110. Supersymmetry, Part I (Theory)

Revised August 2019 by B.C. Allanach (DAMTP, Cambridge U.) and H.E. Haber (UC Santa Cruz).

110.1 Introduction 1
110.2 Structure of the MSSM 2
110.2.1 R-parity and the lightest supersymmetric particle 4
110.2.2 The goldstino and gravitino 4
110.2.3 Hidden sectors and the structure of SUSY breaking 5
110.2.4 SUSY and extra dimensions 6
110.2.5 Split-SUSY 6
110.3 Parameters of the MSSM 7
110.3.1 The SUSY-conserving parameters 7
110.3.2 The SUSY-breaking parameters 7
110.3.3 MSSM-124 9
110.4 The supersymmetric-particle spectrum 9
110.4.1 The charginos and neutralinos 10
110.4.2 The squarks and sleptons 11
110.5 The supersymmetric Higgs sector 12
110.5.1 The tree-level Higgs sector 12
110.5.2 The radiatively-corrected Higgs sector 13
110.6 Restricting the MSSM parameter freedom 14
110.6.1 Gaugino mass relations 15
110.6.2 Constrained versions of the MSSM: mSUGRA, CMSSM, etc. 15
110.6.3 Gauge-mediated SUSY breaking 17
110.6.4 The phenomenological MSSM 18
110.6.5 Simplified models 19
110.7 Experimental data confronts the MSSM 19
110.7.1 Naturalness constraints and the little hierarchy 20
110.7.2 Constraints from virtual exchange of supersymmetric particles 22
110.8 Massive neutrinos in weak-scale SUSY 23
110.8.1 The supersymmetric seesaw 23
110.8.2 R-parity-violating SUSY 23
110.9 Extensions beyond the MSSM 25

110.1 Introduction

Supersymmetry (SUSY) is a generalization of the space-time symmetries of quantum field theory that transforms fermions into bosons and vice versa [1]. The existence of such a non-trivial extension of the Poincaré symmetry of ordinary quantum field theory was initially surprising, and its form is highly constrained by theoretical principles [2]. SUSY also provides a framework for the unification of particle physics and gravity [3-6] at the Planck energy scale, $M_{\mathrm{P}} \sim 10^{19} \mathrm{GeV}$, where the gravitational interactions become comparable in strength to the gauge interactions. Moreover, supersymmetry can stabilize the hierarchy between the energy scale that characterizes electroweak symmetry breaking, $M_{\mathrm{EW}} \sim 100 \mathrm{GeV}$, and the Planck scale [7-10] against large radiative corrections. The stability of this large gauge hierarchy with respect to radiative quantum corrections is
not possible to maintain in the Standard Model (SM) without an unnatural fine-tuning of the parameters of the fundamental theory at the Planck scale. In contrast, in a supersymmetric extension of the SM, it is possible to maintain the gauge hierarchy while providing a natural framework for elementary scalar fields.

If supersymmetry were an exact symmetry of nature, then particles and their superpartners, which differ in spin by half a unit, would be degenerate in mass. Since superpartners have not (yet) been observed, supersymmetry must be a broken symmetry. Nevertheless, the stability of the gauge hierarchy can still be maintained if the SUSY breaking is soft [11,12], and the corresponding SUSY-breaking mass parameters are no larger than a few TeV . Whether this is still plausible in light of recent SUSY searches at the LHC (see Sec. 111) will be discussed in Sec. 110.7.

In particular, soft-SUSY-breaking terms of the Lagrangian involve combinations of fields with total mass dimension of three or less, with some restrictions on the dimension-three terms as elucidated in Ref. [11]. The impact of the soft terms becomes negligible at energy scales much larger than the size of the SUSY-breaking masses. Thus, a theory of weak-scale supersymmetry, where the effective scale of supersymmetry breaking is tied to the scale of electroweak symmetry breaking, provides a natural framework for the origin and the stability of the gauge hierarchy [7-10].

At present, there is no unambiguous experimental evidence for the breakdown of the SM at or below the TeV scale. The expectations for new TeV -scale physics beyond the SM are based primarily on three theoretical arguments. First, in a theory with an elementary scalar field of mass m and interaction strength λ (e.g., a quartic scalar self-coupling, the square of a gauge coupling or the square of a Yukawa coupling), the stability with respect to quantum corrections requires the existence of an energy cutoff roughly of order $\left(16 \pi^{2} / \lambda\right)^{1 / 2} m$, beyond which new physics must enter [13]. A significantly larger energy cutoff would require an unnatural fine-tuning of parameters that govern the effective low-energy theory. Applying this argument to the SM leads to an expectation of new physics at the TeV scale [10].

Second, the unification of the three SM gauge couplings at a very high energy close to the Planck scale is possible if new physics beyond the SM (which modifies the running of the gauge couplings above the electroweak scale) is present. The minimal supersymmetric extension of the SM, where superpartner masses lie below a few TeV , provides an example of successful gauge coupling unification [14].

Third, the existence of dark matter that makes up approximately one quarter of the energy density of the universe, cannot be explained within the SM of particle physics [15]. Remarkably, a stable weakly-interacting massive particle (WIMP) whose mass and interaction rate are governed by new physics associated with the TeV -scale can be consistent with the observed density of dark matter (this is the so-called WIMP miracle, which is reviewed in Ref. [16]). The lightest supersymmetric particle, if stable, is a promising (although not the unique) candidate for the dark matter [17-21]. Further aspects of dark matter can be found in Sec. 26.

110.2 Structure of the MSSM

The minimal supersymmetric extension of the SM (MSSM) consists of the fields of the two-Higgs-doublet extension of the SM and the corresponding superpartners [22, 23]. A particle and its superpartner together form a supermultiplet. The corresponding field content of the supermultiplets of the MSSM and their gauge quantum numbers are shown in Table 110.1. The electric charge $Q=T_{3}+\frac{1}{2} Y$ is determined in terms of the third component of the weak isospin $\left(T_{3}\right)$ and the $\mathrm{U}(1)$ weak hypercharge (Y).

The gauge supermultiplets consist of the gluons and their gluino fermionic superpartners and the $\mathrm{SU}(2) \times \mathrm{U}(1)$ gauge bosons and their gaugino fermionic superpartners. The matter supermultiplets consist of three generations of left-handed quarks and leptons and their scalar superpartners

Table 110.1: The fields of the MSSM and their $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ quantum numbers are listed. For simplicity, only one generation of quarks and leptons is exhibited. For each lepton, quark, and Higgs supermultiplet (each denoted by a hatted upper-case letter), there is a corresponding antiparticle multiplet of charge-conjugated fermions and their associated scalar partners [24].

Field Content of the MSSM							
Super- multiplets	Super- field	Bosonic fields	Fermionic partners	$\mathrm{SU}(3)$	$\mathrm{SU}(2)$	$\mathrm{U}(1)$	
gluon/gluino	\hat{V}_{8}	g	\widetilde{g}	8	1	0	
gauge boson/	\hat{V}^{2}	$W^{ \pm}, W^{0}$	$\widetilde{W}^{ \pm}, \widetilde{W}^{0}$	1	3	0	
gaugino	\hat{V}^{\prime}	B	\widetilde{B}	1	1	0	
slepton/	\hat{L}^{c}	$\left(\widetilde{\nu}_{L}, \widetilde{e}_{L}^{-}\right)$	$\left(\nu, e^{-}\right)_{L}$	1	2	-1	
lepton	\hat{E}^{c}	\tilde{e}_{R}^{+}	e_{L}^{c}	1	1	2	
squark/	\hat{Q}	$\left(\widetilde{u}_{L}, \widetilde{d}_{L}\right)$	$(u, d)_{L}$	3	2	$1 / 3$	
quark	\hat{U}^{c}	\widetilde{u}_{R}^{*}	u_{L}^{c}	$\overline{3}$	1	$-4 / 3$	
	\hat{D}^{c}	\widetilde{d}_{R}^{*}	d_{L}^{c}	$\overline{3}$	1	$2 / 3$	
Higgs/	\hat{H}_{d}	$\left(H_{d}^{0}, H_{d}^{-}\right)$	$\left(\widetilde{H}_{d}^{0}, \widetilde{H}_{d}^{-}\right)$	1	2	-1	
higgsino	\hat{H}_{u}	$\left(H_{u}^{+}, H_{u}^{0}\right)$	$\left(\widetilde{H}_{u}^{+}, \widetilde{H}_{u}^{0}\right)$	1	2	1	

(squarks and sleptons, collectively referred to as sfermions), and the corresponding antiparticles. The Higgs supermultiplets consist of two complex Higgs doublets, their higgsino fermionic superpartners, and the corresponding antiparticles. The enlarged Higgs sector of the MSSM constitutes the minimal structure needed to guarantee the cancellation of gauge anomalies [25] generated by the higgsino superpartners that can appear as internal lines in triangle diagrams with three external electroweak gauge bosons. Moreover, without a second Higgs doublet, one cannot generate mass for both "up"-type and "down"-type quarks (and charged leptons) in a way consistent with the underlying SUSY [26-28].

In the most elegant treatment of SUSY, spacetime is extended to superspace which consists of the spacetime coordinates and new anticommuting fermionic coordinates θ and $\theta^{\dagger}[29,30]$. Each supermultiplet is represented by a superfield that is a function of the superspace coordinates. The fields of a given supermultiplet (which are functions of the spacetime coordinates) are coefficients of the θ and θ^{\dagger} expansion of the corresponding superfield.

Vector superfields contain the gauge boson fields and their gaugino partners. Chiral superfields contain the spin-0 and spin- $1 / 2$ fields of the matter or Higgs supermultiplets. A general supersymmetric Lagrangian is determined by three functions of the chiral superfields [4]: the superpotential, the Kähler potential, and the gauge kinetic function (which can be appropriately generalized to accommodate higher derivative terms [31]). Minimal forms for the Kähler potential and gauge kinetic function, which generate canonical kinetic energy terms for all the fields, are required for renormalizable globally supersymmetric theories. A renormalizable superpotential, which is at most cubic in the chiral superfields, yields supersymmetric Yukawa couplings and mass terms. A combination of gauge invariance and SUSY produces couplings of gaugino fields to matter (or Higgs) fields and their corresponding superpartners. The (renormalizable) MSSM Lagrangian is then constructed by including all possible supersymmetric interaction terms (of dimension four or less) that satisfy $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ gauge invariance and $B-L$ conservation (where $B=$ baryon number and $L=$ lepton number). Finally, the most general soft-supersymmetry-breaking terms consistent with these symmetries are added $[11,12,32]$.

Although the MSSM is the focus of much of this review, there is some motivation for considering non-minimal supersymmetric extensions of the SM. For example, extra structure is needed to generate non-zero neutrino masses as discussed in Sec. 110.8. In addition, in order to address some theoretical issues and tensions associated with the MSSM, it has been fruitful to introduce one additional singlet Higgs superfield. The resulting next-to-minimal supersymmetric extension of the Standard Model (NMSSM) [33] is considered further in Sec. 110.4-110.7 and 110.9. Finally, one is always free to add additional fields to the SM along with the corresponding superpartners. However, only certain choices for the new fields (e.g., the addition of complete $\mathrm{SU}(5)$ multiplets) will preserve the successful gauge coupling unification of the MSSM. Some examples will be briefly mentioned in Sec. 110.9.

110.2.1 R-parity and the lightest supersymmetric particle

The (renormalizable) SM Lagrangian possesses an accidental global $B-L$ symmetry due to the fact that B and L-violating operators composed of SM fields must have dimension $d=5$ or larger [34]. Consequently, B and L-violating effects are suppressed by $\left(M_{\mathrm{EW}} / M\right)^{d-4}$, where M is the characteristic mass scale of the physics that generates the corresponding higher dimensional operators. Indeed, values of M of order the grand unification scale or larger yield the observed (approximate) stability of the proton and suppression of neutrino masses. Unfortunately, these results are not guaranteed in a generic supersymmetric extension of the SM. For example, it is possible to construct gauge invariant supersymmetric dimension-four B and L-violating operators made up of fields of SM particles and their superpartners. Such operators, if present in the theory, could yield a proton decay rate many orders of magnitude larger than the current experimental bound. It is for this reason that $B-L$ conservation is imposed on the supersymmetric Lagrangian when defining the MSSM, which is sufficient for eliminating all B and L-violating operators of dimension $d \leq 4$.

As a consequence of the $B-L$ symmetry, the MSSM possesses a multiplicative R-parity invariance, where $R=(-1)^{3(B-L)+2 S}$ for a particle of spin $S[35]$. This implies that all the particles of the SM have even R-parity, whereas the corresponding superpartners have odd R-parity. The conservation of R-parity in scattering and decay processes has a critical impact on supersymmetric phenomenology. For example, any initial state in a scattering experiment will involve ordinary (Reven) particles. Consequently, it follows that supersymmetric particles must be produced in pairs. In general, these particles are highly unstable and decay into lighter states. Moreover, R-parity invariance also implies that the lightest supersymmetric particle (LSP) is absolutely stable, and must eventually be produced at the end of a decay chain initiated by the decay of a heavy unstable supersymmetric particle.

In order to be consistent with cosmological constraints, a stable LSP is almost certainly electrically and color neutral [19]. Consequently, the LSP in an R-parity-conserving theory is weakly interacting with ordinary matter, i.e., it behaves like a stable heavy neutrino and will escape collider detectors without being directly observed. Thus, the canonical signature for conventional R-parity-conserving supersymmetric theories is missing (transverse) momentum, due to the escape of the LSP. Moreover, as noted in Sec. 110.1 and reviewed in Refs. [20] and [21], the stability of the LSP in R-parity-conserving SUSY makes it a promising candidate for dark matter.

The possibility of relaxing the R-parity invariance of the MSSM (which would generate new B and/or L-violating interactions) will be addressed in Sec. 110.8.2.

110.2.2 The goldstino and gravitino

In the MSSM, SUSY breaking is accomplished by including the most general renormalizable soft-SUSY-breaking terms consistent with the $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ gauge symmetry and R-parity invariance. These terms parameterize our ignorance of the fundamental mechanism of supersymmetry
breaking. If supersymmetry breaking occurs spontaneously, then a massless Goldstone fermion called the goldstino $\left(\widetilde{G}_{1 / 2}\right)$ must exist. The goldstino would then be the LSP, and could play an important role in supersymmetric phenomenology [36].

However, the goldstino degrees of freedom are physical only in models of spontaneously-broken global SUSY. If SUSY is a local symmetry, then the theory must incorporate gravity; the resulting theory is called supergravity [5,37$]$. In models of spontaneously-broken supergravity, the goldstino is "absorbed" by the gravitino (\widetilde{G}), the spin- $3 / 2$ superpartner of the graviton, via the super-Higgs mechanism [38]. Consequently, the goldstino is removed from the physical spectrum and the gravitino acquires a mass (denoted by $m_{3 / 2}$). If $m_{3 / 2}$ is smaller than the mass of the lightest superpartner of the SM particles, then the gravitino is the LSP.

In processes with center-of-mass energy $E \gg m_{3 / 2}$, one can employ the goldstino-gravitino equivalence theorem [39], which implies that the interactions of the helicity $\pm \frac{1}{2}$ gravitino (whose properties approximate those of the goldstino) dominate those of the helicity $\pm \frac{3}{2}$ gravitino. The interactions of gravitinos with other light fields can be described by a low-energy effective Lagrangian that is determined by fundamental principles [40].

110.2.3 Hidden sectors and the structure of SUSY breaking

It is very difficult (perhaps impossible) to construct a realistic model of spontaneously-broken weak-scale supersymmetry where the supersymmetry breaking arises solely as a consequence of the interactions of the particles of the MSSM. A more successful scheme posits a theory with at least two distinct sectors: a visible sector consisting of the particles of the MSSM [32] and a sector where SUSY breaking is generated. It is often (but not always) assumed that particles of the hidden sector are neutral with respect to the SM gauge group. The effects of the hidden sector supersymmetry breaking are then transmitted to the MSSM by some mechanism (often involving the mediation by particles that comprise an additional messenger sector). Two theoretical scenarios that exhibit this structure are gravity-mediated and gauge-mediated SUSY breaking.

Supergravity models provide a natural mechanism for transmitting the SUSY breaking of the hidden sector to the particle spectrum of the MSSM. In models of gravity-mediated supersymmetry breaking, gravity is the messenger of supersymmetry breaking [41-45]. More precisely, supersymmetry breaking is mediated by effects of gravitational strength (suppressed by inverse powers of the Planck mass). The soft-SUSY-breaking parameters with dimensions of mass arise as modeldependent multiples of the gravitino mass $m_{3 / 2}$. In this scenario, $m_{3 / 2}$ is of order the electroweak-symmetry-breaking scale, while the gravitino couplings are roughly gravitational in strength [3, 46]. However, such a gravitino typically plays no direct role in supersymmetric phenomenology at colliders (except perhaps indirectly in the case where the gravitino is the LSP [47]).

Under certain theoretical assumptions on the structure of the Kähler potential (the so-called sequestered form introduced in Ref. [48]), SUSY breaking is due entirely to the super-conformal (super-Weyl) anomaly, which is common to all supergravity models [48]. In particular, gaugino masses are radiatively generated at one-loop, and squark and slepton squared-mass matrices are flavor-diagonal. In sequestered scenarios, sfermion squared-masses arise at two-loops, which implies that gluino and sfermion masses are of the same order of magnitude. This approach is called anomaly-mediated SUSY breaking (AMSB). Indeed, anomaly mediation is more generic than originally conceived, and provides a ubiquitous source of SUSY breaking [49]. However in the simplest formulation of AMSB as applied to the MSSM, the squared-masses of the sleptons are negative (known as the tachyonic slepton problem). It may be possible to cure this otherwise fatal flaw in non-minimal extensions of the MSSM [50]. Alternatively, one can assert that anomaly mediation is not the sole source of SUSY breaking in the sfermion sector. In non-sequestered scenarios, sfermion squared-masses can arise at tree-level, in which case squark masses would be parametrically larger
than the loop-suppressed gaugino masses [51].
In gauge-mediated supersymmetry breaking (GMSB), gauge forces transmit the supersymmetry breaking to the MSSM. A typical structure of such models involves a hidden sector where SUSY is broken, a messenger sector consisting of particles (messengers) with nontrivial $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ quantum numbers, and the visible sector consisting of the fields of the MSSM [52-55]. The direct coupling of the messengers to the hidden sector generates a supersymmetry-breaking spectrum in the messenger sector. Supersymmetry breaking is then transmitted to the MSSM via the virtual exchange of the messenger fields. In models of direct gauge mediation, there is no separate hidden sector. In particular, the sector in which the SUSY breaking originates includes fields that carry nontrivial SM quantum numbers, which allows for the direct transmission of SUSY breaking to the MSSM [56].

In models of gauge-mediated SUSY breaking, the gravitino is the LSP [17], as its mass can range from a few eV (in the case of low SUSY breaking scales) up to a few GeV (in the case of high SUSY breaking scales). In particular, the gravitino is a potential dark matter candidate (for a review and guide to the literature, see Ref. [21]). Big bang nucleosynthesis (see Section 23) also provides some interesting constraints on the gravitino and the properties of the next-to-lightest supersymmetric particle that decays into the gravitino LSP [57]. The couplings of the helicity $\pm \frac{1}{2}$ components of \widetilde{G} to the particles of the MSSM (which approximate those of the goldstino as previously noted in Sec. 110.2.2) are significantly stronger than gravitational strength and amenable to experimental collider analyses.

The concept of a hidden sector is more general than SUSY. Hidden valley models [58] posit the existence of a hidden sector of new particles and interactions that are very weakly coupled to particles of the SM. The impact of a hidden valley on supersymmetric phenomenology at colliders can be significant if the LSP lies in the hidden sector [59].

110.2.4 SUSY and extra dimensions

Approaches to SUSY breaking have also been developed in the context of theories in which the number of spatial dimensions is greater than three. In particular, a number of SUSY-breaking mechanisms have been proposed that are inherently extra-dimensional [60]. The size of the extra dimensions can be significantly larger than M_{P}^{-1}; in some cases of order $(\mathrm{TeV})^{-1}$ or even larger (see, e.g., Sec. 107 or Ref. [61]).

For example, in one approach the fields of the MSSM live on some brane (a lower-dimensional manifold embedded in a higher-dimensional spacetime), while the sector of the theory that breaks SUSY lives on a second spatially-separated brane. Two examples of this approach are AMSB [48] and gaugino-mediated SUSY breaking [62]. In both cases, SUSY breaking is transmitted through fields that live in the bulk (the higher-dimensional space between the two branes). This setup has some features in common with both gravity-mediated and gauge-mediated SUSY breaking (e.g., a hidden and visible sector and messengers).

Since a higher dimensional theory must be compactified to four spacetime dimensions, one can also generate a source of SUSY breaking by employing boundary conditions on the compactified space that distinguish between fermions and bosons. This is the so-called Scherk-Schwarz mechanism [63]. The phenomenology of such models can be strikingly different from that of the usual MSSM [64].

110.2.5 Split-SUSY

If SUSY is not connected with the origin of the electroweak scale, it may still be possible that some remnant of the superparticle spectrum survives down to the TeV -scale or below. This is the idea of split-SUSY [65,66], in which scalar superpartners of the quarks and leptons are significantly heavier (perhaps by many orders of magnitude) than 1 TeV , whereas the fermionic superpartners
of the gauge and Higgs bosons have masses on the order of 1 TeV or below. With the exception of a single light neutral scalar whose properties are practically indistinguishable from those of the SM Higgs boson, all other Higgs bosons are also assumed to be very heavy. Among the supersymmetric particles, only the fermionic superpartners may be kinematically accessible at the LHC.

In models of split SUSY, the top squark masses cannot be arbitrarily large, as these parameters enter in the radiative corrections to the mass of the observed Higgs boson [67,68]. In the MSSM, a Higgs boson mass of 125 GeV (see Sec. 11) implies an upper bound on the top squark mass scale in the range of 10 to $10^{8} \mathrm{TeV}$ [69-71], depending on the value of the ratio of the two neutral Higgs field vacuum expectation values, although this mass range can be somewhat extended by varying other relevant MSSM parameters. In some approaches, gaugino masses are one-loop suppressed relative to the sfermion masses, corresponding to the so-called mini-split SUSY spectrum [68,72]. The higgsino mass scale may or may not be likewise suppressed depending on the details of the model [73].

The SUSY breaking required to produce such a split-SUSY spectrum would destabilize the gauge hierarchy, and thus would not provide an explanation for the scale of electroweak symmetry breaking. Nevertheless, models of split-SUSY can account for the dark matter (which is assumed to be the LSP gaugino or higgsino) and gauge coupling unification, thereby preserving two of the desirable features of weak-scale SUSY. Finally, as a consequence of the very large squark and slepton masses, neutral flavor changing and CP-violating effects, which can be problematic in models with TeV-scale SUSY-breaking masses, are sufficiently reduced to avoid conflict with experimental observations.

110.3 Parameters of the MSSM

The parameters of the MSSM are conveniently described by considering separately the super-symmetry-conserving and the supersymmetry-breaking sectors. A careful discussion of the conventions used here in defining the tree-level MSSM parameters can be found in Refs. [74, 75]. For simplicity, consider first the case of one generation of quarks, leptons, and their scalar superpartners.

110.3.1 The SUSY-conserving parameters

The parameters of the supersymmetry-conserving sector consist of: (i) gauge couplings, g_{s}, g, and g^{\prime}, corresponding to the SM gauge group $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ respectively; (ii) a super-symmetry-conserving higgsino mass parameter μ; and (iii) Higgs-fermion Yukawa couplings, λ_{u}, λ_{d}, and λ_{e}, of one generation of left- and right-handed quarks and leptons, and their superpartners to the Higgs bosons and higgsinos. Because there is no right-handed neutrino/sneutrino in the MSSM as defined here, a Yukawa coupling λ_{ν} is not included. The complex μ parameter and Yukawa couplings enter via the most general renormalizable R-parity-conserving superpotential,

$$
\begin{equation*}
W=\lambda_{d} \hat{H}_{d} \hat{Q} \hat{D}^{c}-\lambda_{u} \hat{H}_{u} \hat{Q} \hat{U}^{c}+\lambda_{e} \hat{H}_{d} \hat{L} \hat{E}^{c}+\mu \hat{H}_{u} \hat{H}_{d}, \tag{110.1}
\end{equation*}
$$

where the superfields are defined in Table 1 and the gauge group indices are suppressed.

110.3.2 The SUSY-breaking parameters

The supersymmetry-breaking sector contains the following sets of parameters: (i) three complex gaugino Majorana mass parameters, M_{3}, M_{2}, and M_{1}, associated with the $\mathrm{SU}(3), \mathrm{SU}(2)$, and $\mathrm{U}(1)$ subgroups of the SM ; (ii) five sfermion squared-mass parameters, $M_{\widetilde{Q}}^{2}, M_{\widetilde{U}}^{2}, M_{\widetilde{D}}^{2}, M_{\widetilde{L}}^{2}$, and $M_{\widetilde{E}}^{2}$, corresponding to the five electroweak gauge multiplets, i.e., superpartners of the left-handed fields $(u, d)_{L}, u_{L}^{c}, d_{L}^{c},\left(\nu, e^{-}\right)_{L}$, and e_{L}^{c}, where the superscript c indicates a charge-conjugated fermion field [24]; and (iii) three Higgs-squark-squark and Higgs-slepton-slepton trilinear interaction terms, with complex coefficients $T_{U} \equiv \lambda_{u} A_{U}, T_{D} \equiv \lambda_{d} A_{D}$, and $T_{E} \equiv \lambda_{e} A_{E}$ (which define the " A-parameters"). The notation T_{U}, T_{D} and T_{E} is employed in Ref. [75]. It is conventional to separate out the factors
of the Yukawa couplings in defining the A-parameters (originally motivated by a simple class of gravity-mediated SUSY-breaking models $[3,6])$. If the A-parameters are parametrically of the same order (or smaller) relative to other SUSY-breaking mass parameters, then only the third generation A-parameters are phenomenologically relevant.

Finally, we have (iv) two real squared-mass parameters, m_{1}^{2} and m_{2}^{2} (also called $m_{H_{d}}^{2}$ and $m_{H_{u}}^{2}$, respectively, in the literature), and one complex squared-mass parameter, $m_{12}^{2} \equiv \mu B$ (the latter defines the " B-parameter"), which appear in the MSSM tree-level scalar Higgs potential [28],

$$
\begin{align*}
V=\left(m_{1}^{2}\right. & \left.+|\mu|^{2}\right) H_{d}^{\dagger} H_{d}+\left(m_{2}^{2}+|\mu|^{2}\right) H_{u}^{\dagger} H_{u}+\left(m_{12}^{2} H_{u} H_{d}+\text { h.c. }\right) \\
& +\frac{1}{8}\left(g^{2}+g^{\prime 2}\right)\left(H_{d}^{\dagger} H_{d}-H_{u}^{\dagger} H_{u}\right)^{2}+\frac{1}{2} g^{2}\left|H_{d}^{\dagger} H_{u}\right|^{2} \tag{110.2}
\end{align*}
$$

where the $\mathrm{SU}(2)$-invariant combination, $H_{u} H_{d} \equiv H_{u}^{+} H_{d}^{-}-H_{u}^{0} H_{d}^{0}$. Note that the quartic Higgs couplings are related to the gauge couplings g and g^{\prime} as a consequence of SUSY. The breaking of the $\mathrm{SU}(2) \times \mathrm{U}(1)$ electroweak symmetry group to $\mathrm{U}(1)_{\mathrm{EM}}$ is only possible after incorporating the SUSY-breaking Higgs squared-mass parameters m_{1}^{2}, m_{2}^{2} (which can be negative) and m_{12}^{2}. After minimizing the Higgs scalar potential, these three squared-mass parameters can be re-expressed in terms of the two Higgs vacuum expectation values, $\left\langle H_{d}^{0}\right\rangle \equiv v_{d} / \sqrt{2}$ and $\left\langle H_{u}^{0}\right\rangle \equiv v_{u} / \sqrt{2}$, and the CP-odd Higgs mass m_{A} [cf. Eqs. (110.4) and (110.5) below]. One is always free to re-phase the Higgs doublet fields such that v_{d} and v_{u} (also called v_{1} and v_{2}, respectively, in the literature) are both real and positive.

The quantity, $v_{d}^{2}+v_{u}^{2}=4 m_{W}^{2} / g^{2}=\left(2 G_{F}^{2}\right)^{-1 / 2} \simeq(246 \mathrm{GeV})^{2}$, is fixed by the Fermi constant, G_{F}, whereas the ratio

$$
\begin{equation*}
\tan \beta=v_{u} / v_{d} \tag{110.3}
\end{equation*}
$$

is a free parameter such that $0<\beta<\pi / 2$. By employing the tree-level conditions resulting from the minimization of the scalar potential, one can eliminate the diagonal and off-diagonal Higgs squared-masses in favor of $m_{Z}^{2}=\frac{1}{4}\left(g^{2}+g^{\prime 2}\right)\left(v_{d}^{2}+v_{u}^{2}\right)$, the CP-odd Higgs mass m_{A} and the angle $\tan \beta$,

$$
\begin{align*}
& \sin 2 \beta=\frac{2 m_{12}^{2}}{m_{1}^{2}+m_{2}^{2}+2|\mu|^{2}}=\frac{2 m_{12}^{2}}{m_{A}^{2}} \tag{110.4}\\
& \frac{1}{2} m_{Z}^{2}=-|\mu|^{2}+\frac{m_{1}^{2}-m_{2}^{2} \tan ^{2} \beta}{\tan ^{2} \beta-1} \tag{110.5}
\end{align*}
$$

One must also guard against the existence of charge and/or color breaking global minima due to non-zero vacuum expectation values for the squark and charged slepton fields. This possibility can be avoided if the A-parameters are not unduly large [42, 76, 77]. Additional constraints must also be respected to avoid the possibility of directions in scalar field space in which the full tree-level scalar potential can become unbounded from below [77].

Note that SUSY-breaking mass terms for the fermionic superpartners of scalar fields and nonholomorphic trilinear scalar interactions (i.e., interactions that mix scalar fields and their complex conjugates) have not been included above in the soft-SUSY-breaking sector. These terms can potentially destabilize the gauge hierarchy [11] in models with a gauge-singlet superfield. The latter is not present in the MSSM; hence as noted in Ref. [12], these so-called non-standard soft-SUSY-breaking terms are benign. The phenomenological impact of non-holomorphic soft SUSYbreaking terms has been reconsidered in Refs. [78-80]. However, in the most common approaches to constructing a fundamental theory of SUSY-breaking, the coefficients of these terms (which have dimensions of mass) are significantly suppressed compared to the TeV -scale [81]. Consequently, we follow the usual approach and omit these terms from further consideration.

110.3.3 MSSM-124

The total number of independent physical parameters that define the MSSM (in its most general form) is quite large, primarily due to the soft-supersymmetry-breaking sector. In particular, in the case of three generations of quarks, leptons, and their superpartners, $M_{\widetilde{Q}}^{2}, M_{\widetilde{U}}^{2}, M_{\widetilde{D}}^{2}, M_{\widetilde{L}}^{2}$, and $M_{\widetilde{E}}^{2}$ are hermitian 3×3 matrices, and A_{U}, A_{D}, and A_{E} are complex 3×3 matrices. In addition, M_{1}, M_{2}, M_{3}, B, and μ are in general complex parameters. Finally, as in the SM, the Higgs-fermion Yukawa couplings, $\lambda_{f}(f=u, d$, and $e)$, are complex 3×3 matrices that are related to the quark and lepton mass matrices via: $M_{f}=\lambda_{f} v_{f} / \sqrt{2}$, where $v_{e} \equiv v_{d}$ [with v_{u} and v_{d} as defined above Eq. (110.3)].

However, not all these parameters are physical. Some of the MSSM parameters can be eliminated by expressing interaction eigenstates in terms of the mass eigenstates, with an appropriate redefinition of the MSSM fields to remove unphysical degrees of freedom. The analysis of Ref. [82] shows that the MSSM possesses 124 independent real degrees of freedom. Of these, 18 correspond to SM parameters (including the QCD vacuum angle θ_{QCD}), one corresponds to a Higgs sector parameter (the analogue of the SM Higgs mass), and 105 are genuinely new parameters of the model. The latter include: five real parameters and three $C P$-violating phases in the gaugino/higgsino sector, 21 squark and slepton (sfermion) masses, 36 real mixing angles to define the sfermion mass eigenstates, and $40 C P$-violating phases that can appear in sfermion interactions. The most general R-parity-conserving minimal supersymmetric extension of the SM (without additional theoretical assumptions) will be denoted henceforth as MSSM-124 [83].

110.4 The supersymmetric-particle spectrum

The supersymmetric particles (sparticles) differ in spin by half a unit from their SM partners. The superpartners of the gauge and Higgs bosons are fermions, whose names are obtained by appending "ino" to the end of the corresponding SM particle name. The gluino is the color-octet Majorana fermion partner of the gluon with mass $M_{\tilde{g}}=\left|M_{3}\right|$. The superpartners of the electroweak gauge and Higgs bosons (the gauginos and higgsinos) can mix due to $\mathrm{SU}(2) \times \mathrm{U}(1)$ breaking effects. As a result, the physical states of definite mass are model-dependent linear combinations of the charged or neutral gauginos and higgsinos, called charginos and neutralinos, respectively (sometimes collectively called electroweakinos). The neutralinos are Majorana fermions, which can lead to some distinctive phenomenological signatures [84, 85]. The superpartners of the quarks and leptons are spin-zero bosons: the squarks, charged sleptons, and sneutrinos, respectively. A complete set of Feynman rules for the sparticles of the MSSM can be found in Ref. [86]. The MSSM Feynman rules also are implicitly contained in a number of amplitude generation and Feynman diagram software packages (see e.g., Refs. [87-89]).

It should be noted that all mass formulae quoted below in this Section are tree-level results. Radiative loop corrections will modify these results and must be included in any precision study of supersymmetric phenomenology [90]. Beyond tree level, the definition of the supersymmetric parameters becomes convention-dependent. For example, one can define physical couplings or running couplings, which differ beyond the tree level. This provides a challenge to any effort that attempts to extract supersymmetric parameters from data. The SUSY Les Houches Accord (SLHA) $[75,91]$ has been adopted, which establishes a set of conventions for specifying generic file structures for supersymmetric model specifications and input parameters, supersymmetric mass and coupling spectra, and decay tables. These provide a universal interface between spectrum calculation programs, decay packages, and high energy physics event generators.

110.4.1 The charginos and neutralinos

The mixing of the charged gauginos $\left(\widetilde{W}^{ \pm}\right)$and charged higgsinos $\left(\widetilde{H}_{u}^{+}\right.$and $\left.\widetilde{H}_{d}^{-}\right)$is described (at tree-level) by a 2×2 complex mass matrix [92, 93],

$$
M_{C} \equiv\left(\begin{array}{cc}
M_{2} & \frac{1}{\sqrt{2}} g v_{u} \tag{110.6}\\
\frac{1}{\sqrt{2}} g v_{d} & \mu
\end{array}\right) .
$$

To determine the physical chargino states and their masses, one must perform a singular value decomposition $[94,95]$ of the complex matrix M_{C} :

$$
\begin{equation*}
U^{*} M_{C} V^{-1}=\operatorname{diag}\left(M_{\tilde{\chi}_{1}^{+}}, M_{\tilde{\chi}_{2}^{+}}\right) \tag{110.7}
\end{equation*}
$$

where U and V are unitary matrices, and the right-hand side of Eq. (110.7) is the diagonal matrix of (real non-negative) chargino masses. The physical chargino states are denoted by $\tilde{\chi}_{1}^{ \pm}$and $\tilde{\chi}_{2}^{ \pm}$. These are linear combinations of the charged gaugino and higgsino states determined by the matrix elements of U and $V[92,93]$ The chargino masses correspond to the singular values [94] of M_{C}, i.e., the positive square roots of the eigenvalues of $M_{C}^{\dagger} M_{C}$:

$$
\begin{align*}
& M_{\tilde{\chi}_{1}^{+}, \tilde{\chi}_{2}^{+}}^{2}=\frac{1}{2}\left\{|\mu|^{2}+\left|M_{2}\right|^{2}+2 m_{W}^{2}\right. \\
& \left.\quad \mp \sqrt{\left(|\mu|^{2}+\left|M_{2}\right|^{2}+2 m_{W}^{2}\right)^{2}-4\left|\mu M_{2}-m_{W}^{2} \sin 2 \beta\right|^{2}}\right\}, \tag{110.8}
\end{align*}
$$

where the states are ordered such that $M_{\tilde{\chi}_{1}^{+}} \leq M_{\tilde{\chi}_{2}^{+}}$. The relative phase of μ and M_{2} is physical and potentially observable. The mixing of the neutral gauginos (\widetilde{B} and \widetilde{W}^{0}) and neutral higgsinos $\left(\widetilde{H}_{d}^{0}\right.$ and $\left.\widetilde{H}_{u}^{0}\right)$ is described (at tree-level) by a 4×4 complex symmetric mass matrix $[92,93]$,

$$
M_{N} \equiv\left(\begin{array}{cccc}
M_{1} & 0 & -\frac{1}{2} g^{\prime} v_{d} & \frac{1}{2} g^{\prime} v_{u} \tag{110.9}\\
0 & M_{2} & \frac{1}{2} g v_{d} & -\frac{1}{2} g v_{u} \\
-\frac{1}{2} g^{\prime} v_{d} & \frac{1}{2} g v_{d} & 0 & -\mu \\
\frac{1}{2} g^{\prime} v_{u} & -\frac{1}{2} g v_{u} & -\mu & 0
\end{array}\right)
$$

To determine the physical neutralino states and their masses, one must perform an Autonne-Takagi factorization $[94,96]$ (also called Takagi diagonalization [95, 97]) of the complex symmetric matrix $M_{N}:$

$$
\begin{equation*}
W^{T} M_{N} W=\operatorname{diag}\left(M_{\tilde{\chi}_{1}^{0}}, M_{\tilde{\chi}_{2}^{0}}, M_{\tilde{\chi}_{3}^{0}}, M_{\tilde{\chi}_{4}^{0}}\right) \tag{110.10}
\end{equation*}
$$

where W is a unitary matrix and the right-hand side of Eq. (110.10) is the diagonal matrix of (real non-negative) neutralino masses. The physical neutralino states are denoted by $\widetilde{\chi}_{i}^{0}(i=$ $1, \ldots 4)$, where the states are ordered such that $M_{\tilde{\chi}_{1}^{0}} \leq M_{\tilde{\chi}_{2}^{0}} \leq M_{\tilde{\chi}_{3}^{0}} \leq M_{\tilde{\chi}_{4}^{0}}$. The $\widetilde{\chi}_{i}^{0}$ are the linear combinations of the neutral gaugino and higgsino states determined by the matrix elements of W (which is denoted by N^{-1} in Ref. [92]). The neutralino masses correspond to the singular values of M_{N}, i.e., the positive square roots of the eigenvalues of $M_{N}^{\dagger} M_{N}$. Exact formulae for these masses can be found in Refs. [98] and [99]. A numerical algorithm for determining the mixing matrix W has been given in Ref. [100].

If a chargino or neutralino state approximates a particular gaugino or higgsino state, it is convenient to employ the corresponding nomenclature. Specifically, if $\left|M_{1}\right|$ and $\left|M_{2}\right|$ are small compared to m_{Z} and $|\mu|$, then the lightest neutralino $\widetilde{\chi}_{1}^{0}$ would be nearly a pure photino, $\widetilde{\gamma}$, the
superpartner of the photon. If $\left|M_{1}\right|$ and m_{Z} are small compared to $\left|M_{2}\right|$ and $|\mu|$, then the lightest neutralino would be nearly a pure bino, \widetilde{B}, the superpartner of the weak hypercharge gauge boson. If $\left|M_{2}\right|$ and m_{Z} are small compared to $\left|M_{1}\right|$ and $|\mu|$, then the lightest chargino pair and neutralino would constitute a triplet of roughly mass-degenerate pure winos, $\widetilde{W}^{ \pm}$, and \widetilde{W}_{3}^{0}, the superpartners of the weak $\mathrm{SU}(2)$ gauge bosons. Finally, if $|\mu|$ and m_{Z} are small compared to $\left|M_{1}\right|$ and $\left|M_{2}\right|$, then the lightest chargino pair and neutralino would be nearly pure higgsino states, the superpartners of the Higgs bosons. Each of the above cases leads to a strikingly different phenomenology.

In the NMSSM, an additional Higgs singlet superfield is added to the MSSM. This superfield comprises two real Higgs scalar degrees of freedom and an associated neutral higgsino degree of freedom. Consequently, there are five neutralino mass eigenstates that are obtained by a Takagidiagonalization of the 5×5 neutralino mass matrix. In many cases, the fifth neutralino state is dominated by its $\mathrm{SU}(2) \times \mathrm{U}(1)$ singlet component, and thus is very weakly coupled to the SM particles and their superpartners.

110.4.2 The squarks and sleptons

For a given Dirac fermion f, there are two superpartners, \widetilde{f}_{L} and \widetilde{f}_{R}, where the L and R subscripts simply identify the scalar partners that are related by SUSY to the left-handed and right-handed fermions, $f_{L, R} \equiv \frac{1}{2}\left(1 \mp \gamma_{5}\right) f$, respectively. (There is no $\widetilde{\nu}_{R}$ in the MSSM.) However, $\widetilde{f}_{L}-\widetilde{f}_{R}$ mixing is possible, in which case \tilde{f}_{L} and \widetilde{f}_{R} are not mass eigenstates. For three generations of squarks, one must diagonalize 6×6 matrices corresponding to the basis ($\widetilde{q}_{i L}, \widetilde{q}_{i R}$), where $i=1,2,3$ are the generation labels. For simplicity, only the one-generation case is illustrated in detail below. (The effects of second and third generation squark mixing can be significant and are treated in Ref. [101].)

Using the notation of the third family, the one-generation tree-level squark squared-mass matrix is given by [102],

$$
\mathcal{M}^{2}=\left(\begin{array}{cc}
M_{\widetilde{Q}}^{2}+m_{q}^{2}+L_{q} & m_{q} X_{q}^{*} \tag{110.11}\\
m_{q} X_{q} & M_{\widetilde{R}}^{2}+m_{q}^{2}+R_{q}
\end{array}\right)
$$

where

$$
\begin{equation*}
X_{q} \equiv A_{q}-\mu^{*}(\cot \beta)^{2 T_{3 q}} \tag{110.12}
\end{equation*}
$$

and $T_{3 q}=\frac{1}{2}\left[-\frac{1}{2}\right]$ for $q=t[b]$. The diagonal squared-masses are governed by soft-SUSY-breaking squared-masses $M_{\widetilde{Q}}^{2}$ and $M_{\widetilde{R}}^{2} \equiv M_{\widetilde{U}}^{2}\left[M_{\widetilde{D}}^{2}\right]$ for $q=t[b]$, the corresponding quark masses $m_{t}\left[m_{b}\right]$ and the electroweak correction terms:

$$
\begin{align*}
L_{q} & \equiv\left(T_{3 q}-e_{q} \sin ^{2} \theta_{W}\right) m_{Z}^{2} \cos 2 \beta \\
R_{q} & \equiv e_{q} \sin ^{2} \theta_{W} m_{Z}^{2} \cos 2 \beta \tag{110.13}
\end{align*}
$$

where $e_{q}=\frac{2}{3}\left[-\frac{1}{3}\right]$ for $q=t[b]$. The off-diagonal squark squared-masses are proportional to the corresponding quark masses and depend on $\tan \beta$, the soft-SUSY-breaking A-parameters and the higgsino mass parameter μ. Assuming that the A-parameters are parametrically of the same order (or smaller) relative to other SUSY-breaking mass parameters, it then follows that the first and second generation $\widetilde{q}_{L}-\widetilde{q}_{R}$ mixing is smaller than that of the third generation where mixing can be enhanced by factors of m_{t} and $m_{b} \tan \beta$.

In the case of third generation $\widetilde{q}_{L}-\widetilde{q}_{R}$ mixing, the mass eigenstates (usually denoted by \widetilde{q}_{1} and \widetilde{q}_{2}, with $m_{\tilde{q}_{1}}<m_{\tilde{q}_{2}}$) are determined by diagonalizing the 2×2 matrix \mathcal{M}^{2} given by Eq. (110.11).

The corresponding squared-masses and mixing angle are given by [102]:

$$
\begin{align*}
m_{\tilde{q}_{1,2}}^{2} & =\frac{1}{2}\left[\operatorname{Tr} \mathcal{M}^{2} \mp \sqrt{\left(\operatorname{Tr} \mathcal{M}^{2}\right)^{2}-4 \operatorname{det} \mathcal{M}^{2}}\right] \\
\sin 2 \theta_{\tilde{q}} & =\frac{2 m_{q}\left|X_{q}\right|}{m_{\tilde{q}_{2}}^{2}-m_{\tilde{q}_{1}}^{2}} \tag{110.14}
\end{align*}
$$

The one-generation results above also apply to the charged sleptons, with the obvious substitutions: $q \rightarrow \ell$ with $T_{3 \ell}=-\frac{1}{2}$ and $e_{\ell}=-1$, and the replacement of the SUSY-breaking parameters: $M_{\widetilde{Q}}^{2} \rightarrow M_{\widetilde{L}}^{2}, M_{\widetilde{D}}^{2} \rightarrow M_{\widetilde{E}}^{2}$, and $A_{q} \rightarrow A_{\tau}$. For the neutral sleptons, $\widetilde{\nu}_{R}$ does not exist in the MSSM, so $\widetilde{\nu}_{L}$ is a mass eigenstate.

In the case of three generations, the SUSY-breaking scalar-squared masses $\left[M_{\widetilde{Q}}^{2}, M_{\widetilde{U}}^{2}, M_{\widetilde{D}}^{2}, M_{\widetilde{L}}^{2}\right.$, and $M_{\widetilde{E}}^{2}$] and the A-parameters $\left[A_{U}, A_{D}\right.$, and $\left.A_{E}\right]$ are now 3×3 matrices as noted in Sec. 110.3.3. The diagonalization of the 6×6 squark mass matrices yields $\widetilde{f}_{i L}-\widetilde{f}_{j R}$ mixing. In practice, since the $\tilde{f}_{L}-\widetilde{f}_{R}$ mixing is appreciable only for the third generation, this additional complication can often be neglected (although see Ref. [101] for examples in which the mixing between the second and third generation squarks is relevant).

110.5 The supersymmetric Higgs sector

Consider first the MSSM Higgs sector $[27,28,103]$. Despite the large number of potential $C P-$ violating phases among the MSSM-124 parameters, the tree-level MSSM Higgs potential given by Eq. (110.2) is automatically $C P$-conserving. This follows from the fact that the only potentially complex parameter $\left(m_{12}^{2}\right)$ of the MSSM Higgs potential can be chosen real and positive by rephasing the Higgs fields, in which case $\tan \beta$ is a real positive parameter. Consequently, the physical neutral Higgs scalars are $C P$-eigenstates (at tree-level). The MSSM Higgs sector contains five physical spinzero particles: a charged Higgs boson pair $\left(H^{ \pm}\right)$, two $C P$-even neutral Higgs bosons (denoted by h^{0} and H^{0} where $m_{h}<m_{H}$), and one $C P$-odd neutral Higgs boson $\left(A^{0}\right)$. The discovery of a SM-like Higgs boson at the LHC with a mass of 125 GeV (see Sec. 11) strongly suggests that this state should be identified with h^{0}, although the possibility that the 125 GeV state should be identified with H^{0} cannot yet be completely ruled out [104].

In the NMSSM [33], the scalar component of the singlet Higgs superfield adds two additional neutral states to the Higgs sector. In this model, the tree-level Higgs sector can exhibit explicit CP-violation. If $C P$ is conserved, then the two extra neutral scalar states are $C P$-even and $C P$ odd, respectively. These states can potentially mix with the neutral Higgs states of the MSSM. If scalar states exist that are dominantly singlet, then they are weakly coupled to SM gauge bosons and fermions through their small mixing with the MSSM Higgs scalars. Consequently, it is possible that one (or both) of the singlet-dominated states is considerably lighter than the Higgs boson that was observed at the LHC.

110.5.1 The tree-level Higgs sector

The tree-level properties of the Higgs sector are determined by the Higgs potential given by Eq. (110.2). The quartic interaction terms are manifestly supersymmetric (although these are modified by SUSY-breaking effects at the loop level). In general, the quartic couplings arise from two sources: (i) the supersymmetric generalization of the scalar potential (the so-called " F-terms"), and (ii) interaction terms related by SUSY to the coupling of the scalar fields and the gauge fields, whose coefficients are proportional to the corresponding gauge couplings (the so-called " D-terms").

In the MSSM, F-term contributions to the quartic Higgs self-couplings are absent. As a result, the strengths of the MSSM quartic Higgs interactions are fixed in terms of the gauge couplings, as noted below Eq. (110.2). Consequently, all the tree-level MSSM Higgs-sector parameters depend
only on two quantities: $\tan \beta$ [defined in Eq. (110.3)] and one Higgs mass usually taken to be m_{A}. From these two quantities, one can predict the values of the remaining Higgs boson masses, an angle α that measures the mixture of the hypercharge ± 1 scalar fields, H_{u}^{0} and H_{d}^{0}, in the physical $C P$-even neutral scalars, and the Higgs boson self-couplings. Moreover, the tree-level mass of the lighter $C P$-even Higgs boson is bounded, $m_{h} \leq m_{Z}|\cos 2 \beta| \leq m_{Z}[27,28]$. This bound can be substantially modified when radiative corrections are included, as discussed in Sec. 110.5.2.

In the NMSSM, the superpotential contains a trilinear term that couples the two $Y= \pm 1$ Higgs doublet superfields and the singlet Higgs superfield. The coefficient of this term is denoted by λ. Consequently, the tree-level bound for the mass of the lightest $C P$-even MSSM Higgs boson is modified [105],

$$
\begin{equation*}
m_{h}^{2} \leq m_{Z}^{2} \cos ^{2} 2 \beta+\frac{1}{2} \lambda^{2} v^{2} \sin ^{2} 2 \beta \tag{110.15}
\end{equation*}
$$

where $v \equiv\left(v_{u}^{2}+v_{d}^{2}\right)^{1 / 2}=246 \mathrm{GeV}$. If one demands that λ should stay finite after renormalizationgroup evolution up to the Planck scale, then λ is constrained to lie below about $0.7-0.8$ at the electroweak scale [33] (although larger values of λ have also been considered [106]).

The tree-level Higgs-quark and Higgs-lepton interactions of the MSSM are governed by the Yukawa couplings defined by the superpotential given in Eq. (110.1). In particular, the Higgs sector of the MSSM is a Type-II two-Higgs doublet model [107], in which one Higgs doublet $\left(H_{d}\right)$ couples exclusively to the right-handed down-type quark (or lepton) fields and the second Higgs doublet $\left(H_{u}\right)$ couples exclusively to the right-handed up-type quark fields. Consequently, the diagonalization of the fermion mass matrices simultaneously diagonalizes the matrix Yukawa couplings, resulting in flavor-diagonal tree-level couplings of the neutral Higgs bosons h^{0}, H^{0} and A^{0} to quark and lepton pairs.

110.5.2 The radiatively-corrected Higgs sector

When radiative corrections are incorporated, additional parameters of the supersymmetric model enter via virtual supersymmetric particles that appear in loops. The impact of these corrections can be significant [108]. The qualitative behavior of these radiative corrections can be most easily seen in the large top-squark mass limit, where in addition, both the splitting of the two diagonal entries and the off-diagonal entries of the top-squark squared-mass matrix [Eq. (110.11)] are small in comparison to the geometric mean of the two top-squark squared-masses, $M_{\mathrm{S}}^{2} \equiv M_{\widetilde{t_{1}}} M_{\widetilde{t}_{2}}$. In this case (assuming $\mathrm{m}_{A}>m_{Z}$), the predicted upper bound for m_{h} is approximately given by

$$
\begin{equation*}
m_{h}^{2} \lesssim m_{Z}^{2} \cos ^{2} 2 \beta+\frac{3 g^{2} m_{t}^{4}}{8 \pi^{2} m_{W}^{2}}\left[\ln \left(\frac{M_{\mathrm{S}}^{2}}{m_{t}^{2}}\right)+\frac{X_{t}^{2}}{M_{\mathrm{S}}^{2}}\left(1-\frac{X_{t}^{2}}{12 M_{\mathrm{S}}^{2}}\right)\right] \tag{110.16}
\end{equation*}
$$

where $X_{t} \equiv A_{t}-\mu \cot \beta$ [cf. Eq. (110.12)] is proportional to the off-diagonal entry of the top-squark squared-mass matrix (where for simplicity, A_{t} and μ are taken to be real). The Higgs mass upper limit specified by Eq. (110.16) is saturated when $\tan \beta$ is large (i.e., $\cos ^{2} 2 \beta \sim 1$) and $X_{t}=\sqrt{6} M_{S}$, which defines the so-called maximal mixing scenario.

A more complete treatment of the radiative corrections shows that Eq. (110.16) somewhat overestimates the true upper bound of m_{h}. These more refined computations, which incorporate renormalization group improvement, the two loop and the leading three-loop contributions, yield $m_{h} \lesssim 135 \mathrm{GeV}$ in the region of large $\tan \beta$ (with an accuracy of a few GeV) for $m_{t}=175 \mathrm{GeV}$ and $M_{S} \lesssim 2 \mathrm{TeV}[109]$.

In addition, one-loop radiative corrections can introduce $C P$-violating effects in the Higgs sector that depend on some of the $C P$-violating phases among the MSSM-124 parameters [110]. This phenomenon is most easily understood in a scenario where $m_{A} \ll M_{S}$ (i.e., all five physical Higgs states are significantly lighter than the SUSY breaking scale). In this case, one can integrate out the
heavy superpartners to obtain a low-energy effective theory with two Higgs doublets. The resulting effective two-Higgs doublet model will now contain all possible Higgs self-interaction terms (both CP-conserving and CP-violating) and Higgs-fermion interactions (beyond those of Type-II) that are consistent with electroweak gauge invariance [111].

In the NMSSM, the dominant radiative correction to Eq. (110.15) is the same as the one given in Eq. (110.16). However, in contrast to the MSSM, one does not need as large a boost from the radiative corrections to achieve a Higgs mass of 125 GeV in certain regimes of the NMSSM parameter space (e.g., $\tan \beta \sim 2$ and $\lambda \sim 0.7$ [112]).

110.6 Restricting the MSSM parameter freedom

In Sections 110.4 and 110.5, we surveyed the parameters that comprise the MSSM-124. However, without additional restrictions on the choice of parameters, a generic parameter set within the MSSM-124 framework is not phenomenologically viable. In particular, a generic point of the MSSM124 parameter space exhibits: (i) no conservation of the separate lepton numbers L_{e}, L_{μ}, and L_{τ}; (ii) unsuppressed flavor-changing neutral currents (FCNCs); and (iii) new sources of $C P$ violation that are inconsistent with the experimental bounds.

For example, the MSSM contains many new sources of $C P$ violation [113]. Indeed, for $\mathrm{TeV}-$ scale sfermion and gaugino masses, some combinations of the complex phases of the gaugino-mass parameters, the A-parameters, and μ must be less than about $10^{-2}-10^{-3}$ to avoid generating electric dipole moments for the neutron, electron, and atoms [114-116] in conflict with observed data [117]. The rarity of FCNCs [118-120] places additional constraints on the off-diagonal matrix elements of the squark and slepton soft-SUSY-breaking squared-masses and A-parameters (see Sec. 110.3.3).

The MSSM-124 is also theoretically incomplete as it provides no explanation for the fundamental origin of the supersymmetry-breaking parameters. The successful unification of the SM gauge couplings at very high energies close to the Planck scale [$8,66,121-123]$ suggests that the highenergy structure of the theory may be considerably simpler than its low-energy realization. In a top-down approach, the dynamics that governs the more fundamental theory at high energies is used to derive the effective broken-supersymmetric theory at the TeV scale. A suitable choice for the high energy dynamics is one that yields a TeV -scale theory that satisfies all relevant phenomenological constraints.

In this Section, we examine a number of theoretical frameworks that potentially yield phenomenologically viable regions of the MSSM-124 parameter space. The resulting supersymmetric particle spectrum is then a function of a relatively small number of input parameters. This is accomplished by imposing a simple structure on the soft SUSY-breaking parameters at a common high-energy scale M_{X} (typically chosen to be the Planck scale, M_{P}, the grand unification scale, $M_{\text {GUT }}$, or the messenger scale, $M_{\text {mess }}$). These serve as initial conditions for the MSSM renormalization group equations (RGEs), which are given in the two-loop approximation in Ref. [124] (an automated program to compute RGEs for the MSSM and other models of new physics beyond the SM has been developed in Ref. [125]). Solving these equations numerically, one can then derive the low-energy MSSM parameters relevant for phenomenology. A number of software packages exist that numerically calculate the spectrum of supersymmetric particles, consistent with theoretical conditions on SUSY breaking at high energies and some experimental data at low energies [126].

Examples of this scenario are provided by models of gravity-mediated, anomaly mediated and gauge-mediated SUSY breaking, to be discussed in more detail below. In some of these approaches, one of the diagonal Higgs squared-mass parameters is driven negative by renormalization group evolution [127]. In such models, electroweak symmetry breaking is generated radiatively, and the resulting electroweak symmetry-breaking scale is intimately tied to the scale of low-energy SUSY breaking.

110.6.1 Gaugino mass relations

One prediction of many supersymmetric grand unified models is the unification of the (tree-level) gaugino mass parameters at some high-energy scale, M_{X},

$$
\begin{equation*}
M_{1}\left(M_{X}\right)=M_{2}\left(M_{X}\right)=M_{3}\left(M_{X}\right)=m_{1 / 2} \tag{110.17}
\end{equation*}
$$

Due to renormalization group running, in the one-loop approximation the effective low-energy gaugino mass parameters (at the electroweak scale) are related,

$$
\begin{equation*}
M_{3}=\left(g_{s}^{2} / g^{2}\right) M_{2} \simeq 3.5 M_{2}, \quad M_{1}=\left(5 g^{\prime 2} / 3 g^{2}\right) M_{2} \simeq 0.5 M_{2} \tag{110.18}
\end{equation*}
$$

Eq. (110.18) can arise more generally in gauge-mediated SUSY-breaking models where the gaugino masses are generated at the messenger scale $M_{\text {mess }}$ (which typically lies significantly below the unification scale where the gauge couplings unify). In this case, the gaugino mass parameters are proportional to the corresponding squared gauge couplings at the messenger scale.

When Eq. (110.18) is satisfied, the chargino and neutralino masses and mixing angles depend only on three unknown parameters: the gluino mass, μ, and $\tan \beta$. It then follows that the lightest neutralino must be heavier than 46 GeV due to the non-observation of charginos at LEP [128]. If in addition $|\mu| \gg\left|M_{1}\right| \gtrsim m_{Z}$, then the lightest neutralino is nearly a pure bino, an assumption often made in supersymmetric particle searches at colliders. Although Eq. (110.18) is often assumed in many phenomenological studies, a truly model-independent approach would take the gaugino mass parameters, M_{i}, to be independent parameters to be determined by experiment. Indeed, an approximately massless neutralino cannot be ruled out at present by a model-independent analysis [129].

It is possible that the tree-level masses for the gauginos are zero. In this case, the gaugino mass parameters arise at one-loop and do not satisfy Eq. (110.18). For example, the gaugino masses in AMSB models arise entirely from a model-independent contribution derived from the superconformal anomaly $[48,130]$. In this case, Eq. (110.18) is replaced (in the one-loop approximation) by:

$$
\begin{equation*}
M_{i} \simeq \frac{b_{i} g_{i}^{2}}{16 \pi^{2}} m_{3 / 2} \tag{110.19}
\end{equation*}
$$

where $m_{3 / 2}$ is the gravitino mass and the b_{i} are the coefficients of the MSSM gauge beta-functions corresponding to the corresponding $\mathrm{U}(1), \mathrm{SU}(2)$, and $\mathrm{SU}(3)$ gauge groups, $\left(b_{1}, b_{2}, b_{3}\right)=\left(\frac{33}{5}, 1,-3\right)$. Eq. (110.19) yields $M_{1} \simeq 2.8 M_{2}$ and $M_{3} \simeq-8.3 M_{2}$, which implies that the lightest chargino pair and neutralino comprise a nearly mass-degenerate triplet of winos, $\widetilde{W}^{ \pm}, \widetilde{W}^{0}$ (cf. Table 1), over most of the MSSM parameter space. For example, if $|\mu| \gg m_{Z},\left|M_{2}\right|$, then Eq. (110.19) implies that $M_{\tilde{\chi}^{ \pm}} \simeq M_{\tilde{\chi}_{1}^{0}} \simeq M_{2}[131]$. Alternatively, one can construct an AMSB model where $|\mu|, m_{Z} \ll M_{2}$, which yields an LSP that is an approximate higgsino state [132]. In both cases, the corresponding supersymmetric phenomenology differs significantly from the standard phenomenology based on Eq. (110.18) [133, 134].

Finally, it should be noted that the unification of gaugino masses (and scalar masses) can be accidental. In particular, the energy scale where unification takes place may not be directly related to any physical scale. One version of this phenomenon has been called mirage unification and can occur in certain theories of fundamental SUSY breaking [135].

110.6.2 Constrained versions of the MSSM: mSUGRA, CMSSM, etc.

In the minimal supergravity (mSUGRA) framework [3-6,41-43], a form of the Kähler potential is employed that yields minimal kinetic energy terms for the MSSM fields [45]. As a result, the soft
supersymmetry-breaking parameters at the high-energy scale M_{X} take a particularly simple form in which the scalar squared-masses and the A-parameters are flavor-diagonal and universal [43]:

$$
\begin{align*}
& M_{\widetilde{Q}}^{2}\left(M_{X}\right)=M_{\widetilde{U}}^{2}\left(M_{X}\right)=M_{\widetilde{D}}^{2}\left(M_{X}\right)=m_{0}^{2} \mathbf{1} \\
& M_{\widetilde{L}}^{2}\left(M_{X}\right)=M_{\widetilde{E}}^{2}\left(M_{X}\right)=m_{0}^{2} \mathbf{1} \tag{110.20}\\
& m_{1}^{2}\left(M_{X}\right)=m_{2}^{2}\left(M_{X}\right)=m_{0}^{2} \\
& A_{U}\left(M_{X}\right)=A_{D}\left(M_{X}\right)=A_{E}\left(M_{X}\right)=A_{0} \mathbf{1}
\end{align*}
$$

where $\mathbf{1}$ is a 3×3 identity matrix in generation space. As in the SM, this approach exhibits minimal flavor violation [136,137], whose unique source is the nontrivial flavor structure of the Higgs-fermion Yukawa couplings. The gaugino masses are also unified according to Eq. (110.17).

Renormalization group evolution is then used to derive the values of the supersymmetric parameters at the low-energy (electroweak) scale. For example, to compute squark masses, one should use the low-energy values for $M_{\widetilde{Q}}^{2}, M_{\widetilde{U}}^{2}$, and $M_{\widetilde{D}}^{2}$ in Eq. (110.11). Through the renormalization group running with boundary conditions specified in Eq. (110.18) and Eq. (110.20), one can show that the low-energy values of $M_{\widetilde{Q}}^{2}, M_{\widetilde{U}}^{2}$, and $M_{\widetilde{D}}^{2}$ depend primarily on m_{0}^{2} and $m_{1 / 2}^{2}$. A number of useful approximate analytic expressions for superpartner masses in terms of the mSUGRA parameters can be found in Ref. [138].

In the mSUGRA approach, four flavors of squarks (with two squark eigenstates per flavor) are nearly mass-degenerate. If $\tan \beta$ is not very large, \widetilde{b}_{R} is also approximately degenerate in mass with the first two generations of squarks. The \widetilde{b}_{L} mass and the diagonal \widetilde{t}_{L} and \widetilde{t}_{R} masses are typically reduced relative to the common squark mass of the first two generations. In addition, there are six flavors of nearly mass-degenerate sleptons (with two slepton eigenstates per flavor for the charged sleptons and one per flavor for the sneutrinos); the sleptons are expected to be somewhat lighter than the mass-degenerate squarks. As noted below Eq. (110.11), third-generation squark masses and tau-slepton masses are sensitive to the strength of the respective $\widetilde{f}_{L}-\widetilde{f}_{R}$ mixing. The LSP is typically the lightest neutralino, $\tilde{\chi}_{1}^{0}$, which is dominated by its bino component. Regions of the mSUGRA parameter space in which the LSP is electrically charged do exist but are not phenomenologically viable [19].

One can count the number of independent parameters in the mSUGRA framework. In addition to 18 SM parameters (excluding the Higgs mass), one must specify $m_{0}, m_{1 / 2}, A_{0}$, the Planck-scale values for μ and B-parameters (denoted by μ_{0} and B_{0}), and the gravitino mass $m_{3 / 2}$. Without additional model assumptions, $m_{3 / 2}$ is independent of the parameters that govern the mass spectrum of the superpartners of the SM [43]. In principle, A_{0}, B_{0}, μ_{0}, and $m_{3 / 2}$ can be complex, although in the mSUGRA approach, these parameters are taken (arbitrarily) to be real.

As previously noted, renormalization group evolution is used to compute the low-energy values of the mSUGRA parameters, which then fixes all the parameters of the low-energy MSSM. In particular, the two Higgs vacuum expectation values (or equivalently, m_{Z} and $\tan \beta$) can be expressed as a function of the Planck-scale supergravity parameters. The most common procedure is to remove μ_{0} and B_{0} in favor of m_{Z} and $\tan \beta$ [the sign of μ_{0}, denoted $\operatorname{sgn}\left(\mu_{0}\right)$ below, is not fixed in this process]. In this case, the MSSM spectrum and its interaction strengths are determined by five parameters:

$$
\begin{equation*}
m_{0}, A_{0}, m_{1 / 2}, \tan \beta, \text { and } \operatorname{sgn}\left(\mu_{0}\right) \tag{110.21}
\end{equation*}
$$

and an independent gravitino mass $m_{3 / 2}$ (in addition to the 18 parameters of the SM). In Ref. [139], this framework was dubbed the constrained minimal supersymmetric extension of the SM (CMSSM).

In the early literature, additional conditions were obtained by assuming a simplified form for the hidden sector that provides the fundamental source of SUSY breaking. Two additional relations emerged among the mSUGRA parameters [41,45]: $B_{0}=A_{0}-m_{0}$ and $m_{3 / 2}=m_{0}$. These relations characterize a theory that was called minimal supergravity when first proposed. In the subsequent literature, it has been more common to omit these extra conditions in defining the mSUGRA model (in which case the mSUGRA model and the CMSSM are synonymous). The authors of Ref. [140] advocate restoring the original nomenclature in which the mSUGRA model is defined with the extra conditions as originally proposed. Additional mSUGRA variations can also be considered where different relations among the CMSSM parameters are imposed.

One can also relax the universality of scalar masses by decoupling the squared-masses of the Higgs bosons and the squarks/sleptons. This leads to the non-universal Higgs mass models (NUHMs), thereby adding one or two new parameters to the CMSSM depending on whether the diagonal Higgs scalar squared-mass parameters $\left(m_{1}^{2}\right.$ and $\left.m_{2}^{2}\right)$ are set equal (NUHM1 [141]) or taken to be independent (NUHM2 [142]) at the high energy scale M_{X}^{2}. Clearly, this modification preserves the minimal flavor violation of the mSUGRA approach. Nevertheless, the mSUGRA approach and its NUHM generalizations are probably too simplistic. Theoretical considerations suggest that the universality of Planck-scale soft SUSY-breaking parameters is not generic [143]. In particular, effective operators at the Planck scale exist that do not respect flavor universality, and it is difficult to find a theoretical principle that would forbid them.

In the framework of supergravity, if anomaly mediation is the sole source of SUSY breaking, then the gaugino mass parameters, diagonal scalar squared-mass parameters, and the SUSY-breaking trilinear scalar interaction terms (proportional to $\lambda_{f} A_{F}$) are determined in terms of the beta functions of the gauge and Yukawa couplings and the anomalous dimensions of the squark and slepton fields $[48,130,134]$. As noted in Sec. 110.2.3, this approach yields tachyonic sleptons in the MSSM unless additional sources of SUSY breaking are present. In the minimal AMSB (mAMSB) scenario, a universal squared-mass parameter, m_{0}^{2}, is added to the AMSB expressions for the diagonal scalar squared-masses [134]. Thus, the mAMSB spectrum and its interaction strengths are determined by four parameters, $m_{0}^{2}, m_{3 / 2}, \tan \beta$ and $\operatorname{sgn}\left(\mu_{0}\right)$.

The mAMSB scenario appears to be ruled out based on the observed value of the Higgs boson mass, assuming an upper limit on M_{S} of a few TeV , since the mAMSB constraint on A_{F} implies that the maximal mixing scenario cannot be achieved [cf. Eq. (110.16)]. Indeed, under the stated assumptions, the mAMSB Higgs mass upper bound lies below the observed Higgs mass value [144]. Thus within the AMSB scenario, either an additional SUSY-breaking contribution to $\lambda_{f} A_{F}$ and/or new ingredients beyond the MSSM are required.

110.6.3 Gauge-mediated SUS Y breaking

In contrast to models of gravity-mediated SUSY breaking, the flavor universality of the fundamental soft SUSY-breaking squark and slepton squared-mass parameters is guaranteed in gaugemediated SUSY breaking (GMSB) because the supersymmetry breaking is communicated to the sector of MSSM fields via gauge interactions [53,55]. In GMSB models, the mass scale of the messenger sector (or its equivalent) is sufficiently below the Planck scale such that the additional SUSY-breaking effects mediated by supergravity can be neglected.

In the minimal GMSB approach, there is one effective mass scale, Λ, that determines all lowenergy scalar and gaugino mass parameters through loop effects, while the resulting A-parameters are suppressed. In order that the resulting superpartner masses be of order 1 TeV , one must have $\Lambda \sim \mathcal{O}(100 \mathrm{TeV})$. The origin of the μ and B-parameters is model-dependent, and lies somewhat outside the ansatz of gauge-mediated SUSY breaking [145].

The simplest GMSB models appear to be ruled out based on the observed value of the Higgs
boson mass. Due to suppressed A parameters, it is difficult to boost the contributions of the radiative corrections in Eq. (110.16) to obtain a Higgs mass as large as 125 GeV . However, this conflict can be alleviated in more complicated GMSB models [146]. To analyze these generalized GMSB models, it has been especially fruitful to develop model-independent techniques that encompass all known GMSB models [147]. These techniques are well-suited for a comprehensive analysis [148] of the phenomenological profile of gauge-mediated SUSY breaking.

The gravitino is the LSP in GMSB models, as noted in Sec. 110.2.3. As a result, the next-tolightest supersymmetric particle (NLSP) now plays a crucial role in the phenomenology of supersymmetric particle production and decays. Note that unlike the LSP, the NLSP can be charged. In GMSB models, the most likely candidates for the NLSP are $\tilde{\chi}_{1}^{0}$ and $\widetilde{\tau}_{R}^{ \pm}$. The NLSP will decay into its superpartner plus a gravitino (e.g., $\tilde{\chi}_{1}^{0} \rightarrow \gamma \widetilde{G}, \tilde{\chi}_{1}^{0} \rightarrow Z \widetilde{G}, \tilde{\chi}_{1}^{0} \rightarrow h^{0} \widetilde{G}$ or $\left.\widetilde{\tau}_{1}^{ \pm} \rightarrow \tau^{ \pm} \widetilde{G}\right)$, with lifetimes and branching ratios that depend on the model parameters. There are also GMSB scenarios in which there are several nearly degenerate co-NLSP's, any one of which can be produced at the penultimate step of a supersymmetric decay chain [149]. For example, in the slepton co-NLSP case, all three right-handed sleptons are close enough in mass and thus can each play the role of the NLSP.

Different choices for the identity of the NLSP and its decay rate lead to a variety of distinctive supersymmetric phenomenologies $[55,150]$. For example, a long-lived $\tilde{\chi}_{1}^{0}$-NLSP that decays outside collider detectors leads to supersymmetric decay chains with missing energy in association with leptons and/or hadronic jets (this case is indistinguishable from the standard phenomenology of the $\tilde{\chi}_{1}^{0}$-LSP). On the other hand, if $\tilde{\chi}_{1}^{0} \rightarrow \gamma \widetilde{G}$ is the dominant decay mode, and the decay occurs inside the detector, then nearly all supersymmetric particle decay chains would contain a photon. In contrast, in the case of a $\widetilde{\tau}_{1}^{ \pm}$-NLSP, the $\widetilde{\tau}_{1}^{ \pm}$would either be long-lived or would decay inside the detector into a τ-lepton plus missing energy.

A number of attempts have been made to address the origins of the μ and B-parameters in GMSB models based on the field content of the MSSM (see, e.g., Refs. [145, 151]). An alternative approach is to consider GMSB models based on the NMSSM [152]. The vacuum expectation value of the additional singlet Higgs superfield can be used to generate effective μ and B-parameters [153]. Such models provide an alternative GMSB framework for achieving a Higgs mass of 125 GeV , while still being consistent with LHC bounds on supersymmetric particle masses [154].

110.6.4 The phenomenological MSSM

Of course, any of the theoretical assumptions described in the previous three subsections must be tested experimentally and could turn out to be wrong. To facilitate the exploration of MSSM phenomena in a more model-independent way while respecting the constraints noted at the beginning of this Section, the phenomenological MSSM (pMSSM) has been introduced [155].

The pMSSM is governed by 19 independent real supersymmetric parameters: the three gaugino mass parameters M_{1}, M_{2} and M_{3}, the Higgs sector parameters m_{A} and $\tan \beta$, the Higgsino mass parameter μ, five sfermion squared-mass parameters for the degenerate first and second generations $\left(M_{\widetilde{Q}}^{2}, M_{\widetilde{U}}^{2}, M_{\widetilde{D}}^{2}, M_{\widetilde{L}}^{2}\right.$ and $\left.M_{\widetilde{E}}^{2}\right)$, the five corresponding sfermion squared-mass parameters for the third generation, and three third-generation A-parameters $\left(A_{t}, A_{b}\right.$ and $\left.A_{\tau}\right)$. The first and second generation A-parameters are typically neglected in pMSSM studies, as their phenomenological consequences are negligible in most applications (one counterexample is the A_{μ} dependence of the anomalous magnetic moment of the muon, which can be as significant as other contributions due to superpartner mediated radiative corrections [156]). Since its initial proposal, the pMSSM approach has been extended to include CP-violating SUSY-breaking parameters in Ref. [157].

A comprehensive study of the 19-parameter pMSSM is computationally expensive. This is somewhat ameliorated in Ref. [158], where the number of pMSSM parameters is reduced to ten
by assuming one common squark squared-mass parameter for the first two generations, a second common squark squared-mass parameter for the third generation, a common slepton squared-mass parameter and a common third generation A parameter. Applications of the pMSSM approach to supersymmetric particle searches, and a discussion of the implications for past and future LHC and dark matter studies can be found in Refs. [158-160].

110.6.5 Simplified models

As Sec. 111 demonstrates, experiments present their searches for supersymmetric particles primarily in terms of simplified models. Simplified models for supersymmetric searches [161] are defined mostly by the empirical objects and kinematic variables involved in the search. Their interpretation by the experimental collaboration usually involves only a small number of supersymmetric particles (often two or three). Other supersymmetric particles are assumed to play no role (this may happen by virtue of them being too heavy to be produced). Experimental bounds from non-observation of a signal are usually presented in terms of the physical masses of the supersymmetric particles involved. Bounds may be presented on the relevant supersymmetric particle masses assuming a 100% branching ratio for a certain decay, or as an upper bound on signal production cross-section times branching ratio as a function of the relevant supersymmetric particle masses.

For example, consider a search for hadronic jets plus missing transverse momentum. One can match such a search to the simplified model of squark pair production followed by the subsequent decay of each squark into a quark (which appears as a jet) and a neutralino LSP that produces the missing transverse momentum, i.e. $\tilde{q} \tilde{q} \rightarrow\left(q \tilde{\chi}_{1}^{0}\right)\left(q \tilde{\chi}_{1}^{0}\right)$. Excluded regions resulting from the non-observation of a signal may be exhibited in the squark mass versus LSP mass plane.

Simplified models have the advantage that one makes fewer assumptions, compared to more complete supersymmetric models, where the larger number of free parameters makes it difficult to present excluded regions in any generality. It is hoped that simplified models may be a reasonable approximation over sizeable regions of parameter space of more complete models, within which the simplified model is embedded. On the other hand, as stressed in Sec. 111, simplified models have the disadvantage that the presentation of negative search limits tends to be overly strong when compared to the more complete models, particularly if 100% branching ratios are assumed. A contrast between supersymmetric particle search limits in the context of simplified models and the corresponding constraints obtained in the more complete pMSSM is provided in Ref. [162]. As long as one is able to dispel undue pessimism, simplified models remain an efficient vehicle for organizing and presenting the results of supersymmetric particle searches.

110.7 Experimental data confronts the MSSM

At present, there is no direct evidence for weak-scale SUSY from the data analyzed by the LHC experiments. Recent LHC data have been effectively employed in ruling out the existence of colored supersymmetric particles (primarily the gluino and the first generation of squarks) with masses below about 2 TeV (see Sec. 111). The precise mass limits are model dependent. For example, as Sec. 111 demonstrates, regions of the pMSSM parameter space can be identified in which lighter squarks and gluinos below 1 TeV cannot be definitely ruled out. Additional constraints arise from limits on the contributions of virtual supersymmetric particle exchange to a variety of SM processes [118-120].

In light of these negative results, one must confront the tension that exists between the theoretical expectations for the magnitude of the SUSY-breaking parameters and the non-observation of supersymmetric phenomena at colliders.

110.7.1 Naturalness constraints and the little hierarchy

In Sec. 110.1, weak-scale SUSY was motivated as a natural solution to the hierarchy problem, which could provide an understanding of the origin of the electroweak symmetry-breaking scale without a significant fine-tuning of the fundamental parameters that govern the MSSM. In this context, the weak scale soft supersymmetry-breaking masses must be generally of the order of 1 TeV or below [163]. This requirement is most easily seen in the determination of m_{Z} by the scalar potential minimum condition. In light of Eq. (110.5), to avoid the fine-tuning of MSSM parameters, the soft SUSY-breaking squared-masses m_{1}^{2} and m_{2}^{2} and the higgsino squared-mass $|\mu|^{2}$ should all be roughly of $\mathcal{O}\left(m_{Z}^{2}\right)$. Many authors have proposed quantitative measures of finetuning [163-167]. One of the simplest measures is the one advocated by Barbieri and Giudice [163] (which was also introduced previously in Ref. [164]),

$$
\begin{equation*}
\Delta_{i} \equiv\left|\frac{\partial \ln m_{Z}^{2}}{\partial \ln p_{i}}\right|, \quad \Delta \equiv \max \Delta_{i} \tag{110.22}
\end{equation*}
$$

where the p_{i} are the MSSM parameters at the high-energy scale M_{X}, which are set by the fundamental SUSY-breaking dynamics. The theory is more fine-tuned as Δ becomes larger. However, different measures of fine-tuning yield quantitatively different results; in particular, calculating minimal fine-tuning based on the high-scale parameters [as defined in Eq. (110.22)] yields a difference by a factor ~ 10 to fine-tuning based on TeV -scale parameters $[168,169]$.

One can apply the fine-tuning measure to any explicit model of SUSY breaking. For example, in the approaches discussed in Sec. 110.6, the p_{i} are parameters of the model at the energy scale M_{X} where the soft SUSY-breaking operators are generated by the dynamics of SUSY breaking. Renormalization group evolution then determines the values of the parameters appearing in Eq. (110.5) at the electroweak scale. In this way, Δ is sensitive to all the SUSY-breaking parameters of the model (see e.g. Ref. [170]). It should be noted that the computation of Δ is often based on Eq. (110.5), which is a tree-level condition. For example, an analysis in Ref. [80] shows that the fine tuning measure can be reduced by as much as a factor of two when loop corrections are included [171].

As anticipated, there is a tension between the present experimental lower limits on the masses of colored supersymmetric particles $[172,173]$ and the expectation that supersymmetry-breaking is associated with the electroweak symmetry-breaking scale. Moreover, this tension is exacerbated [174] by the observed value of the Higgs mass ($m_{h} \simeq 125 \mathrm{GeV}$), which is not far from the MSSM upper bound ($m_{h} \lesssim 135 \mathrm{GeV}$) [which depends on the top-squark mass and mixing as noted in Sec. 110.5.2]. If $M_{\text {SUSY }}$ characterizes the scale of supersymmetric particle masses, then one would crudely expect $\Delta \sim M_{\text {SUSY }}^{2} / m_{Z}^{2}$. For example, if $M_{\text {SUSY }} \sim 1 \mathrm{TeV}$ then one expects a $\Delta^{-1} \sim 1 \%$ fine-tuning of the MSSM parameters to achieve the observed value of m_{Z}. This separation of the electroweak symmetry-breaking and SUSY-breaking scales is an example of the little hierarchy problem $[175,176]$.

The fine-tuning parameter Δ can depend quite sensitively on the structure of the SUSY-breaking dynamics, such as the value of M_{X} and relations among SUSY-breaking parameters in the fundamental high energy theory [177]. For example, in so-called focus point SUSY models [166, 178], all squark masses can be as heavy as 5 TeV without significant fine-tuning. This can be attributed to a focusing behavior of the renormalization group evolution when certain relations hold among the high-energy values of the scalar squared-mass SUSY-breaking parameters. Although the focus point region of the CMSSM still yields an uncomfortably high value of Δ due to the observed Higgs mass of 125 GeV , one can achieve moderate values of Δ in models with NUHM2 boundary conditions for the scalar masses [174].

Among the colored superpartners, the third generation squarks typically have the most significant impact on the naturalness constraints [179], while their masses are the least constrained
by the LHC data. Hence, in the absence of any relation between third generation squarks and those of the first two generations, the naturalness constraints due to present LHC data can be considerably weaker than those obtained in the CMSSM. Indeed, models with first and second generation squark masses in the multi- TeV range do not necessarily require significant fine tuning. Such models have the added benefit that undesirable FCNCs mediated by squark exchange are naturally suppressed [180]. Other MSSM mass spectra that are compatible with moderate fine tuning have been considered in Refs. [177] and [181].

The lower bounds on squark and gluino masses may not be as large as suggested by the experimental analyses based on the CMSSM or simplified models. For example, mass bounds for the gluino and the first and second generation squarks based on the CMSSM can often be evaded in alternative or extended MSSM models, e.g., compressed SUSY [182] and stealth SUSY [183]. Moreover, the experimental upper limits for the third generation squark masses (which have a more direct impact on the fine-tuning measure) are weaker than the corresponding mass limits for other colored supersymmetric states.

Among the uncolored superpartners, the higgsinos are typically the most impacted by the naturalness constraints. Eq. (110.5) suggests that the masses of the two neutral higgsinos and charged higgsino pair (which are governed by $|\mu|$) should not be significantly larger than m_{Z} to avoid an unnatural fine-tuning of the supersymmetric parameters, which would imply the existence of light higgsinos (whose masses are not well constrained, as they are difficult to detect directly at the LHC due to their soft decay products). Nevertheless, it may be possible to avoid the conclusion that $\mu \sim \mathcal{O}\left(m_{Z}\right)$ if additional correlations among the SUSY breaking mass parameters and μ are present. Such a scenario can be realized in models in which the boundary conditions for SUSY breaking are generated by approximately conformal strong dynamics. For example, in the so-called scalar-sequestering model of Ref. [184], values of $|\mu|>1 \mathrm{TeV}$ can be achieved while naturally maintaining the observed value of m_{Z}.

Finally, one can also consider extensions of the MSSM in which the degree of fine-tuning is relaxed. For example, it has already been noted in Sec. 110.5 that it is possible to accommodate the observed Higgs mass more easily in the NMSSM due to contributions to m_{h}^{2} proportional to the parameter λ^{2}. This means that we do not have to rely on a large contribution from the radiative corrections to boost the Higgs mass sufficiently above its tree-level bound. This allows for smaller top squark masses, which are more consistent with the demands of naturalness. The reduction of the fine-tuning in various NMSSM models was initially advocated in Ref. [185], and subsequently treated in more detail in Refs. [106,186]. Naturalness can also be relaxed in extended supersymmetric models with vector-like quarks [187] and in gauge extensions of the MSSM [188].

The experimental absence of any new physics beyond the Standard Model at the LHC suggests that the principle of naturalness is presently under significant stress [189]. Nevertheless, one must be very cautious when drawing conclusions about the viability of weak-scale SUSY to explain the origin of electroweak symmetry breaking, since different measures of fine-tuning noted above can lead to different assessments $[168,169]$. Moreover, the maximal value of Δ that determines whether weak-scale SUSY is a fine-tuned model (should it be $\Delta \sim 10 ? 100 ? 1000$?) is ultimately subjective. Thus, it is premature to conclude that weak-scale SUSY is on the verge of exclusion. However, it might be possible to sharpen the upper bounds on superpartner masses based on naturalness arguments, which ultimately will either confirm or refute the weak scale SUSY hypothesis [190]. Of course, if evidence for supersymmetric phenomena in the multi- TeV regime were to be established at a future collider facility (with an energy reach beyond the LHC [191]), it would be viewed as a spectacularly successful explanation of the large gauge hierarchy between the (multi-) TeV scale and Planck scale. In this case, the remaining little hierarchy, characterized by the somewhat large value of the fine-tuning parameter Δ discussed above, would be regarded as a less pressing issue.

110.7.2 Constraints from virtual exchange of supersymmetric particles

There are a number of low-energy measurements that are sensitive to the effects of new physics through indirect searches via supersymmetric loop effects. For example, the virtual exchange of supersymmetric particles can contribute to the muon anomalous magnetic moment, $a_{\mu} \equiv \frac{1}{2}(g-2)_{\mu}$, as reviewed in Ref. [192]. The SM prediction for a_{μ} exhibits a deviation in the range of $3-4 \sigma$ from the experimentally observed value [193]. This discrepancy is difficult to accommodate in the constrained SUSY models of Sec. 110.6.2 and 110.6.3 given the present sparticle mass bounds [173]. Nevertheless, there are regions of the more general pMSSM parameter space that are consistent with the observed value of a_{μ} [194]. An updated value of the fine structure constant has resulted in a new SM prediction [195] for the electron anomalous magnetic moment a_{e} which is 2.4σ above the measurement [196]. Indeed, it is possible within the pMSSM to find allowed parameter space regions where the observed values of a_{μ} and a_{e} are simultaneously accommodated [197].

The rare inclusive decay $b \rightarrow s \gamma$ also provides a sensitive probe to the virtual effects of new physics beyond the SM. The experimental measurements of $B \rightarrow X_{s}+\gamma[198]$ are in agreement with the theoretical SM predictions of Ref. [199]. Since supersymmetric loop corrections can contribute an observable shift from the SM predictions, the absence of any significant deviation places useful constraints on the MSSM parameter space [200].

The rare decays $B_{s} \rightarrow \mu^{+} \mu^{-}$and $B_{d} \rightarrow \mu^{+} \mu^{-}$are especially sensitive to supersymmetric loop effects, with some loop contributions scaling as $\tan ^{6} \beta$ when $\tan \beta \gg 1$ [201]. At present, a combination of the measurements of these rare decay modes [202] are in slight tension at the 2σ level [203] with the predicted SM rates [204]. Such a tension can be resolved by the aforementioned supersymmetric loop effects [201].

The decays $B^{ \pm} \rightarrow \tau^{ \pm} \nu_{\tau}$ and $B \rightarrow D^{(*)} \tau^{-} \bar{\nu}_{\tau}$ are noteworthy, since in models with extended Higgs sectors such as the MSSM, these processes possess tree-level charged Higgs exchange contributions that can compete with the dominant W-exchange. As Section 84 shows, experimental measurements of $B^{ \pm} \rightarrow \tau^{ \pm} \nu_{\tau}$ are currently consistent with SM expectations [205]. The BaBar Collaboration measured values of the rates for $\bar{B} \rightarrow D \tau^{-} \bar{\nu}_{\tau}$ and $\bar{B} \rightarrow D^{*} \tau^{-} \bar{\nu}_{\tau}$ [206] that showed a combined 3.4σ discrepancy from the SM predictions, which was also not compatible with the Type-II Higgs Yukawa couplings employed by the MSSM. Some subsequent measurements of the LHCb and Belle Collaborations [207] were consistent with the BaBar measurements, although more recent Belle measurements using a semi-leptonic tag are more consistent with SM expectations [208]. The combined difference between the measured and expected values of the $\bar{B} \rightarrow D \tau^{-} \bar{\nu}_{\tau}$ and $\bar{B} \rightarrow D^{*} \tau^{-} \bar{\nu}_{\tau}$ decay rates relative to the corresponding SM values has a significance of about three standard deviations [209]. There are a number of additional anomalies in B decay data that have recently attracted some attention, although at present the observed deviations from SM expectations are mostly at the level of about two to three standard deviations (see, e.g., Ref. [203]).

In summary, although there are a few hints of possible deviations from the SM in B decays, none of the discrepancies by themselves are significant enough to conclusively imply the existence of new physics beyond the SM. The absence of definitive evidence for deviations in various B physics observables from their SM predictions places useful constraints on the MSSM parameter space $[120,172,210]$. In contrast, if one or more of the B anomalies referred to above were to be experimentally confirmed, it would require require significant modifications to the supersymmetric models treated in this review.

Finally, we note that the constraints from precision electroweak observables (see Sec. 10) and measurements of the $\epsilon^{\prime} / \epsilon$ anomaly [211], if it persists [212], in the Kaon system are easily accommodated in models of TeV-scale SUSY [213, 214]. Thus, robust regions of the MSSM parameter space, compatible with the results of direct and indirect searches for SUSY, remain viable.

110.8 Massive neutrinos in weak-scale SUSY

In the minimal SM and its supersymmetric extension, there are no right-handed neutrinos, and Majorana mass terms for the left-handed neutrinos are absent. However, given the overwhelming evidence for neutrino masses and mixing (see Sec. 14 and Ref. [215]), any viable model of fundamental particles must provide a mechanism for generating neutrino masses [216]. In extended supersymmetric models, various mechanisms exist for producing massive neutrinos [217]. Although one can devise models for generating massive Dirac neutrinos [218], the most common approaches for incorporating neutrino masses are based on L-violating supersymmetric extensions of the MSSM, which generate massive Majorana neutrinos. Two classes of L-violating supersymmetric models will now be considered.

110.8.1 The supersymmetric seesaw

Neutrino masses can be incorporated into the SM by introducing $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ singlet right-handed neutrinos $\left(\nu_{R}\right)$ whose mass parameters are very large, typically near the grand unification scale. In addition, one must also include a standard Yukawa couplings between the lepton doublets, the Higgs doublet, and ν_{R}. The Higgs vacuum expectation value then induces an offdiagonal $\nu_{L}-\nu_{R}$ mass on the order of the electroweak scale. Diagonalizing the neutrino mass matrix (in the three-generation model) yields three superheavy neutrino states, and three very light neutrino states that are identified with the light neutrinos observed in nature. This is the seesaw mechanism [219].

It is straightforward to construct a supersymmetric generalization of the seesaw model of neutrino masses $[220,221]$ by promoting the right-handed neutrino field to a superfield $\widehat{N}^{c}=\left(\widetilde{\nu}_{R} ; \nu_{R}\right)$. Integrating out the heavy right-handed neutrino supermultiplet yields a new term in the superpotential [cf. Eq. (110.1)] of the form

$$
\begin{equation*}
W_{\text {seesaw }}=\frac{f}{M_{R}}\left(\widehat{H}_{U} \widehat{L}\right)\left(\widehat{H}_{U} \widehat{L}\right) \tag{110.23}
\end{equation*}
$$

where M_{R} is the mass scale of the right-handed neutrino sector and f is a dimensionless constant. Note that lepton number is broken by two units, which implies that R-parity is conserved. The supersymmetric analogue of the Majorana neutrino mass term in the sneutrino sector leads to sneutrino-antisneutrino mixing phenomena [221, 222].

The SUSY Les Houches Accords [75, 91], mentioned at the end of the introduction to Sec. 110.4, have been extended to the supersymmetric seesaw (and other extensions of the MSSM) in Ref. [223].

110.8.2 R-parity-violating SUSY

It is possible to incorporate massive neutrinos in renormalizable supersymmetric models while retaining the minimal particle content of the MSSM by relaxing the assumption of R-parity invariance. The most general R-parity-violating (RPV) model involving the MSSM spectrum introduces many new parameters to both the SUSY-conserving and the SUSY-breaking sectors [75,224]. Each new interaction term violates either B or L conservation. For example, starting from the MSSM superpotential given in Eq. (110.1) [suitably generalized to three generations of quarks, leptons and their superpartners], consider the effect of adding the following new terms:

$$
\begin{align*}
W_{\mathrm{RPV}}= & \left(\lambda_{L}\right)_{p m n} \widehat{L}_{p} \widehat{L}_{m} \widehat{E}_{n}^{c}+\left(\lambda_{L}^{\prime}\right)_{p m n} \widehat{L}_{p} \widehat{Q}_{m} \widehat{D}_{n}^{c} \tag{110.24}\\
& +\left(\lambda_{B}\right)_{p m n} \widehat{U}_{p}^{c} \widehat{D}_{m}^{c} \widehat{D}_{n}^{c}+\left(\mu_{L}\right)_{p} \widehat{H}_{u} \widehat{L}_{p},
\end{align*}
$$

where p, m, and n are generation indices, and gauge group indices are suppressed. Eq. (110.24) yields new scalar-fermion Yukawa couplings consisting of all possible combinations involving two SM fermions and one scalar superpartner.

Note that the term in Eq. (110.24) proportional to λ_{B} violates B, while the other three terms violate L. The L-violating term in Eq. (110.24) proportional to μ_{L} is the RPV generalization of the $\mu \widehat{H}_{u} \widehat{H}_{d}$ term of the MSSM superpotential, in which the $Y=-1$ Higgs/higgsino supermultiplet \widehat{H}_{d} is replaced by the slepton/lepton supermultiplet \widehat{L}_{p}.

Phenomenological constraints derived from data on various low-energy B - and L-violating processes can be used to establish limits on each of the coefficients $\left(\lambda_{L}\right)_{p m n},\left(\lambda_{L}^{\prime}\right)_{p m n}$, and $\left(\lambda_{B}\right)_{p m n}$ taken one at a time $[224,225]$. If more than one coefficient is simultaneously non-zero, then the limits are in general more complicated [226]. All possible RPV terms cannot be simultaneously present and unsuppressed; otherwise the proton decay rate would be many orders of magnitude larger than the present experimental bound. One way to avoid proton decay is to impose B or L invariance (either one alone would suffice). Otherwise, one must accept the requirement that certain RPV coefficients must be extremely suppressed.

One particularly interesting class of RPV models is one in which B is conserved, but L is violated. It is possible to enforce baryon number conservation (and the stability of the proton), while allowing for lepton-number-violating interactions by imposing a discrete $\mathbf{Z}_{\mathbf{3}}$ baryon triality symmetry on the low-energy theory [227], in place of the standard \mathbf{Z}_{2} R-parity. Since the distinction between the Higgs and matter supermultiplets is lost in RPV models where L is violated, the mixing of sleptons and Higgs bosons, the mixing of neutrinos and neutralinos, and the mixing of charged leptons and charginos are now possible, leading to more complicated mass matrices and mass eigenstates than in the MSSM. The treatment of neutrino masses and mixing in this framework can be found, e.g., in Ref. [228].

Alternatively, one can consider imposing a lepton parity such that all lepton superfields are odd $[227,229]$. In this case, only the B-violating term in Eq. (110.24) survives, and L is conserved. Models of this type have been considered in Ref. [230]. Since L is conserved in these models, the mixing of the lepton and Higgs superfields is forbidden. Moreover, neutrino masses (and mixing) are not generated if lepton parity is an exact symmetry. However, one expects that lepton parity cannot be exact due to quantum gravity effects. Remarkably, the standard $\mathbf{Z}_{\mathbf{2}}$ R-parity and the \mathbf{Z}_{3} baryon triality are stable with respect to quantum gravity effects, as they can be identified as residual discrete symmetries that arise from spontaneously broken non-anomalous gauge symmetries [227].

The symmetries employed above to either remove or suppress R -parity violating operators were flavour independent. In contrast, there exist a number of motivated scenarios based on flavor symmetries that can also yield the suppression as required by the experimental data (e.g., see Ref. [231]).

The supersymmetric phenomenology of the RPV models exhibits features that are distinct from that of the MSSM [224]. The LSP is no longer stable, which implies that not all supersymmetric decay chains must yield missing-energy events at colliders. A comprehensive examination of the phenomenology of the MSSM extended by a single R-parity violating coupling at the unification scale and its implications for LHC searches has been given in Ref. [232]. As an example, the sparticle mass bounds obtained in searches for R-parity-conserving SUSY can be considerably relaxed in certain RPV models due to the absence of large missing transverse momentum signatures [233]. This can alleviate some of the tension with naturalness discussed in Sec. 110.7.1.

Nevertheless, the loss of the missing-energy signature is often compensated by other striking signals (which depend on which R-parity-violating parameters are dominant). For example, supersymmetric particles in RPV models can be singly produced (in contrast to R-parity-conserving models where supersymmetric particles must be produced in pairs). The phenomenology of pairproduced supersymmetric particles is also modified in RPV models due to new decay chains not present in R-parity-conserving SUSY models [224].

In RPV models with lepton number violation (these include weak-scale SUSY models with
baryon triality mentioned above), both $\Delta L=1$ and $\Delta L=2$ phenomena are allowed, leading to neutrino masses and mixing [234], neutrinoless double-beta decay [235], sneutrino-antisneutrino mixing [236], and resonant s-channel production of sneutrinos in $e^{+} e^{-}$collisions [237] and charged sleptons in $p \bar{p}$ and $p p$ collisions [238].

110.9 Extensions beyond the MSSM

Extensions of the MSSM have been proposed to solve a variety of theoretical problems. One such problem involves the μ parameter of the MSSM. Although μ is a SUSY-preserving parameter, it must be of order the effective SUSY-breaking scale of the MSSM to yield a consistent supersymmetric phenomenology [239]. Any natural solution to the so-called μ-problem must incorporate a symmetry that enforces $\mu=0$ and a small symmetry-breaking parameter that generates a value of μ that is not parametrically larger than the effective SUSY-breaking scale [240]. A number of proposed mechanisms in the literature (e.g., see Refs. [239-241]) provide concrete examples of a natural solution to the μ-problem of the MSSM.

In extensions of the MSSM, new compelling solutions to the μ-problem are possible. For example, one can replace μ by the vacuum expectation value of a new $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ singlet scalar field. This is the NMSSM, which yields phenomena that were briefly discussed in Sections 110.4-110.7. The NMSSM superpotential consists only of trilinear terms whose coefficients are dimensionless. There are some advantages to extending the NMSSM further to the USSM [97] by adding a new broken $\mathrm{U}(1)$ gauge symmetry [242], under which the singlet field is charged.

Alternatively, one can consider a generalized version of the NMSSM (called the GNMSSM in Ref. [186]), where all possible renormalizable terms in the superpotential are allowed, which yields new supersymmetric mass terms (analogous to the μ term of the MSSM). A discussion of the parameters of the GNMSSM can be found in Ref. [75]. Although the GNMSSM does not solve the μ-problem, it does exhibit regions of parameter space in which the degree of fine-tuning is relaxed, as discussed in Sec. 110.7.1.

The generation of the μ term may be connected with the solution to the strong CP problem [243]. Models of this type, which include new gauge singlet fields that are charged under the Peccei-Quinn (PQ) symmetry [244], were first proposed in Ref. [239]. The breaking of the PQ symmetry is thus intimately tied to SUSY breaking, while naturally yielding a value of μ that is of order the electroweak symmetry breaking scale [245].

It is also possible to add higher dimensional Higgs multiplets, such as Higgs triplet superfields [246], provided a custodial-symmetric model (in which the ρ-parameter of precision electroweak physics is close to 1 , see Sec. 10) can be formulated. Such models can provide a rich phenomenology of new signals for future LHC studies.

All supersymmetric models discussed so far in this review possess self-conjugate fermions-the Majorana gluinos and neutralinos. However, it is possible to add additional chiral superfields in the adjoint representation. The spin- $1 / 2$ components of these new superfields can pair up with the gauginos to form Dirac gauginos [247,248]. Such states appear in models of so-called supersoft SUSY breaking [249], in some generalized GMSB models [250] and in R-symmetric SUSY [251,252]. Such approaches often lead to improved naturalness and/or significantly relaxed flavor constraints. The implications of models of Dirac gauginos on the observed Higgs boson mass and its properties are addressed in Ref. [253].

For completeness, we briefly note other MSSM extensions considered in the literature. These include an enlarged electroweak gauge group beyond $\mathrm{SU}(2) \times \mathrm{U}(1)$ [254]; and/or the addition of new (possibly exotic) matter supermultiplets such as vector-like fermions and their superpartners [187, 255].

References

[1] The Supersymmetric World-The Beginnings of the Theory, World Scientific, Singapore (2000), edited by G. Kane and M. Shifman, contains an early history of supersymmetry and a guide to the original literature.
[2] R. Haag, J. T. Lopuszanski and M. Sohnius, Nucl. Phys. B88, 257 (1975); S. R. Coleman and J. Mandula, Phys. Rev. 159, 1251 (1967).
[3] H. P. Nilles, Phys. Rept. 110, 1 (1984).
[4] S. Weinberg, The Quantum Theory of Fields, Volume III: Supersymmetry (Cambridge University Press, Cambridge, UK, 2000).
[5] P. Nath, Supersymmetry, Supergravity, and Unification (Cambridge University Press, Cambridge, UK, 2017).
[6] S. P. Martin A Supersymmetry Primer, [hep-ph/9709356].
[7] E. Witten, Nucl. Phys. B188, 513 (1981).
[8] S. Dimopoulos and H. Georgi, Nucl. Phys. B193, 150 (1981).
[9] N. Sakai, Z. Phys. C11, 153 (1981).
[10] L. Susskind, Phys. Rept. 104, 181 (1984).
[11] L. Girardello and M. T. Grisaru, Nucl. Phys. B194, 65 (1982).
[12] L. J. Hall and L. Randall, Phys. Rev. Lett. 65, 2939 (1990); I. Jack and D. R. T. Jones, Phys. Lett. B457, 101 (1999), [hep-ph/9903365].
[13] V. F. Weisskopf, Phys. Rev. 56, 72 (1939).
[14] See e.g., N. Polonsky, Supersymmetry: Structure and phenomena. Extensions of the standard model, Lect. Notes Phys. M68, 1 (2001).
[15] G. Bertone, D. Hooper and J. Silk, Phys. Rept. 405, 279 (2005), [hep-ph/0404175].
[16] D. Hooper, "TASI 2008 Lectures on Dark Matter," in The Dawn of the LHC Era, Proceedings of the 2008 Theoretical and Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado, 2-27 June 2008, edited by Tao Han (World Scientific, Singapore, 2009).
[17] H. Pagels and J. R. Primack, Phys. Rev. Lett. 48, 223 (1982).
[18] H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983).
[19] J. R. Ellis et al., Nucl. Phys. B238, 453 (1984).
[20] G. Jungman, M. Kamionkowski, and K. Griest, Phys. Reports 267, 195 (1996).
[21] F. D. Steffen, Eur. Phys. J. C59, 557 (2009), [arXiv:0811.3347].
[22] H. E. Haber and G. L. Kane, Phys. Rept. 117, 75 (1985).
[23] M. Drees, R. Godbole, and P. Roy, Theory and Phenomenology of Sparticles (World Scientific, Singapore, 2005); H. Baer and X. Tata, Weak Scale Supersymmetry: from Superfields to Scattering Events (Cambridge University Press, Cambridge, UK, 2006); I.J.R. Aitchison, Supersymmetry in Particle Physics: an elementary introduction (Cambridge University Press, Cambridge, UK, 2007).
[24] Our notation for the charge-conjugated fields follows the notation of P. Langacker, The Standard Model and Beyond, 2nd edition (CRC Press, Boca Raton, FL, 2017).
[25] H. Georgi and S. L. Glashow, Phys. Rev. D6, 429 (1972).
[26] P. Fayet, Nucl. Phys. B90, 104 (1975).
[27] K. Inoue et al., Prog. Theor. Phys. 67, 1889 (1982).
[28] J. F. Gunion and H. E. Haber, Nucl. Phys. B272, 1 (1986), [Erratum: B402, 567 (1993)].
[29] A. Salam and J. A. Strathdee, Nucl. Phys. B76, 477 (1974).
[30] J. Wess and J. Bagger, Supersymmetry and Supergravity (Princeton University Press, Princeton, NJ, 1992).
[31] I. L. Buchbinder, S. Kuzenko and Z. Yarevskaya, Nucl. Phys. B411, 665 (1994); I. Antoniadis, E. Dudas and D. M. Ghilencea, JHEP 03, 045 (2008), [arXiv:0708.0383].
[32] D. J. H. Chung et al., Phys. Rept. 407, 1 (2005), [hep-ph/0312378].
[33] J. R. Ellis et al., Phys. Rev. D39, 844 (1989); U. Ellwanger and C. Hugonie, Eur. Phys. J. C25, 297 (2002), [hep-ph/9909260]; U. Ellwanger, C. Hugonie and A. M. Teixeira, Phys. Rept. 496, 1 (2010), [arXiv:0910.1785]; M. Maniatis, Int. J. Mod. Phys. A25, 3505 (2010), [arXiv:0906.0777].
[34] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979); S. Weinberg, Phys. Rev. D22, 1694 (1980); F. Wilczek and A. Zee, Phys. Rev. Lett. 43, 1571 (1979); H. A. Weldon and A. Zee, Nucl. Phys. B173, 269 (1980).
[35] P. Fayet, Phys. Lett. 69B, 489 (1977); G. R. Farrar and P. Fayet, Phys. Lett. 76B, 575 (1978).
[36] P. Fayet, Phys. Lett. 84B, 421 (1979); P. Fayet, Phys. Lett. 86B, 272 (1979).
[37] D.Z. Freedman and A. Van Proeyen, Supergravity (Cambridge University Press, Cambridge, UK, 2012); M. Rausch de Traubenberg and M. Valenzuela, A Supergravity Primer (World Scientific, Singapore, 2019).
[38] S. Deser and B. Zumino, Phys. Rev. Lett. 38, 1433 (1977); E. Cremmer et al., Phys. Lett. 79B, 231 (1978).
[39] R. Casalbuoni et al., Phys. Lett. B215, 313 (1988); R. Casalbuoni et al., Phys. Rev. D39, 2281 (1989); A. L. Maroto and J. R. Pelaez, Phys. Rev. D62, 023518 (2000), [hepph/9912212].
[40] Z. Komargodski and N. Seiberg, JHEP 09, 066 (2009), [arXiv:0907.2441]; I. Antoniadis et al., Theor. Math. Phys. 170, 26 (2012), [Teor. Mat. Fiz. 170, 34 (2012)].
[41] A.H. Chamseddine, R. Arnowitt, and P. Nath, Phys. Rev. Lett. 49, 970 (1982); R. Barbieri, S. Ferrara and C. A. Savoy, Phys. Lett. 119B, 343 (1982); L. E. Ibanez, Nucl. Phys. B218, 514 (1983); H. P. Nilles, M. Srednicki and D. Wyler, Phys. Lett. 120B, 346 (1983); H. P. Nilles, M. Srednicki and D. Wyler, Phys. Lett. 124B, 337 (1983); E. Cremmer, P. Fayet and L. Girardello, Phys. Lett. 122B, 41 (1983); N. Ohta, Prog. Theor. Phys. 70, 542 (1983).
[42] L. Alvarez-Gaumé, J. Polchinski, and M.B. Wise, Nucl. Phys. B221, 495 (1983).
[43] L. J. Hall, J. D. Lykken and S. Weinberg, Phys. Rev. D27, 2359 (1983).
[44] S. K. Soni and H. A. Weldon, Phys. Lett. 126B, 215 (1983); Y. Kawamura, H. Murayama and M. Yamaguchi, Phys. Rev. D51, 1337 (1995), [hep-ph/9406245].
[45] See, e.g., A. Brignole, L.E. Ibáñez, and C. Munoz, in Perspectives on Supersymmetry II, edited by G.L. Kane (World Scientific, Singapore, 2010) pp. 244-268.
[46] A. B. Lahanas and D. V. Nanopoulos, Phys. Rept. 145, 1 (1987).
[47] J. L. Feng, A. Rajaraman and F. Takayama, Phys. Rev. Lett. 91, 011302 (2003), [hepph/0302215]; J. L. Feng, A. Rajaraman and F. Takayama, Phys. Rev. D68, 063504 (2003), [hep-ph/0306024]; J. L. Feng, A. Rajaraman and F. Takayama, Int. J. Mod. Phys. D13, 2355 (2004), [hep-th/0405248].
[48] L. Randall and R. Sundrum, Nucl. Phys. B557, 79 (1999), [hep-th/9810155].
[49] F. D'Eramo, J. Thaler and Z. Thomas, JHEP 06, 151 (2012), [arXiv:1202.1280]; F. D'Eramo, J. Thaler and Z. Thomas, JHEP 09, 125 (2013), [arXiv:1307.3251]; S. P. de Alwis, Phys. Rev. D77, 105020 (2008), [arXiv:0801.0578]; S. P. de Alwis, JHEP 01, 006 (2013), [arXiv:1206.6775]; K. Harigaya and M. Ibe, Phys. Rev. D90, 085028 (2014), [arXiv:1409.5029].
[50] I. Jack, D. R. T. Jones and R. Wild, Phys. Lett. B535, 193 (2002), [hep-ph/0202101]; B. Murakami and J. D. Wells, Phys. Rev. D68, 035006 (2003), [hep-ph/0302209]; R. Kitano, G. D. Kribs and H. Murayama, Phys. Rev. D70, 035001 (2004), [hep-ph/0402215]; R. Hodgson et al., Nucl. Phys. B728, 192 (2005), [hep-ph/0507193]; D. R. T. Jones and G. G. Ross, Phys. Lett. B642, 540 (2006), [hep-ph/0609210].
[51] S. Asai et al., Phys. Lett. B653, 81 (2007), [arXiv:0705.3086].
[52] M. Dine, W. Fischler and M. Srednicki, Nucl. Phys. B189, 575 (1981); S. Dimopoulos and S. Raby, Nucl. Phys. B192, 353 (1981); S. Dimopoulos and S. Raby, Nucl. Phys. B219, 479 (1983); M. Dine and W. Fischler, Phys. Lett. 110B, 227 (1982); C. R. Nappi and B. A. Ovrut, Phys. Lett. 113B, 175 (1982); L. Alvarez-Gaume, M. Claudson and M. B. Wise, Nucl. Phys. B207, 96 (1982).
[53] M. Dine and A. E. Nelson, Phys. Rev. D48, 1277 (1993), [hep-ph/9303230]; M. Dine, A. E. Nelson and Y. Shirman, Phys. Rev. D51, 1362 (1995), [hep-ph/9408384].
[54] M. Dine et al., Phys. Rev. D53, 2658 (1996), [hep-ph/9507378].
[55] G. F. Giudice and R. Rattazzi, Phys. Rept. 322, 419 (1999), [hep-ph/9801271].
[56] E. Poppitz and S. P. Trivedi, Phys. Rev. D55, 5508 (1997), [hep-ph/9609529]; H. Murayama, Phys. Rev. Lett. 79, 18 (1997), [hep-ph/9705271]; M. A. Luty and J. Terning, Phys. Rev. D57, 6799 (1998), [hep-ph/9709306]; K. Agashe, Phys. Lett. B435, 83 (1998), [hep-ph/9804450]; N. Arkani-Hamed, J. March-Russell and H. Murayama, Nucl. Phys. B509, 3 (1998), [hepph/9701286]; C. Csaki, Y. Shirman and J. Terning, JHEP 05, 099 (2007), [hep-ph/0612241]; M. Ibe and R. Kitano, Phys. Rev. D77, 075003 (2008), [arXiv:0711.0416].
[57] M. Kawasaki et al., Phys. Rev. D78, 065011 (2008), [arXiv:0804.3745].
[58] M. J. Strassler and K. M. Zurek, Phys. Lett. B651, 374 (2007), [hep-ph/0604261]; T. Han et al., JHEP 07, 008 (2008), [arXiv:0712.2041].
[59] M. J. Strassler [hep-ph/0607160]; K. M. Zurek, Phys. Rev. D79, 115002 (2009), [arXiv:0811.4429].
[60] See e.g., M. Quiros, in Particle Physics and Cosmology: The Quest for Physics Beyond the Standard Model(s), Proceedings of the 2002 Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2002), edited by H.E. Haber and A.E. Nelson (World Scientific, Singapore, 2004) pp. 549-601; C. Csaki, in ibid., pp. 605-698.
[61] V.A. Rubakov, Sov. Phys. Usp. 44, 871 (2001); J. L. Hewett and M. Spiropulu, Ann. Rev. Nucl. Part. Sci. 52, 397 (2002), [hep-ph/0205106].
[62] Z. Chacko, M. A. Luty and E. Ponton, JHEP 07, 036 (2000), [hep-ph/9909248]; D. E. Kaplan, G. D. Kribs and M. Schmaltz, Phys. Rev. D62, 035010 (2000), [hep-ph/9911293]; Z. Chacko et al., JHEP 01, 003 (2000), [hep-ph/9911323].
[63] J. Scherk and J. H. Schwarz, Phys. Lett. 82B, 60 (1979); J. Scherk and J. H. Schwarz, Nucl. Phys. B153, 61 (1979).
[64] R. Barbieri, L. J. Hall and Y. Nomura, Phys. Rev. D66, 045025 (2002), [hep-ph/0106190]; R. Barbieri, L. J. Hall and Y. Nomura, Nucl. Phys. B624, 63 (2002), [hep-th/0107004]; I. Garcia Garcia, K. Howe and J. March-Russell, JHEP 12, 005 (2015), [arXiv:1510.07045].
[65] J. D. Wells, in "11th International Conference on Supersymmetry and the Unification of Fundamental Interactions (SUSY 2003) Tucson, Arizona, June 5-10, 2003," (2003), [hepph/0306127]; J. D. Wells, Phys. Rev. D71, 015013 (2005), [hep-ph/0411041].
[66] N. Arkani-Hamed and S. Dimopoulos, JHEP 06, 073 (2005), [hep-th/0405159]; G. F. Giudice and A. Romanino, Nucl. Phys. B699, 65 (2004), [Erratum: B706, 487 (2005)], [hepph/0406088].
[67] G. F. Giudice and A. Strumia, Nucl. Phys. B858, 63 (2012), [arXiv:1108.6077].
[68] A. Arvanitaki et al., JHEP 02, 126 (2013), [arXiv:1210.0555]; N. Arkani-Hamed et al. (2012), [arXiv:1212.6971].
[69] E. Bagnaschi et al., JHEP 09, 092 (2014), [arXiv:1407.4081].
[70] J. Pardo Vega and G. Villadoro, JHEP 07, 159 (2015), [arXiv:1504.05200].
[71] B. C. Allanach and A. Voigt, Eur. Phys. J. C78, 573 (2018), [arXiv:1804.09410].
[72] Y. Kahn, M. McCullough and J. Thaler, JHEP 11, 161 (2013), [arXiv:1308.3490].
[73] L. J. Hall and Y. Nomura, JHEP 01, 082 (2012), [arXiv:1111.4519]; M. Ibe and T. T. Yanagida, Phys. Lett. B709, 374 (2012), [arXiv:1112.2462].
[74] H. E. Haber and L. Stephenson Haskins (2018), Supersymmetric Theory and Models, in Anticipating the Next Discoveries in Particle Physics, Proceedings of the 2016 Theoretical Advanced Study Institute in Elementary Particle Physics, edited by Rouven Essig and Ian Low (World Scientific, Singapore, 2018) pp. 355-499, [arXiv:1712.05926].
[75] B. C. Allanach et al., Comput. Phys. Commun. 180, 8 (2009), [arXiv:0801.0045].
[76] J. M. Frere, D. R. T. Jones and S. Raby, Nucl. Phys. B222, 11 (1983); J. P. Derendinger and C. A. Savoy, Nucl. Phys. B237, 307 (1984); J. F. Gunion, H. E. Haber and M. Sher, Nucl. Phys. B306, 1 (1988); D. Chowdhury et al., JHEP 02, 110 (2014), [Erratum: 03, 149 (2018)], [arXiv:1310.1932]; W. G. Hollik, JHEP 08, 126 (2016), [arXiv:1606.08356].
[77] J. A. Casas, A. Lleyda and C. Munoz, Nucl. Phys. B471, 3 (1996), [hep-ph/9507294].
[78] C. S. Ün et al., Phys. Rev. D91, 105033 (2015), [arXiv:1412.1440].
[79] G. G. Ross, K. Schmidt-Hoberg and F. Staub, Phys. Lett. B759, 110 (2016), [arXiv:1603.09347].
[80] G. G. Ross, K. Schmidt-Hoberg and F. Staub, JHEP 03, 021 (2017), [arXiv:1701.03480].
[81] S. P. Martin, Phys. Rev. D61, 035004 (2000), [hep-ph/9907550].
[82] S. Dimopoulos and D. W. Sutter, Nucl. Phys. B452, 496 (1995), [hep-ph/9504415]; D.W. Sutter, Stanford Ph. D. thesis, arXiv:hep-ph/9704390.
[83] H.E. Haber, Nucl. Phys. B (Proc. Suppl.) 62A-C, 469 (1998).
[84] R. M. Barnett, J. F. Gunion and H. E. Haber, Phys. Lett. B315, 349 (1993), [hepph/9306204]; H. Baer, X. Tata and J. Woodside, Phys. Rev. D41, 906 (1990).
[85] S. M. Bilenky, N. P. Nedelcheva and E. K. Khristova, Phys. Lett. 161B, 397 (1985); S. M. Bilenky, E. K. Khristova and N. P. Nedelcheva, Bulg. J. Phys. 13, 283 (1986).
[86] J. Rosiek, Phys. Rev. D41, 3464 (1990).
[87] J. Alwall et al., JHEP 09, 028 (2007), [arXiv:0706.2334].
[88] T. Hahn, Comput. Phys. Commun. 140, 418 (2001), [hep-ph/0012260].
[89] A. Pukhov et al., INP MSU report 98-41/542 (arXiv:hep-ph/9908288); E. Boos et al. [CompHEP Collab.], Nucl. Instrum. Methods A534, 50 (2004); CompHEP webpage, https://theory.sinp.msu.ru/dokuwiki/doku.php/comphep/news.
[90] D. M. Pierce et al., Nucl. Phys. B491, 3 (1997), [hep-ph/9606211].
[91] P. Z. Skands et al., JHEP 07, 036 (2004), [hep-ph/0311123].
[92] For further details, see e.g., Appendix C of Ref. [22] and Appendix A of Ref. [28].
[93] J. L. Kneur and G. Moultaka, Phys. Rev. D59, 015005 (1999), [hep-ph/9807336].
[94] R.A. Horn and C.R. Johnson, Matrix Analysis, 2nd Edition (Cambridge University Press, Cambridge, UK, 2003).
[95] H. K. Dreiner, H. E. Haber and S. P. Martin, Phys. Rept. 494, 1 (2010), [arXiv:0812.1594].
[96] L. Autonne, Annals de l'Université de Lyon, Nouvelle Série I, Fasc. 38, 1 (1915); T. Takagi, Japan J. Math. 1, 83 (1925).
[97] S. Y. Choi et al., Nucl. Phys. B778, 85 (2007), [hep-ph/0612218].
[98] S. Y. Choi et al., Eur. Phys. J. C22, 563 (2001), [Addendum: Eur. Phys. J. C23, 769 (2002)], [hep-ph/0108117].
[99] M. M. El Kheishen, A. A. Aboshousha and A. A. Shafik, Phys. Rev. D45, 4345 (1992).
[100] T. Hahn (2006), [arXiv:physics/0607103].
[101] K.-i. Hikasa and M. Kobayashi, Phys. Rev. D36, 724 (1987); F. Gabbiani and A. Masiero, Nucl. Phys. B322, 235 (1989); P. Brax and C. A. Savoy, Nucl. Phys. B447, 227 (1995), [hep-ph/9503306].
[102] J. R. Ellis and S. Rudaz, Phys. Lett. 128B, 248 (1983); F. Browning, D. Chang and W.Y. Keung, Phys. Rev. D64, 015010 (2001), [hep-ph/0012258]; A. Bartl et al., Phys. Lett. B573, 153 (2003), [hep-ph/0307317]; A. Bartl et al., Phys. Rev. D70, 035003 (2004), [hepph/0311338].
[103] J.F. Gunion et al., The Higgs Hunter's Guide (Westview Press, Boulder, CO, 2000); M. Carena and H. E. Haber, Prog. Part. Nucl. Phys. 50, 63 (2003), [hep-ph/0208209]; A. Djouadi, Phys. Rept. 459, 1 (2008), [hep-ph/0503173].
[104] E. Bagnaschi et al., Eur. Phys. J. C79, 617 (2019), [arXiv:1808.07542].
[105] H. E. Haber and M. Sher, Phys. Rev. D35, 2206 (1987).
[106] L. J. Hall, D. Pinner and J. T. Ruderman, JHEP 04, 131 (2012), [arXiv:1112.2703].
[107] L. J. Hall and M. B. Wise, Nucl. Phys. B187, 397 (1981).
[108] H. E. Haber and R. Hempfling, Phys. Rev. Lett. 66, 1815 (1991); Y. Okada, M. Yamaguchi and T. Yanagida, Prog. Theor. Phys. 85, 1 (1991); J. R. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B257, 83 (1991).
[109] P. Draper and H. Rzehak, Phys. Rept. 619, 1 (2016), [arXiv:1601.01890].
[110] A. Pilaftsis and C. E. M. Wagner, Nucl. Phys. B553, 3 (1999), [hep-ph/9902371]; D. A. Demir, Phys. Rev. D60, 055006 (1999), [hep-ph/9901389]; S. Y. Choi, M. Drees and J. S. Lee, Phys. Lett. B481, 57 (2000), [hep-ph/0002287]; M. Carena et al., Nucl. Phys. B586, 92 (2000), [hepph/0003180]; M. Carena et al., Phys. Lett. B495, 155 (2000), [hep-ph/0009212]; M. Carena et al., Nucl. Phys. B625, 345 (2002), [hep-ph/0111245]; M. Frank et al., JHEP 02, 047 (2007), [hep-ph/0611326]; S. Heinemeyer et al., Phys. Lett. B652, 300 (2007), [arXiv:0705.0746].
[111] H. E. Haber and J. D. Mason, Phys. Rev. D77, 115011 (2008), [arXiv:0711.2890].
[112] M. Carena et al., Phys. Rev. D93, 035013 (2016), [arXiv:1510.09137].
[113] S. Khalil, Int. J. Mod. Phys. A18, 1697 (2003), [hep-ph/0212050].
[114] W. Fischler, S. Paban and S. D. Thomas, Phys. Lett. B289, 373 (1992), [hep-ph/9205233].
[115] A. Masiero and L. Silvestrini, in Perspectives on Supersymmetry, edited by G.L. Kane (World Scientific, Singapore, 1998) pp. 423-441.
[116] M. Pospelov and A. Ritz, Annals Phys. 318, 119 (2005), [hep-ph/0504231].
[117] J. M. Pendlebury et al., Phys. Rev. D92, 092003 (2015), [arXiv:1509.04411]; V. Andreev et al. (ACME Collaboration), Nature 562, 7727, 355 (2018).
[118] F. Gabbiani et al., Nucl. Phys. B477, 321 (1996), [hep-ph/9604387].
[119] M. J. Ramsey-Musolf and S. Su, Phys. Rept. 456, 1 (2008), [hep-ph/0612057].
[120] M. Carena, A. Menon and C. E. M. Wagner, Phys. Rev. D79, 075025 (2009), [arXiv:0812.3594].
[121] M. B. Einhorn and D. R. T. Jones, Nucl. Phys. B196, 475 (1982).
[122] W. J. Marciano and G. Senjanovic, Phys. Rev. D25, 3092 (1982).
[123] R.N. Mohapatra, Unification and Supersymmetry, Third Edition (Springer Science, New York, 2003).
[124] S. P. Martin and M. T. Vaughn, Phys. Rev. D50, 2282 (1994), [Erratum: Phys. Rev. D78, 039903 (2008)], [hep-ph/9311340]; R. M. Fonseca et al., Nucl. Phys. B854, 28 (2012), [arXiv:1107.2670]; F. Staub, Comput. Phys. Commun. 182, 808 (2011), [arXiv:1002.0840].
[125] F. Staub, Comput. Phys. Commun. 185, 1773 (2014), [arXiv:1309.7223]; F. Staub, Adv. High Energy Phys. 2015, 840780 (2015), [arXiv:1503.04200]; The SARAH homepage is https://sarah.hepforge.org/.
[126] B. C. Allanach, Comput. Phys. Commun. 143, 305 (2002), [hep-ph/0104145]; The SOFTSUSY homepage is http://softsusy.hepforge.org/; A. Djouadi, J.-L. Kneur and G. Moultaka, Comput. Phys. Commun. 176, 426 (2007), [hep-ph/0211331]; The Suspect homepage is http://suspect.in2p3.fr/; F. E. Paige et al. (2003), [hep-ph/0312045]; Isajet may be obtained from http://www.nhn.ou.edu/~isajet/; W. Porod, Comput. Phys. Commun. 153, 275 (2003), [hep-ph/0301101]; Spheno may be obtained from https://spheno.hepforge.org/; P. Athron et al., Comput. Phys. Commun. 190, 139 (2015), [arXiv:1406.2319]; The FlexibleSUSY homepage is https://flexiblesusy.hepforge.org/.
[127] L. E. Ibanez and G. G. Ross, Phys. Lett. 110B, 215 (1982).
[128] J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C31, 421 (2003), [hep-ex/0311019].
[129] H. K. Dreiner et al., Eur. Phys. J. C62, 547 (2009), [arXiv:0901.3485].
[130] G. F. Giudice et al., JHEP 12, 027 (1998), [hep-ph/9810442]; A. Pomarol and R. Rattazzi, JHEP 05, 013 (1999), [hep-ph/9903448]; D.-W. Jung and J. Y. Lee, JHEP 03, 123 (2009), [arXiv:0902.0464].
[131] J. F. Gunion and H. E. Haber, Phys. Rev. D37, 2515 (1988); S. Y. Choi, M. Drees and B. Gaissmaier, Phys. Rev. D70, 014010 (2004), [hep-ph/0403054].
[132] H. Baer, V. Barger and D. Sengupta, Phys. Rev. D98, 015039 (2018), [arXiv:1801.09730].
[133] J. L. Feng et al., Phys. Rev. Lett. 83, 1731 (1999), [hep-ph/9904250]; J. F. Gunion and S. Mrenna, Phys. Rev. D62, 015002 (2000), [hep-ph/9906270].
[134] T. Gherghetta, G. F. Giudice and J. D. Wells, Nucl. Phys. B559, 27 (1999), [hep-ph/9904378].
[135] M. Endo, M. Yamaguchi and K. Yoshioka, Phys. Rev. D72, 015004 (2005), [hep-ph/0504036]; K. Choi, K. S. Jeong and K.-i. Okumura, JHEP 09, 039 (2005), [hep-ph/0504037]; O. LoaizaBrito et al., AIP Conf. Proc. 805, 198 (2005), [hep-th/0509158].
[136] See e.g., G. D'Ambrosio et al., Nucl. Phys. B645, 155 (2002).
[137] C. Smith, Acta Phys. Polon. Supp. 3, 53 (2010), [arXiv:0909.4444].
[138] M. Drees and S.P. Martin, in Electroweak Symmetry Breaking and New Physics at the TeV Scale, edited by T. Barklow et al. (World Scientific, Singapore, 1996) pp. 146-215.
[139] G. L. Kane et al., Phys. Rev. D49, 6173 (1994), [hep-ph/9312272].
[140] J. R. Ellis et al., Phys. Lett. B573, 162 (2003), [hep-ph/0305212]; J. R. Ellis et al., Phys. Rev. D70, 055005 (2004), [hep-ph/0405110].
[141] H. Baer et al., Phys. Rev. D71, 095008 (2005), [hep-ph/0412059].
[142] V. Berezinsky et al., Astropart. Phys. 5, 1 (1996), [hep-ph/9508249]; J. R. Ellis et al., Nucl. Phys. B652, 259 (2003), [hep-ph/0210205].
[143] L. E. Ibanez and D. Lust, Nucl. Phys. B382, 305 (1992), [hep-th/9202046]; B. de Carlos, J. A. Casas and C. Munoz, Phys. Lett. B299, 234 (1993), [hep-ph/9211266]; V. S. Kaplunovsky and J. Louis, Phys. Lett. B306, 269 (1993), [hep-th/9303040]; A. Brignole, L. E. Ibanez and C. Munoz, Nucl. Phys. B422, 125 (1994), [Erratum: B436, 747 (1995)], [hep-ph/9308271].
[144] A. Arbey et al., Phys. Rev. D87, 115020 (2013), [arXiv:1304.0381].
[145] G. R. Dvali, G. F. Giudice and A. Pomarol, Nucl. Phys. B478, 31 (1996), [hep-ph/9603238].
[146] P. Draper et al., Phys. Rev. D85, 095007 (2012), [arXiv:1112.3068].
[147] P. Meade, N. Seiberg and D. Shih, Prog. Theor. Phys. Suppl. 177, 143 (2009), [arXiv:0801.3278]; M. Buican et al., JHEP 03, 016 (2009), [arXiv:0812.3668].
[148] A. Rajaraman et al., Phys. Lett. B678, 367 (2009), [arXiv:0903.0668]; L. M. Carpenter et al., Phys. Rev. D79, 035002 (2009), [arXiv:0805.2944].
[149] S. Ambrosanio, G. D. Kribs and S. P. Martin, Nucl. Phys. B516, 55 (1998), [hep-ph/9710217].
[150] For a review and guide to the literature, see J.F. Gunion and H.E. Haber, in Perspectives on Supersymmetry II, edited by G.L. Kane (World Scientific, Singapore, 2010) pp. 420-445.
[151] T. S. Roy and M. Schmaltz, Phys. Rev. D77, 095008 (2008), [arXiv:0708.3593].
[152] A. de Gouvea, A. Friedland and H. Murayama, Phys. Rev. D57, 5676 (1998), [hepph/9711264].
[153] T. Han, D. Marfatia and R.-J. Zhang, Phys. Rev. D61, 013007 (2000), [hep-ph/9906508]; Z. Chacko and E. Ponton, Phys. Rev. D66, 095004 (2002), [hep-ph/0112190]; A. Delgado, G. F. Giudice and P. Slavich, Phys. Lett. B653, 424 (2007), [arXiv:0706.3873]; T. Liu and C. E. M. Wagner, JHEP 06, 073 (2008), [arXiv:0803.2895].
[154] B. Allanach et al., Phys. Rev. D92, 015006 (2015), [arXiv:1502.05836].
[155] A. Djouadi, J.L. Kneur, and G. Moultaka, Comp. Phys. Comm. 176, 426 (2007); C. F. Berger et al., JHEP 02, 023 (2009), [arXiv:0812.0980].
[156] S. P. Martin and J. D. Wells, Phys. Rev. D64, 035003 (2001), [hep-ph/0103067].
[157] J. Berger et al., Phys. Rev. D93, 035017 (2016), [arXiv:1510.08840].
[158] K. J. de Vries et al., Eur. Phys. J. C75, 422 (2015), [arXiv:1504.03260].
[159] M. Cahill-Rowley et al., Phys. Rev. D90, 095017 (2014), [arXiv:1407.7021]; M. Cahill-Rowley et al., Phys. Rev. D91, 055011 (2015), [arXiv:1405.6716]; A. Barr and J. Liu, Eur. Phys. J. C77, 202 (2017), [arXiv:1608.05379].
[160] G. Bertone et al., JCAP 1604, 037 (2016), [arXiv:1507.07008].
[161] N. Arkani-Hamed et al. (2007), [hep-ph/0703088]; J. Alwall et al., Phys. Rev. D79, 015005 (2009), [arXiv:0809.3264]; J. Alwall, P. Schuster and N. Toro, Phys. Rev. D79, 075020 (2009), [arXiv:0810.3921]; D. S. M. Alves, E. Izaguirre and J. G. Wacker, Phys. Lett. B702, 64 (2011), [arXiv:1008.0407]; D. S. M. Alves, E. Izaguirre and J. G. Wacker, JHEP 10, 012 (2011), [arXiv:1102.5338]; D. Alves (LHC New Physics Working Group), J. Phys. G39, 105005 (2012), [arXiv:1105.2838].
[162] F. Ambrogi et al., Eur. Phys. J. C78, 215 (2018), [arXiv:1707.09036].
[163] R. Barbieri and G.F. Giudice, Nucl. Phys. B305, 63 (1988).
[164] J. R. Ellis et al., Mod. Phys. Lett. A1, 57 (1986).
[165] G. W. Anderson and D. J. Castano, Phys. Lett. B347, 300 (1995), [hep-ph/9409419]; G. W. Anderson and D. J. Castano, Phys. Rev. D52, 1693 (1995), [hep-ph/9412322]; G. W. Anderson and D. J. Castano, Phys. Rev. D53, 2403 (1996), [hep-ph/9509212]; P. Athron and D. J. Miller, Phys. Rev. D76, 075010 (2007), [arXiv:0705.2241]; M. E. Cabrera, J. A. Casas and R. Ruiz de Austri, JHEP 03, 075 (2009), [arXiv:0812.0536]; H. Baer et al., Phys. Rev. Lett. 109, 161802 (2012), [arXiv:1207.3343].
[166] J. L. Feng, K. T. Matchev and T. Moroi, Phys. Rev. D61, 075005 (2000), [hep-ph/9909334].
[167] D. M. Ghilencea and G. G. Ross, Nucl. Phys. B868, 65 (2013), [arXiv:1208.0837].
[168] H. Baer, V. Barger and D. Mickelson, Phys. Rev. D88, 095013 (2013), [arXiv:1309.2984].
[169] M. van Beekveld, S. Caron and R. Ruiz de Austri (2019), [arXiv:1906.10706].
[170] G. L. Kane and S. F. King, Phys. Lett. B451, 113 (1999), [hep-ph/9810374]; M. Bastero-Gil, G. L. Kane and S. F. King, Phys. Lett. B474, 103 (2000), [hep-ph/9910506]; J. A. Casas, J. R. Espinosa and I. Hidalgo, JHEP 01, 008 (2004), [hep-ph/0310137]; H. Abe, T. Kobayashi and Y. Omura, Phys. Rev. D76, 015002 (2007), [hep-ph/0703044]; R. Essig and J.-F. Fortin, JHEP 04, 073 (2008), [arXiv:0709.0980].
[171] B. de Carlos and J. A. Casas, Phys. Lett. B309, 320 (1993), [hep-ph/9303291]; S. Cassel, D. M. Ghilencea and G. G. Ross, Nucl. Phys. B825, 203 (2010), [arXiv:0903.1115]; S. Cassel, D. M. Ghilencea and G. G. Ross, Nucl. Phys. B835, 110 (2010), [arXiv:1001.3884].
[172] O. Buchmueller et al., Eur. Phys. J. C74, 6, 2922 (2014), [arXiv:1312.5250].
[173] P. Bechtle et al., Eur. Phys. J. C76, 96 (2016), [arXiv:1508.05951].
[174] H. Baer et al., Phys. Rev. D89, 115019 (2014), [arXiv:1404.2277].
[175] R. Barbieri and A. Strumia, in "4th Rencontres du Vietnam: Physics at Extreme Energies (Particle Physics and Astrophysics) Hanoi, Vietnam, July 19-25, 2000," (2000), [hepph/0007265].
[176] L. Giusti, A. Romanino and A. Strumia, Nucl. Phys. B550, 3 (1999), [hep-ph/9811386]; H.-C. Cheng and I. Low, JHEP 09, 051 (2003), [hep-ph/0308199]; H.-C. Cheng and I. Low, JHEP 08, 061 (2004), [hep-ph/0405243]; R. Harnik et al., Phys. Rev. D70, 015002 (2004), [hep-ph/0311349].
[177] H. Baer et al., Phys. Rev. D87, 035017 (2013), [arXiv:1210.3019]; H. Baer et al., Phys. Rev. D87, 115028 (2013), [arXiv:1212.2655]; J. L. Feng, Ann. Rev. Nucl. Part. Sci. 63, 351 (2013), [arXiv:1302.6587].
[178] J. L. Feng, K. T. Matchev and T. Moroi, Phys. Rev. Lett. 84, 2322 (2000), [hep-ph/9908309]; J. L. Feng and F. Wilczek, Phys. Lett. B631, 170 (2005), [hep-ph/0507032]; D. Horton and G. G. Ross, Nucl. Phys. B830, 221 (2010), [arXiv:0908.0857].
[179] M. Drees, Phys. Rev. D33, 1468 (1986); S. Dimopoulos and G. F. Giudice, Phys. Lett. B357, 573 (1995), [hep-ph/9507282]; A. Pomarol and D. Tommasini, Nucl. Phys. B466, 3 (1996), [hep-ph/9507462].
[180] M. Dine, A. Kagan and S. Samuel, Phys. Lett. B243, 250 (1990); A. G. Cohen, D. B. Kaplan and A. E. Nelson, Phys. Lett. B388, 588 (1996), [hep-ph/9607394].
[181] C. Brust et al., JHEP 03, 103 (2012), [arXiv:1110.6670].
[182] S. P. Martin, Phys. Rev. D75, 115005 (2007), [hep-ph/0703097]; S. P. Martin, Phys. Rev. D78, 055019 (2008), [arXiv:0807.2820].
[183] J. Fan, M. Reece and J. T. Ruderman, JHEP 11, 012 (2011), [arXiv:1105.5135]; J. Fan, M. Reece and J. T. Ruderman, JHEP 07, 196 (2012), [arXiv:1201.4875].
[184] H. Murayama, Y. Nomura and D. Poland, Phys. Rev. D77, 015005 (2008), [arXiv:0709.0775]; G. Perez, T. S. Roy and M. Schmaltz, Phys. Rev. D79, 095016 (2009), [arXiv:0811.3206].
[185] R. Dermisek and J. F. Gunion, Phys. Rev. Lett. 95, 041801 (2005), [hep-ph/0502105]; Phys. Rev. D75, 095019 (2007); R. Dermisek and J. F. Gunion, Phys. Rev. D76, 095006 (2007), [arXiv:0705.4387].
[186] G. G. Ross and K. Schmidt-Hoberg, Nucl. Phys. B862, 710 (2012), [arXiv:1108.1284]; G. G. Ross, K. Schmidt-Hoberg and F. Staub, JHEP 08, 074 (2012), [arXiv:1205.1509]; A. Kaminska, G. G. Ross and K. Schmidt-Hoberg, JHEP 11, 209 (2013), [arXiv:1308.4168].
[187] S. P. Martin and J. D. Wells, Phys. Rev. D86, 035017 (2012), [arXiv:1206.2956].
[188] B. Bellazzini et al., Phys. Rev. D79, 095003 (2009), [arXiv:0902.0015].
[189] M. Dine, Ann. Rev. Nucl. Part. Sci. 65, 43 (2015), [arXiv:1501.01035].
[190] H. Baer, V. Barger and M. Savoy, Phys. Rev. D93, 035016 (2016), [arXiv:1509.02929].
[191] M.L. Mangano, editor, Physics at the FCC-hh, a 100 TeV pp collider, CERN Yellow Report, CERN-2017-003-M (2017).
[192] D. Stockinger, J. Phys. G34, R45 (2007), [hep-ph/0609168]; P. Athron et al., Eur. Phys. J. C76, 62 (2016), [arXiv:1510.08071].
[193] F. Jegerlehner, Acta Phys. Polon. B49, 1157 (2018), [arXiv:1804.07409]; M. Davier et al. (2019), [arXiv:1908.00921].
[194] M. Ibe, T. T. Yanagida and N. Yokozaki, JHEP 08, 067 (2013), [arXiv:1303.6995].
[195] R. H. Parker et al., Science 360, 191 (2018), [arXiv:1812.04130].
[196] D. Hanneke, S. Fogwell and G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008), [arXiv:0801.1134].
[197] B. Dutta and Y. Mimura, Phys. Lett. B790, 563 (2019), [arXiv:1811.10209]; M. Endo and W. Yin, JHEP 08, 122 (2019), [arXiv:1906.08768]; M. Badziak and K. Sakurai, JHEP 10, 024 (2019), [arXiv:1908.03607].
[198] A. Limosani et al. (Belle Collaboration), Phys. Rev. Lett. 103, 241801 (2009), [arXiv:0907.1384]; J. P. Lees et al. (BaBar Collaboration), Phys. Rev. Lett. 109, 191801 (2012), [arXiv:1207.2690]; J. P. Lees et al. (BaBar Collaboration), Phys. Rev. D86, 112008 (2012), [arXiv:1207.5772].
[199] M. Misiak et al., Phys. Rev. Lett. 114, 221801 (2015), [arXiv:1503.01789]; M. Czakon et al., JHEP 04, 168 (2015), [arXiv:1503.01791].
[200] H. Baer and M. Brhlik, Phys. Rev. D55, 3201 (1997), [hep-ph/9610224]; M. Ciuchini et al., Phys. Rev. D67, 075016 (2003), [Erratum: D68, 079901 (2003)], [hep-ph/0212397];
T. Hurth, Rev. Mod. Phys. 75, 1159 (2003), [hep-ph/0212304]; F. Mahmoudi, JHEP 12, 026 (2007), [arXiv:0710.3791]; K. A. Olive and L. Velasco-Sevilla, JHEP 05, 052 (2008), [arXiv:0801.0428].
[201] S. R. Choudhury and N. Gaur, Phys. Lett. B451, 86 (1999), [hep-ph/9810307]; K. S. Babu and C. F. Kolda, Phys. Rev. Lett. 84, 228 (2000), [hep-ph/9909476]; G. Isidori and A. Retico, JHEP 11, 001 (2001), [hep-ph/0110121]; G. Isidori and A. Retico, JHEP 09, 063 (2002), [hepph/0208159].
[202] S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 111, 101804 (2013), [arXiv:1307.5025]; V. Khachatryan et al. (CMS and LHCb Collaborations), Nature 522, 68 (2015), [arXiv:1411.4413]; M. Aaboud et al. (ATLAS Collaboration), JHEP 04, 098 (2019), [arXiv:1812.03017]; R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 118, 191801 (2017), [arXiv:1703.05747].
[203] J. Aebischer et al. (2019), [arXiv:1903.10434].
[204] C. Bobeth et al., Phys. Rev. Lett. 112, 101801 (2014), [arXiv:1311.0903].
[205] M. Bona et al. (UTfit Collaboration), Phys. Lett. B687, 61 (2010), [arXiv:0908.3470].
[206] J. P. Lees et al. (BaBar Collaboration), Phys. Rev. Lett. 109, 101802 (2012), [arXiv:1205.5442]; J. P. Lees et al. (BaBar Collaboration), Phys. Rev. D88, 072012 (2013), [arXiv:1303.0571].
[207] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 115, 111803 (2015), [Erratum: 115, 159901 (2015)], [arXiv:1506.08614]; R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 120, 171802 (2018), [arXiv:1708.08856]; M. Huschle et al. (Belle Collaboration), Phys. Rev. D92, 072014 (2015), [arXiv:1507.03233]; Y. Sato et al. (Belle Collaboration), Phys. Rev. D94, 072007 (2016), [arXiv:1607.07923]; S. Hirose et al. (Belle Collaboration), Phys. Rev. Lett. 118, 211801 (2017), [arXiv:1612.00529]; S. Hirose et al. (Belle Collaboration), Phys. Rev. D97, 012004 (2018), [arXiv:1709.00129].
[208] A. Abdesselam et al. (Belle Collaboration) (2019), [arXiv:1904.08794].
[209] S. Klaver (LHCb Collaboration), in "Proceedings of the 17th Conference on Flavor Physics and CP Violation (FPCP 2019) Victoria, BC, Canada, May 6-10, 2019," (2019), [arXiv:1907.01500].
[210] F. Mahmoudi, S. Neshatpour and J. Orloff, JHEP 08, 092 (2012), [arXiv:1205.1845]; A. Arbey et al., JHEP 11, 132 (2017), [arXiv:1707.00426].
[211] A. J. Buras, Acta Phys. Polon. B49, 1043 (2018), [arXiv:1805.11096].
[212] V. Cirigliano et al. (2019), [arXiv:1911.01359].
[213] J. R. Ellis et al., JHEP 08, 083 (2007), [arXiv:0706.0652]; S. Heinemeyer et al., JHEP 08, 087 (2008), [arXiv:0805.2359]; G.-C. Cho et al., JHEP 11, 068 (2011), [arXiv:1104.1769]; E. Bagnaschi et al., Eur. Phys. J. C78, 256 (2018), [arXiv:1710.11091].
[214] A. J. Buras et al., Nucl. Phys. B592, 55 (2001), [hep-ph/0007313].
[215] I. Esteban et al., JHEP 01, 106 (2019), [arXiv:1811.05487].
[216] K. Zuber, Phys. Rept. 305, 295 (1998), [hep-ph/9811267]; S. F. King, J. Phys. G42, 123001 (2015), [arXiv:1510.02091]; S. F. King, Prog. Part. Nucl. Phys. 94, 217 (2017), [arXiv:1701.04413].
[217] For a review of neutrino masses in supersymmetry, see e.g., B. Mukhopadhyaya, Proc. Indian National Science Academy A70, 239 (2004); M. Hirsch and J. W. F. Valle, New J. Phys. 6, 76 (2004), [hep-ph/0405015].
[218] F. Borzumati and Y. Nomura, Phys. Rev. D64, 053005 (2001), [hep-ph/0007018].
[219] P. Minkowski, Phys. Lett. 67B, 421 (1977); M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity, edited by D. Freedman and P. van Nieuwenhuizen (North Holland, Amsterdam, 1979) p. 315; T. Yanagida, Prog. Theor. Phys. 64, 1103 (1980); R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980); R. N. Mohapatra and G. Senjanovic, Phys. Rev. D23, 165 (1981).
[220] J. Hisano et al., Phys. Lett. B357, 579 (1995), [hep-ph/9501407]; J. Hisano et al., Phys. Rev. D53, 2442 (1996), [hep-ph/9510309]; J. A. Casas and A. Ibarra, Nucl. Phys. B618, 171 (2001), [hep-ph/0103065]; J. R. Ellis et al., Phys. Rev. D66, 115013 (2002), [hep-ph/0206110]; A. Masiero, S. K. Vempati and O. Vives, New J. Phys. 6, 202 (2004), [hep-ph/0407325]; E. Arganda et al., Phys. Rev. D71, 035011 (2005), [hep-ph/0407302]; F. R. Joaquim and A. Rossi, Phys. Rev. Lett. 97, 181801 (2006), [hep-ph/0604083]; J. R. Ellis and O. Lebedev, Phys. Lett. B653, 411 (2007), [arXiv:0707.3419].
[221] Y. Grossman and H. E. Haber, Phys. Rev. Lett. 78, 3438 (1997), [hep-ph/9702421]; A. Dedes, H. E. Haber and J. Rosiek, JHEP 11, 059 (2007), [arXiv:0707.3718].
[222] M. Hirsch, H. V. Klapdor-Kleingrothaus and S. G. Kovalenko, Phys. Lett. B398, 311 (1997), [hep-ph/9701253]; L. J. Hall, T. Moroi and H. Murayama, Phys. Lett. B424, 305 (1998), [hep-ph/9712515]; K. Choi, K. Hwang and W. Y. Song, Phys. Rev. Lett. 88, 141801 (2002), [hep-ph/0108028]; T. Honkavaara, K. Huitu and S. Roy, Phys. Rev. D73, 055011 (2006), [hep-ph/0512277].
[223] L. Basso et al., Comput. Phys. Commun. 184, 698 (2013), [arXiv:1206.4563].
[224] M. Chemtob, Prog. Part. Nucl. Phys. 54, 71 (2005), [hep-ph/0406029]; R. Barbier et al., Phys. Rept. 420, 1 (2005), [hep-ph/0406039].
[225] H. Dreiner, in Perspectives on Supersymmetry II, edited by G.L. Kane (World Scientific, Singapore, 2010) pp. 565-583.
[226] B. C. Allanach, A. Dedes and H. K. Dreiner, Phys. Rev. D60, 075014 (1999), [hepph/9906209].
[227] L. E. Ibanez and G. G. Ross, Nucl. Phys. B368, 3 (1992); L. E. Ibanez, Nucl. Phys. B398, 301 (1993), [hep-ph/9210211].
[228] A. Dedes, S. Rimmer and J. Rosiek, JHEP 08, 005 (2006), [hep-ph/0603225]; B. C. Allanach and C. H. Kom, JHEP 04, 081 (2008), [arXiv:0712.0852]; H. K. Dreiner et al., Phys. Rev. D84, 113005 (2011), [arXiv:1106.4338].
[229] H. K. Dreiner, C. Luhn and M. Thormeier, Phys. Rev. D73, 075007 (2006), [hep-ph/0512163].
[230] K. Tamvakis, Phys. Lett. B382, 251 (1996), [hep-ph/9604343]; G. Eyal and Y. Nir, JHEP 06, 024 (1999), [hep-ph/9904473]; A. Florez et al., Phys. Rev. D87, 095010 (2013), [arXiv:1303.0278].
[231] C. Csaki, Y. Grossman and B. Heidenreich, Phys. Rev. D85, 095009 (2012), [arXiv:1111.1239].
[232] D. Dercks et al., Eur. Phys. J. C77, 856 (2017), [arXiv:1706.09418].
[233] B. C. Allanach and B. Gripaios, JHEP 05, 062 (2012), [arXiv:1202.6616]; M. Asano, K. Rolbiecki and K. Sakurai, JHEP 01, 128 (2013), [arXiv:1209.5778]; N. Chamoun et al., JHEP 08, 142 (2014), [arXiv:1407.2248].
[234] J. C. Romao, Nucl. Phys. Proc. Suppl. 81, 231 (2000), [hep-ph/9907466]; Y. Grossman and S. Rakshit, Phys. Rev. D69, 093002 (2004), [hep-ph/0311310].
[235] R. N. Mohapatra, Phys. Rev. D34, 3457 (1986); K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 75, 2276 (1995), [hep-ph/9506354]; M. Hirsch, H. V. Klapdor-Kleingrothaus and S. G. Kovalenko, Phys. Rev. Lett. 75, 17 (1995); M. Hirsch, H. V. Klapdor-Kleingrothaus and S. G. Kovalenko, Phys. Rev. D53, 1329 (1996), [hep-ph/9502385].
[236] Y. Grossman and H. E. Haber, Phys. Rev. D59, 093008 (1999), [hep-ph/9810536].
[237] S. Dimopoulos and L. J. Hall, Phys. Lett. B207, 210 (1988); J. Kalinowski et al., Phys. Lett. B406, 314 (1997), [hep-ph/9703436]; J. Erler, J. L. Feng and N. Polonsky, Phys. Rev. Lett. 78, 3063 (1997), [hep-ph/9612397].
[238] H. K. Dreiner, P. Richardson and M. H. Seymour, Phys. Rev. D63, 055008 (2001), [hepph/0007228].
[239] J. E. Kim and H. P. Nilles, Phys. Lett. 138B, 150 (1984).
[240] J. E. Kim and H. P. Nilles, Mod. Phys. Lett. A9, 3575 (1994), [hep-ph/9406296].
[241] G. F. Giudice and A. Masiero, Phys. Lett. B206, 480 (1988); J. A. Casas and C. Munoz, Phys. Lett. B306, 288 (1993), [hep-ph/9302227]; K. J. Bae et al., Phys. Rev. D99, 115027 (2019), [arXiv:1902.10748].
[242] M. Cvetic et al., Phys. Rev. D56, 2861 (1997), [Erratum: D58, 119905 (1998)], [hepph/9703317].
[243] R. D. Peccei, Lect. Notes Phys. 741, 3 (2008), [hep-ph/0607268].
[244] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977); R. D. Peccei and H. R. Quinn, Phys. Rev. D16, 1791 (1977).
[245] H. Murayama, H. Suzuki and T. Yanagida, Phys. Lett. B291, 418 (1992); T. Gherghetta and G. L. Kane, Phys. Lett. B354, 300 (1995), [hep-ph/9504420]; K. J. Bae, H. Baer and H. Serce, Phys. Rev. D91, 1, 015003 (2015), [arXiv:1410.7500]; H. Baer, V. Barger and D. Sengupta, Phys. Lett. B790, 58 (2019), [arXiv:1810.03713].
[246] A. Delgado, G. Nardini and M. Quiros, Phys. Rev. D86, 115010 (2012), [arXiv:1207.6596].
[247] P. Fayet, Phys. Lett. 78B, 417 (1978).
[248] K. Benakli, Fortsch. Phys. 59, 1079 (2011), [arXiv:1106.1649].
[249] P. J. Fox, A. E. Nelson and N. Weiner, JHEP 08, 035 (2002), [hep-ph/0206096].
[250] K. Benakli and M. D. Goodsell, Nucl. Phys. B816, 185 (2009), [arXiv:0811.4409]; K. Benakli and M. D. Goodsell, Nucl. Phys. B840, 1 (2010), [arXiv:1003.4957].
[251] U. Sarkar and R. Adhikari, Phys. Rev. D55, 3836 (1997), [hep-ph/9608209]; R. Fok et al., Phys. Rev. D87, 055018 (2013), [arXiv:1208.2784].
[252] G. D. Kribs, E. Poppitz and N. Weiner, Phys. Rev. D78, 055010 (2008), [arXiv:0712.2039].
[253] K. Benakli, M. D. Goodsell and F. Staub, JHEP 06, 073 (2013), [arXiv:1211.0552].
[254] J. L. Hewett and T. G. Rizzo, Phys. Rept. 183, 193 (1989).
[255] S. F. King, S. Moretti and R. Nevzorov, Phys. Lett. B634, 278 (2006), [hep-ph/0511256]; S. F. King, S. Moretti and R. Nevzorov, Phys. Rev. D73, 035009 (2006), [hep-ph/0510419].

