / 2$ | 338 | $1 / \sqrt{3}$ | 778 | $-1 /(2 \sqrt{3})$ |
| 458 | $\sqrt{3} / 2$ | 344 | 1/2 | 888 | $-1 / \sqrt{3}$ |
| 678 | $\sqrt{3} / 2$ |  |  |  |  |

The $\lambda_{a}$ 's are

$$
\begin{aligned}
& \lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \lambda_{2}=\left(\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \lambda_{3}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \lambda_{5}=\left(\begin{array}{rrr}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& \lambda_{7}=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right) \quad \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
\end{aligned}
$$

Equation (45.7) defines the Lie algebra of $\mathrm{SU}(3)$. A general $d$-dimensional representation is given by a set of $d \times d$ matrices satisfying Eq. (45.7) with the $f_{a b c}$ given above. Equation (45.8) is specific to the defining 3-dimensional representation.

