

B-particle organization

Many measurements of *B* decays involve admixtures of *B* hadrons. Previously we arbitrarily included such admixtures in the B^{\pm} section, but because of their importance we have created two new sections: " B^{\pm}/B^{0} Admixture" for $\Upsilon(4S)$ results and " $B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon Admixture" for results at higher energies. Most inclusive decay branching fractions and χ_{b} at high energy are found in the Admixture sections. $B^{0}-\overline{B}^{0}$ mixing data are found in the B^{0} section, while $B_{s}^{0}-\overline{B}_{s}^{0}$ mixing data and $B-\overline{B}$ mixing data for a B^{0}/B_{s}^{0} admixture are found in the B^{\pm} , B^{0} , and B^{\pm} B^{0} Admixture sections. *b*-baryons are found near the end of the Baryon section.

The organization of the B sections is now as follows, where bullets indicate particle sections and brackets indicate reviews.

• B^{\pm}

mass, mean life, CP violation, branching fractions

 $\bullet B^0$

mass, mean life, $B^0 - \overline{B}^0$ mixing, *CP* violation, branching fractions

• B^{\pm}/B^0 Admixtures

CP violation, branching fractions

• $B^{\pm}/B^0/B^0_s/b$ -baryon Admixtures

mean life, production fractions, branching fractions

• B*

mass

• $B_1(5721)^+$

mass

- B₁(5721)⁰ mass
- $B_2^*(5747)^+$

mass $B_2^*(5747)^0$ mass $B_J^*(5970)^+$ mass $B_J^*(5970)^0$ mass B_s^0 mass, mean life, $B_s^0 - \overline{B}_s^0$ mixing, *CP* violation, branching fractions B_s^* mass $B_{s1}(5830)^0$

mass

•
$$B_{s2}^*(5840)^0$$

mass

• B_c^{\pm}

mass, mean life, branching fractions

At the end of Baryon Listings:

• Λ_b

mass, mean life, branching fractions

• $\Lambda_b(5912)^0$

mass, mean life

• $\Lambda_b(5920)^0$

mass, mean life

• Σ_b

mass

• Σ_b^*

mass

• Ξ_b^0, Ξ_b^-

mass, mean life, branching fractions

- $\Xi_b'(5935)^$ mass
- $\Xi_b(5945)^0$

mass

• $\Xi_b^*(5955)^-$

mass

• Ω_b^-

mass, branching fractions

• *b*-baryon Admixture

mean life, branching fractions

$I(J^P) = \tfrac{1}{2}(0^-)$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^{\pm}} = 5279.33 \pm 0.13$$
 MeV
Mean life $\tau_{B^{\pm}} = (1.638 \pm 0.004) \times 10^{-12}$ s
 $c\tau = 491.1 \ \mu$ m

CP violation

$$\begin{aligned} A_{CP}(B^+ \to J/\psi(1S)K^+) &= (1.8 \pm 3.0) \times 10^{-3} \quad (S = 1.5) \\ A_{CP}(B^+ \to J/\psi(1S)\pi^+) &= (1.8 \pm 1.2) \times 10^{-2} \quad (S = 1.3) \\ A_{CP}(B^+ \to J/\psi\rho^+) &= -0.11 \pm 0.14 \\ A_{CP}(B^+ \to J/\psi K^*(892)^+) &= -0.048 \pm 0.033 \\ A_{CP}(B^+ \to \psi(2S)\pi^+) &= 0.01 \pm 0.07 \quad (S = 2.2) \\ A_{CP}(B^+ \to \psi(2S)K^+) &= 0.012 \pm 0.020 \quad (S = 1.5) \\ A_{CP}(B^+ \to \psi(2S)K^*(892)^+) &= 0.08 \pm 0.21 \\ A_{CP}(B^+ \to \chi_{c1}(1P)\pi^+) &= 0.07 \pm 0.18 \\ A_{CP}(B^+ \to \chi_{c1}(1P)\pi^+) &= 0.07 \pm 0.18 \\ A_{CP}(B^+ \to \chi_{c1}K^*(892)^+) &= 0.5 \pm 0.5 \\ A_{CP}(B^+ \to \chi_{c1}K^*(892)^+) &= 0.5 \pm 0.5 \\ A_{CP}(B^+ \to D^0\ell^+\nu_\ell) &= (-0.14 \pm 0.20) \times 10^{-2} \\ A_{CP}(B^+ \to D^0\ell^+\nu_\ell) &= (-0.07 \pm 0.007 \\ A_{CP}(B^+ \to D_{CP(-1)}\pi^+) &= 0.017 \pm 0.026 \\ A_{CP}(B^+ \to D_{CP(-1)}\pi^+) &= 0.017 \pm 0.026 \\ A_{CP}(B^+ \to [\pi^+\pi^-\pi^-]_D\pi^+) &= 0.2 \pm 0.05 \\ A_{CP}(B^+ \to [\pi^+\pi^-\pi^+\pi^-]_DK^+) &= 0.10 \pm 0.01 \\ A_{CP}(B^+ \to \overline{D}^0K^+) &= -0.017 \pm 0.005 \\ A_{CP}(B^+ \to \overline{D}^0K^+) &= -0.017 \pm 0.11 \\ A_{CP}(B^+ \to [\pi^+\pi^+\pi^-\pi^-]_DK^+) &= -0.31 \pm 0.11 \\ A_{CP}(B^+ \to [\pi^+\pi^+\pi^-\pi^-]_D\pi^+) &= (-4 \pm 8) \times 10^{-3} \end{aligned}$$

B^{\pm}

$$\begin{aligned} &A_{CP}(B^+ \to [K^-\pi^+]_D K^+) = -0.58 \pm 0.21 \\ &A_{CP}(B^+ \to [K^-\pi^+\pi^0]_D K^+) = 0.30 \pm 0.20 \\ &A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+) = 0.30 \pm 0.20 \\ &A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+) = -0.05 \pm 0.09 \\ &A_{CP}(B^+ \to [K^-\pi^+]_D K^*(892)^+) = -0.75 \pm 0.16 \\ &A_{CP}(B^+ \to [K^-\pi^+\pi^-\pi^+]_D K^*(892)^+) = -0.45 \pm 0.25 \\ &A_{CP}(B^+ \to [K^-\pi^+\pi^0]_D \pi^+) = 0.00 \pm 0.09 \\ &A_{CP}(B^+ \to [K^-\pi^+\pi^0]_D \pi^+) = -0.03 \pm 0.16 \\ &A_{CP}(B^+ \to [K^-\pi^+\pi^0]_D \pi^+) = -0.03 \pm 0.04 \\ &A_{CP}(B^+ \to [K^-\pi^+]_{(D\pi)} \pi^+) = -0.09 \pm 0.27 \\ &A_{CP}(B^+ \to [K^-\pi^+]_{(D\pi)} \pi^+) = -0.016 \pm 0.020 \\ &A_{CP}(B^+ \to [K^-\pi^+]_{(D\pi)} K^+) = 0.8 \pm 0.4 \\ &A_{CP}(B^+ \to [K^-\pi^+]_{(D\pi)} K^+) = 0.4 \pm 1.0 \\ &A_{CP}(B^+ \to [K^-\pi^+]_{(D\pi)} K^+) = 0.4 \pm 1.0 \\ &A_{CP}(B^+ \to [K^+\pi^-\pi^0]_D K^+) = -0.02 \pm 0.15 \\ &A_{CP}(B^+ \to [K^0_S K^+\pi^-]_D K^+) = 0.02 \pm 0.13 \\ &A_{CP}(B^+ \to [K^0_S K^+\pi^-]_D \pi^+) = -0.025 \pm 0.026 \\ &A_{CP}(B^+ \to [K^0_S K^+\pi^-]_D \pi^+) = -0.025 \pm 0.026 \\ &A_{CP}(B^+ \to [K^0_S 8^+\pi^-]_D \pi^+) = -0.025 \pm 0.026 \\ &A_{CP}(B^+ \to [K^0_S 8^+\pi^-]_D \pi^+) = -0.012 \pm 0.030 \\ &A_{CP}(B^+ \to [K^*(892)^- K^+]_D \pi^+) = 0.03 \pm 0.11 \\ &A_{CP}(B^+ \to [K^*(892)^- K^+]_D \pi^+) = -0.012 \pm 0.030 \\ &A_{CP}(B^+ \to [K^+(892)^- K^+]_D \pi^+) = -0.012 \pm 0.030 \\ &A_{ADS}(B^+ \to D\pi^+) = 0.100 \pm 0.032 \\ &A_{ADS}(B^+ \to D\pi^+) = 0.100 \pm 0.032 \\ &A_{ADS}(B^+ \to D\pi^+]_D K^+\pi^-\pi^+) = -0.01 \pm 0.09 \\ &A_{CP}(B^+ \to [K^-\pi^+]_D \pi^+\pi^-\pi^+) = -0.01 \pm 0.013 \\ &A_{CP}(B^+ \to [K^-\pi^+]_D \pi^+\pi^-\pi^+) = -0.01 \pm 0.013 \\ &A_{CP}(B^+ \to [K^+\pi^-]_D \pi^+\pi^-\pi^+) = -0.013 \pm 0.013 \\ &A_{CP}(B^+ \to [K^+\pi^-]_D \pi^+\pi^-\pi^+) = -0.013 \pm 0.013 \\ &A_{CP}(B^+ \to [K^+\pi^-]_D \pi^+\pi^-\pi^+) = -0.013 \pm 0.013 \\ &A_{CP}(B^+ \to [K^+\pi^-]_D \pi^+\pi^-\pi^+) = -0.013 \pm 0.013 \\ &A_{CP}(B^+ \to [K^+\pi^-]_D \pi^+\pi^-\pi^+) = -0.013 \pm 0.013 \\ &A_{CP}(B^+ \to [K^+\pi^-]_D \pi^+\pi^-\pi^+) = -0.013 \pm 0.013 \\ &A_{CP}(B^+ \to [K^+\pi^+]_D \pi^+\pi^-\pi^+) = -0.013 \pm 0.013 \\ &A_{CP}(B^+ \to [K^+\pi^+]_D \pi^+\pi^-\pi^+) = -0.013 \pm 0.013 \\ &A_{CP}(B^+ \to [K^+\pi^+]_D \pi^+\pi^-\pi^+) = -0.013 \pm 0.013 \\ &A_{CP}(B^+ \to [K^+\pi^+]_D \pi^+\pi^-\pi^+] = -0.013 \pm 0.013 \\ &A_{CP}(B^+ \to [K^+\pi^+]_D \pi^+\pi^-\pi^+] = -0.013 \pm 0.013 \\$$

$$\begin{aligned} &A_{CP}(B^+ \to D_{CP}^{*0}(+1)K^+) = -0.11 \pm 0.08 \quad (S = 2.7) \\ &A_{CP}(B^+ \to D_{CP}(-1)K^+) = 0.07 \pm 0.10 \\ &A_{CP}(B^+ \to D_{CP}(-1)K^*(892)^+) = -0.23 \pm 0.22 \\ &A_{CP}(B^+ \to D_s^+ \overline{D}^0) = -0.15 \pm 0.11 \\ &A_{CP}(B^+ \to D_s^+ \overline{D}^0) = -0.15 \pm 0.11 \\ &A_{CP}(B^+ \to D^{*+} \overline{D}^0) = -0.06 \pm 0.13 \\ &A_{CP}(B^+ \to D^{*+} \overline{D}^0) = -0.06 \pm 0.13 \\ &A_{CP}(B^+ \to D^{+} \overline{D}^0) = 0.016 \pm 0.025 \\ &A_{CP}(B^+ \to K^+ \pi^0) = 0.037 \pm 0.021 \\ &A_{CP}(B^+ \to K^+ \pi^0) = 0.037 \pm 0.021 \\ &A_{CP}(B^+ \to \eta'K^+) = 0.004 \pm 0.011 \\ &A_{CP}(B^+ \to \eta'K^+) = 0.004 \pm 0.011 \\ &A_{CP}(B^+ \to \eta'K^*(892)^+) = -0.26 \pm 0.27 \\ &A_{CP}(B^+ \to \eta'K^*(1430)^+) = 0.15 \pm 0.13 \\ &A_{CP}(B^+ \to \eta'K^*(1430)^+) = 0.15 \pm 0.13 \\ &A_{CP}(B^+ \to \eta K^*) = -0.37 \pm 0.08 \\ &A_{CP}(B^+ \to \eta K^*) = -0.02 \pm 0.06 \\ &A_{CP}(B^+ \to \eta K^*(1430)^+) = -0.10 \pm 0.09 \\ &A_{CP}(B^+ \to \psi K^*_{2}(1430)^+) = -0.10 \pm 0.09 \\ &A_{CP}(B^+ \to \psi K^*_{2}(1430)^+) = 0.10 \pm 0.19 \\ &A_{CP}(B^+ \to \psi K^*_{2}(1430)^+) = 0.10 \pm 0.09 \\ &A_{CP}(B^+ \to \psi K^*_{2}(1430)^+) = -0.02 \pm 0.06 \\ &A_{CP}(B^+ \to \psi K^*_{2}(1430)^+) = 0.01 \pm 0.09 \\ &A_{CP}(B^+ \to \psi K^*_{1}(1430)^+) = 0.01 \pm 0.09 \\ &A_{CP}(B^+ \to \psi K^*_{1}(1430)^+) = 0.01 \pm 0.09 \\ &A_{CP}(B^+ \to \psi K^*_{1}(1430)^+) = 0.027 \pm 0.008 \\ &A_{CP}(B^+ \to \psi K^*_{1}(1430)^+) = 0.028 \pm 0.30 \\ &A_{CP}(B^+ \to \psi K^*_{1}(1430)^+) = -0.08 \pm 0.09 \\ &A_{CP}(B^+ \to \psi K^*_{1}(1430)^*) = 0.07 \pm 0.08 \\ &A_{CP}(B^+ \to \psi K^*_{1}(1430)^*) = 0.07 \pm 0.08 \\ &A_{CP}(B^+ \to \psi K^*_{1}(1430)^* + 0.08 \pm 0.30 \\ &A_{CP}(B^+ \to \psi K^*_{1}(1430)^* + 0.061 \pm 0.032 \\ &A_{CP}(B^+ \to K^*_{1}(1430)^* \pi^0) = 0.26^{+0.18} \\ &A_{CP}(B^+ \to K^*_{1}(1430)^* \pi^0) = 0.26^{+0.18} \\ &A_{CP}(B^+ \to K^*_{1}(1430)^* \pi^0) = 0.26^{+0.18} \\ &A_{CP}(B^+ \to K^*_{1}(1430)^* \pi^0) = 0.06 \pm 0.07 \\ &A_{CP}(B^+ \to K^*_{1}(1430)^* \pi^0) = 0.06 \pm 0.07 \\ &A_{CP}(B^+ \to K^*_{1}(1430)^* \pi^0) = 0.06 \pm 0.07 \\ &A_{CP}(B^+ \to K^*_{1}(1430)^* \pi^0) = 0.06 \pm 0.07 \\ &A_{CP}(B^+ \to K^*_{1}(1430)^* \pi^0) = 0.06 \pm 0.07 \\ &A_{CP}(B^+ \to K^*_{1}(1430)^* \pi^0) = 0.07 \pm 0.08 \\ \end{pmatrix}$$

$$\begin{aligned} &A_{CP}(B^+ \to \rho^0 K^*(892)^+) = 0.31 \pm 0.13 \\ &A_{CP}(B^+ \to \kappa^+(892)^+ f_0(980)) = -0.15 \pm 0.12 \\ &A_{CP}(B^+ \to b_1^+ K^0) = -0.03 \pm 0.15 \\ &A_{CP}(B^+ \to k_1^0 K^+) = -0.46 \pm 0.20 \\ &A_{CP}(B^+ \to k_1^0 K^+) = -0.46 \pm 0.20 \\ &A_{CP}(B^+ \to K^0 K^+) = -0.21 \pm 0.14 \\ &A_{CP}(B^+ \to K^0 K^+) = -0.21 \pm 0.14 \\ &A_{CP}(B^+ \to K^+ K^- \pi^+) = -0.122 \pm 0.021 \\ &A_{CP}(B^+ \to K^+ K^- \pi^+) = -0.033 \pm 0.008 \\ &A_{CP}(B^+ \to K^+ K^- \pi^+) = -0.03 \pm 0.008 \\ &A_{CP}(B^+ \to K^+ K^- K^+) = -0.04 \pm 0.07 \\ &A_{CP}(B^+ \to K^+ K^- K^+) = -0.01 \pm 0.08 \\ &A_{CP}(B^+ \to K^+ K^+ K^-) = 0.11 \pm 0.09 \\ &A_{CP}(B^+ \to \phi K^+ (892)^+) = -0.01 \pm 0.08 \\ &A_{CP}(B^+ \to \phi K^+ (892)^+) = -0.10 \pm 0.08 \\ &A_{CP}(B^+ \to \phi K^+ (892)^+) = -0.10 \pm 0.08 \\ &A_{CP}(B^+ \to \phi K^+ (430)^+) = -0.23 \pm 0.20 \\ &A_{CP}(B^+ \to K^+ (\phi \phi)_{\eta_C}) = 0.09 \pm 0.10 \\ &A_{CP}(B^+ \to K^+ (\phi \phi)_{\eta_C}) = 0.09 \pm 0.10 \\ &A_{CP}(B^+ \to \pi^+ \pi^- \pi^+) = 0.03 \pm 0.019 \\ &A_{CP}(B^+ \to \pi^+ \pi^- \pi^+) = 0.03 \pm 0.019 \\ &A_{CP}(B^+ \to \pi^+ \pi^- \pi^+) = 0.057 \pm 0.013 \\ &A_{CP}(B^+ \to \phi^+ \gamma) = -0.11 \pm 0.33 \\ &A_{CP}(B^+ \to \phi^+ \gamma) = -0.11 \pm 0.30 \\ &A_{CP}(B^+ \to \phi^+ \pi^-) = 0.02 \pm 0.11 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = 0.02 \pm 0.11 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = 0.02 \pm 0.11 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = 0.02 \pm 0.11 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = 0.02 \pm 0.11 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = -0.02 \pm 0.013 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = -0.02 \pm 0.013 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = -0.02 \pm 0.013 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = -0.02 \pm 0.013 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = -0.02 \pm 0.11 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = -0.02 \pm 0.11 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = -0.02 \pm 0.11 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = -0.04 \pm 0.06 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = -0.04 \pm 0.06 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = -0.04 \pm 0.06 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = -0.14 \pm 0.07 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = 0.02 \pm 0.11 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = 0.02 \pm 0.11 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = 0.02 \pm 0.11 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = 0.02 \pm 0.11 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = 0.02 \pm 0.11 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = 0.02 \pm 0.16 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = 0.05 \pm 0.16 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = 0.11 \pm 0.11 \\ &A_{CP}(B^+ \to \phi^+ \pi^0) = 0.26 \pm$$

$$\begin{aligned} A_{CP}(B^+ \to p\bar{p}\pi^+) &= 0.00 \pm 0.04 \\ A_{CP}(B^+ \to p\bar{p}K^+) &= 0.00 \pm 0.04 \quad (S = 2.2) \\ A_{CP}(B^+ \to p\bar{p}K^*(892)^+) &= 0.21 \pm 0.16 \quad (S = 1.4) \\ A_{CP}(B^+ \to p\bar{\Lambda}\gamma) &= 0.17 \pm 0.17 \\ A_{CP}(B^+ \to p\bar{\Lambda}\pi^0) &= 0.01 \pm 0.17 \\ A_{CP}(B^+ \to K^+\ell^+\ell^-) &= -0.02 \pm 0.08 \\ A_{CP}(B^+ \to K^+e^+e^-) &= 0.14 \pm 0.14 \\ A_{CP}(B^+ \to K^+\mu^+\mu^-) &= -0.11 \pm 0.12 \\ A_{CP}(B^+ \to K^*\ell^+\ell^+\ell^-) &= -0.09 \pm 0.14 \\ A_{CP}(B^+ \to K^*e^+e^-) &= -0.14 \pm 0.23 \\ A_{CP}(B^+ \to K^*\mu^+\mu^-) &= -0.12 \pm 0.24 \\ \gamma &= (71.1^{+4.6}_{-5.3})^{\circ} \\ \mathbf{r}_{B}(B^+ \to D^0K^+) &= 0.0993 \pm 0.0046 \\ \delta_{B}(B^+ \to D^0K^+) &= (129.6^{+5.0}_{-6.0})^{\circ} \\ \mathbf{r}_{B}(B^+ \to D^0K^+) &= 0.140 \pm 0.019 \\ \delta_{B}(B^+ \to D^{*0}K^+) &= 0.140 \pm 0.019 \\ \delta_{B}(B^+ \to D^{*0}K^+) &= (319.2^{+7.7}_{-8.7})^{\circ} \end{aligned}$$

 B^- modes are charge conjugates of the modes below. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0 \overline{B}{}^0$ and 50% $B^+ B^-$ production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_s , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \rightarrow D^{\pm} X$, the values usually are multiplicities, not branching fractions. They can be greater than one.

B ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ p Confidence level(MeV/c)
Ser	mileptonic and leptonic mod	les
$\ell^+ \nu_\ell X$	$[a]$ (10.99 \pm 0.28)% –
$e^+ \nu_e X_c$	(10.8 \pm 0.4)% –
$D\ell^+ u_\ell X$	(9.7 ± 0.7))% –
$\overline{D}{}^{0}\ell^{+}\nu_{\ell}$	$[a]$ (2.35 \pm 0.09) % 2310

$\overline{D}{}^0 \tau^+ \nu_{ au}$		(7.7	±	2.5) × 10 ⁻³		1911
$\overline{D}^*(2007)^0\ell^+\nu_\ell$	[a]	(5.66	\pm	0.22)%		2258
$\overline{D}^*(2007)^0 \tau^+ \nu_{\tau}$		(1.88	±	0.20)%		1839
$D^{-}\pi^{+}\ell^{+}\nu_{\ell}$		(4.4	\pm	0.4	$) \times 10^{-3}$		2306
$\overline{D}_0^*(2420)^0\ell^+\nu_\ell, \ \overline{D}_0^{*0} \rightarrow$		(2.5	±	0.5) × 10 ⁻³		_
$\overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell}, \ \overline{D}_{2}^{*0} \rightarrow $		(1.53	±	0.16) × 10 ⁻³		2065
$D^{(*)} n \pi^{+} \mu_{\ell} (n > 1)$		(1 86	+	0.26) %		_
$D^{*-}\pi^+\ell^+\nu_{\ell}$		(6.0	+	0.20	$) \times 10^{-3}$		2254
$\overline{D}_1(2420)^0\ell^+\nu_{\ell}$, $\overline{D}_1^0 \rightarrow$		(3.03	+	0.20	$) \times 10^{-3}$		2084
$D^{*-}\pi^+$		(0.00	-	0.20) / 10		2001
$\overline{D}_1'(2430)^0 \ell^+ \nu_\ell, \ \overline{D}_1'^0 \rightarrow D_1^{*-} + D_1^{*-}$		(2.7	±	0.6	$) \times 10^{-3}$		-
$\overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell},$		(1.01	±	0.24	$) imes 10^{-3}$	S=2.0	2065
$\overline{D}_2^{*0} \rightarrow D^{*-}\pi^+$								
$\overline{D}{}^0\pi^+\pi^-\ell^+ u_\ell$		(1.7	\pm	0.4	$) \times 10^{-3}$		2301
$\sum \overline{D}^{*0} \pi^+ \pi^- \ell^+ \nu_\ell$		(8	\pm	5	$) \times 10^{-4}$		2248
$D_s^{(*)-}$ $K^+ \ell^+ u_\ell$		(6.1	±	1.0) × 10 ⁻⁴		-
$D_s^- K^+ \ell^+ u_\ell$		(3.0	+	1.4 1.2	$) \times 10^{-4}$		2242
$D_s^{*-} K^+ \ell^+ \nu_\ell$		(2.9	\pm	1.9	$) \times 10^{-4}$		2185
$\pi^0 \ell^+ \nu_{\ell}$		(7.80	\pm	0.27	$) imes 10^{-5}$		2638
$\eta \ell^+ \nu_\ell$		(3.9	\pm	0.5) × 10 ⁻⁵		2611
$\eta'\ell^+\nu_\ell$		(2.3	±	0.8) × 10 ⁻⁵		2553
$\omega \ell^+ \nu_\ell$	[a]	(1.19	\pm	0.09	$) \times 10^{-4}$		2582
$ ho^0 \ell^+ u_\ell$	[a]	(1.58	\pm	0.11	$) imes 10^{-4}$		2583
$ ho \overline{ ho} \ell^+ u_\ell$		(5.8	+	2.6 2.3	$) imes 10^{-6}$		2467
$ ho \overline{ ho} \mu^+ u_\mu$		<	8.5			imes 10 ⁻⁶	CL=90%	2446
$p \overline{p} e^+ \nu_e$		(8.2	+	4.0 3.3) × 10 ⁻⁶		2467
$e^+ \nu_e$		<	9.8			imes 10 ⁻⁷	CL=90%	2640
$\mu^+ u_{\mu}$		2.90	\times 10 ⁻	-07	to 1	$.07 imes 10^{-0}$	⁶ CL=90%	2639
$\tau^+ \nu_{ au}$		(1.09	\pm	0.24	$) \times 10^{-4}$	S=1.2	2341
$\ell^+ u_\ell \gamma$		<	3.0			imes 10 ⁻⁶	CL=90%	2640
$e^+ \nu_e \gamma$		<	4.3			imes 10 ⁻⁶	CL=90%	2640
$\mu^+ u_\mu \gamma$		<	3.4			imes 10 ⁻⁶	CL=90%	2639
In	clus	ive	mode	s				
D ⁰ X		(8.6	±	0.7) %		_
$\overline{D}{}^{0}X$		(79	\pm	4) %		_
D^+X		(2.5	\pm	0.5) %		_
D^-X		(9.9	\pm	1.2) %		-

 $^{+}$ 1.4 $^{-}$ 1.3

(7.9

) %

 $D_s^+ X$

$D_s^- X$		(1.10	$^+$ 0.40 $^-$ 0.32) %	-
$\Lambda_c^+ X$		(2.1	$^{+\ 0.9}_{-\ 0.6}$) %	-
$\overline{\Lambda}_{c}^{-}X$		(2.8	$^{+}_{-} \ \overset{1.1}{_{0.9}}$) %	-
τX		(97	\pm 4) %	-
сX		(23.4	$^{+}$ 2.2 $^{-}$ 1.8) %	-
$c/\overline{c}X$		(120	\pm 6) %	-
	<i>D</i> , <i>D</i> *, oi	<i>D_s</i> mo	odes		
$\overline{D}{}^{0}\pi^{+}$		(4.68	\pm 0.13	$) imes 10^{-3}$	2308
$D_{CP(+1)}\pi^+$	[<i>b</i>]	(2.05	\pm 0.18	$) \times 10^{-3}$	-
$D_{CP(-1)}\pi^+$	[<i>b</i>]	(2.0	\pm 0.4	$) imes 10^{-3}$	-
$\overline{D}^0 \rho^+$		(1.34	\pm 0.18) %	2237
$\overline{D}^{0}K^{+}$		(3.63	\pm 0.12	$) \times 10^{-4}$	2281
$D_{CP(+1)}K^+$	[<i>b</i>]	(1.80	\pm 0.07	$) imes 10^{-4}$	-
$D_{CP(-1)}K^+$	[<i>b</i>]	(1.96	\pm 0.18) × 10 ⁻⁴	_

 $[K^{-}$

 $[K^{-}]$

 $[K^{-}$

 $[K^{-}]$

 $[K^{-}]$

 $[K^{-}$ $[K^+$ π^+

 $[K_S^0]$

	(5.3	\pm 0.4	$) imes 10^{-4}$	2213
[<i>b</i>]	(2.7	\pm 0.8	$) imes 10^{-4}$	-
[<i>b</i>]	(6.2	\pm 0.7	$) imes 10^{-4}$	_
	(3.1	\pm 1.6	$) \times 10^{-6}$	2213
	(5.2	\pm 2.1	$) \times 10^{-4}$	2237

2281

$\overline{D}{}^0 K^+ \overline{K}{}^0$		(5.5	±	1.6) × 10 ⁻⁴		2189
$\overline{D}{}^0 \kappa^+ \overline{\kappa}{}^* (892)^0$		(7.5	±	1.7	$) \times 10^{-4}$		2072
$\overline{D}^0 \pi^+ \pi^+ \pi^-$		(5.6	±	2.1	$) \times 10^{-3}$	S=3.6	2289
$\overline{D}{}^0 \pi^+ \pi^+ \pi^-$ nonresonant		(5	\pm	4) × 10 ⁻³		2289
$\overline{D}{}^0 \pi^+ ho^0$		(4.2	\pm	3.0	$) \times 10^{-3}$		2208
$\overline{D}{}^0$ a $_1(1260)^+$		(4	\pm	4	$) \times 10^{-3}$		2123
$\overline{D}{}^{0}\omega\pi^{+}$		(4.1	\pm	0.9	$) \times 10^{-3}$		2206
$D^*(2010)^- \pi^+ \pi^+$		(1.35	\pm	0.22	$) \times 10^{-3}$		2247
$D^{*}(2010)^{-}K^{+}\pi^{+}$		(8.2	\pm	1.4	$) \times 10^{-5}$		2206
$\overline{D}_1(2420)^0\pi^+$, $\overline{D}_1^0 ightarrow$		(5.2	\pm	2.2	$) \times 10^{-4}$		2081
$D^*(2010)^-\pi^+$								
$D^{-}\pi^{+}\pi^{+}$		(1.07	±	0.05) × 10 ⁻³		2299
$D^- K^+ \pi^+$		(7.7	\pm	0.5	$) \times 10^{-5}$		2260
$D_0^*(2300)^0 K^+, \ D_0^{*0} \rightarrow$		(6.1	±	2.4	$) \times 10^{-6}$		_
$D^-\pi^+$								
$D_2^*(2460)^0K^+,\;\;D_2^{*0} ightarrow$		(2.32	\pm	0.23	$) \times 10^{-5}$		-
$D^{-}\pi^{+}$						_		
$D_1^*(2760)^0K^+,\ D_1^{*0} ightarrow$		(3.6	\pm	1.2) × 10 ⁻⁶		-
$D^{-}\pi^{+}$						C		
$D^+ K^0$		<	2.9			$\times 10^{-6}$	CL=90%	2278
$D^+K^+\pi^-$		(5.6	±	1.1) × 10 ⁻⁶		2260
$D_2^*(2460)^0 K^+, \ D_2^{*0} \to$		<	6.3			$\times 10^{-7}$	CL=90%	-
$D^{+}\pi^{-}$						7		
$D + \overline{K} = 0$		<	4.9			$\times 10^{-7}$	CL=90%	2211
$D + K^{**}$		< ,	1.4			× 10 ⁻⁰	CL=90%	2211
$D^{*}(2007)^{*}\pi^{+}$		(4.90	±	0.17	$) \times 10^{-3}$		2256
$D_{CP(+1)}^{+}\pi$	[d]	(2.7	±	0.6) × 10 5		_
$D_{CP(-1)}^{*0}\pi^+$	[d]	(2.4	±	0.9	$) \times 10^{-3}$		-
$\overline{D}^{*}(2007)^{0}\omega\pi^{+}$		(4.5	±	1.2) × 10 ⁻³		2149
$\overline{D}^{*}(2007)^{0}\rho^{+}$		(9.8	±	1.7	$) \times 10^{-3}$		2181
$\overline{D}^{*}(2007)^{0}K^{+}$		(3 97	+	0.31	$) \times 10^{-4}$		2227
$\overline{D} * 0 $ K^+		(0.51	_	0.28) ~ 10-4		2221
$\frac{DCP(+1)}{CP(+1)}$ K	[d]	(2.60	±	0.33) × 10 +		_
$D_{CP(-1)}^{*0}K^+$	[d]	(2.19	±	0.30) × 10 ⁻⁴		-
$D^{*}(2007)^{0}K^{+}$		(7.8	±	2.2) × 10 ⁻⁶		2227
$\overline{D}^{*}(2007)^{0}K^{*}(892)^{+}$		(8.1	±	1.4) × 10 ⁻⁴		2156
$\overline{D}^{*}(2007)^{0}K^{+}\overline{K}^{0}$		<	1.06			$\times 10^{-3}$	CL=90%	2132
$\overline{D}^{*}(2007)^{0} K^{+} \overline{K}^{*}(892)^{0}$		(1.5	±	0.4	$) \times 10^{-3}$		2009
$\overline{D}^{*}(2007)^{0}\pi^{+}\pi^{+}\pi^{-}$		(1.03	\pm	0.12) %		2236
$\overline{D}^*(2007)^0a_1(1260)^+$		(1.9	\pm	0.5) %		2063
$\overline{D}^*(2007)^0 \pi^- \pi^+ \pi^+ \pi^0$		(1.8	\pm	0.4) %		2219
$\overline{D}^{*0} 3\pi^+ 2\pi^-$		(5.7	±	1.2	$) imes 10^{-3}$		2196
$D^*(2010)^+\pi^0$		<	3.6			imes 10 ⁻⁶		2255

$D^{*}(2010)^{+}K^{0}$		<	9.0			imes 10 ⁻⁶	CL=90%	2225
$D^{*}(2010)^{-}\pi^{+}\pi^{+}\pi^{0}$		(1.5	\pm	0.7) %		2235
$D^{*}(2010)^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-}$		(2.6	\pm	0.4) × 10 ⁻³		2217
$\overline{D}^{**0}\pi^+$	[e]	(5.7	\pm	1.2	$) \times 10^{-3}$		_
$\overline{D}_{1}^{*}(2420)^{0}\pi^{+}$		(1.5	\pm	0.6	$) \times 10^{-3}$	S=1.3	2082
$\overline{D}_{1}(2420)^{0}\pi^{+} \times B(\overline{D}_{1}^{0} \to \overline{D}_{1}^{0}\pi^{+}\pi^{-})$		(2.5	+	1.6 1.4) × 10 ⁻⁴	S=3.9	2082
$\overline{D}_{1}(2420)^{0}\pi^{+} \times B(\overline{D}_{1}^{0} \to \overline{D}_{1}^{0})$		(2.2	±	1.0	$) \times 10^{-4}$		2082
$\overline{D}^{*}\pi^{+}\pi^{-}$ (nonresonant)) $\overline{D}_{2}^{*}(2462)^{0}\pi^{+}$		(3.56	±	0.24) × 10 ⁻⁴		_
$\times B(\overline{D}_{2}^{*}(2462)^{0} \to D^{-}\pi^{+})$ $\overline{D}^{*}(2462)^{0}\pi^{+} \times B(\overline{D}^{*0})$		(2.2	I	1.0) × 10-4		
$\frac{D_2(2402)}{\overline{D}^0 \pi^- \pi^+}$		C	2.2	T	1.0) × 10		_
$\overline{D}_{2}^{*}(2462)^{0}\pi^{+} \times B(\overline{D}_{2}^{*0} \rightarrow \overline{D}^{0}\pi^{-}\pi^{+} \text{ (nonresonant))}$		<	1.7			imes 10 ⁻⁴	CL=90%	_
$\overline{D}_{2}^{*}(2462)^{0}\pi^{+} \times B(\overline{D}_{2}^{*0} \rightarrow$		(2.2	±	1.1	$) imes 10^{-4}$		_
$D^*(2010)^-\pi^+)$ $\overline{D}^*_0(2400)^0\pi^+$		(6.4	±	1.4) × 10 ⁻⁴		2136
$\times B(\overline{D}_0^*(2400)^0 \to D^-\pi^+)$						4		
$D_1(2421)^{\circ}\pi^+ \times B(\overline{D}_1(2421)^{\circ} \to D^{*-}\pi^+)$		(6.8	±	1.5) × 10 ⁻⁴		_
$\overline{D}_{2}^{*}(2462)^{0}\pi^{+}$		(1.8	±	0.5) × 10 ⁻⁴		-
$ \xrightarrow{\times} B(D_2(2402)^\circ \rightarrow D^\circ \pi^+) $ $\overline{D}'_1(2427)^0 \pi^+ $		(5.0	±	1.2) × 10 ⁻⁴		_
$\times B(\overline{D}'_1(2427)^0 \to D^{*-}\pi^+)$			c			10-6		
$\frac{D_1(2420)^{\circ}\pi^+ \times B(D_1^{\circ} \to \overline{D}^{*0}\pi^+\pi^-)}{\overline{D}^{*0}\pi^+\pi^-}$		<	6			× 10 °	CL=90%	2082
$\overline{D}_{1}^{*}(2420)^{0}\rho^{+}$		<	1.4			imes 10 ⁻³	CL=90%	1996
$\overline{D}_{2}^{*}(2460)^{0}\pi^{+}$		<	1.3			imes 10 ⁻³	CL=90%	2063
$\overline{D}_{2}^{*}(2460)^{0}\pi^{+}\times B(\overline{D}_{2}^{*0}\rightarrow \overline{D}_{2}^{*0})$		<	2.2			imes 10 ⁻⁵	CL=90%	2063
$\overline{D}_{1}^{*}(2680)^{0}\pi^{+}, \ \overline{D}_{1}^{*}(2680)^{0} \rightarrow$		(8.4	±	2.1	$) imes 10^{-5}$		_
$\overline{D}_{3}^{-}\pi^{+}$, $\overline{D}_{3}^{*}(2760)^{0}\pi^{+}$,		(1.00	±	0.22	$) imes 10^{-5}$		_
$\overline{D}_{3}^{*}(2760)^{0}\pi^{+} \to D^{-}\pi^{+}$ $\overline{D}_{2}^{*}(3000)^{0}\pi^{+}.$		(2.0	±	1.4) × 10 ⁻⁶		_
$^{2}\overline{D}_{2}^{*}(3000)^{0}\pi^{+} \rightarrow D^{-}\pi^{+}$		(,		
$\overline{D}_{2}^{*}(2460)^{0} \rho^{+}$		<	4.7			imes 10 ⁻³	CL=90%	1977
$\overline{D}{}^0 D_s^+$		(9.0	±	0.9	$) \times 10^{-3}$		1815
$D^*_{s0}(2317)^+ \overline{D}{}^0, \ D^{*+}_{s0} \to D^+ \pi^0$		(7.9	+ -	1.5 1.3) × 10 ⁻⁴		1605

$D_{s0}(2317)^+ \overline{D}{}^0 \times$	<	7.6		imes 10 ⁻⁴	CL=90%	1605
$B(D_{s0}(2317)^+ \to D_s^{*+}\gamma)$						
$D_{s0}(2317)^+ D^*(2007)^0 \times$	(9	\pm 7	$) \times 10^{-4}$		1511
$B(D_{s0}(2317)^+ \to D_s^+ \pi^0)$						
$D_{sJ}(2457)^+\overline{D}{}^0$	(3.1	$^{+}_{-} \begin{array}{} 1.0 \\ 0.9 \end{array}$	$) imes 10^{-3}$		_
$D_{\rm old}(2457)^+ \overline{D}^0 \times$	(4.6	+ 1.3	$) \times 10^{-4}$		_
$B(D_{1}(2457)^{+} \rightarrow D^{+} \gamma)$	(- 1.1) / 10		
$D_{s}(2457) + \overline{D}_{0}$	/	2.2		v 10 ⁻⁴		
$D_{sJ}(2457)^+ D^- \times$	<	2.2		× 10	CL=90%	_
$B(D_s f(2437))^+ \rightarrow \mathcal{D}^+ + \mathcal{D}^+$						
$D_{s}^{\dagger}\pi^{\dagger}\pi^{}$				4		
$D_{sJ}(2457)^+ D^0 \times$	<	2.7		$\times 10^{-4}$	CL=90%	-
$B(D_{sJ}(2457)^+ o D_s^+ \pi^0)$						
$D_{s,I}(2457)^+ \overline{D}{}^0 \times$	<	9.8		imes 10 ⁻⁴	CL=90%	-
$B(D_{sI}(2457)^+ \to D^{*+}\gamma)$						
$D_{1}(2457)^{+}\overline{D}^{*}(2007)^{0}$	(1 20	+ 0.30) %		_
$D = (2457) \pm \overline{D} * (2007)^0$	(1.20	\pm 0.00) /0		
$D_{sJ}(2457) + D^{*}(2007)^{\circ} \times$	(1.4	- 0.6	$) \times 10^{-5}$		_
$B(D_{sJ}(2457)^+ \to D_s^+ \gamma)$						
$\overline{D}^0 D_{s1}(2536)^+ \times$	(4.0	\pm 1.0	$) \times 10^{-4}$		1447
$B(D_{s1}(2536)^+ \rightarrow$						
$D^{*}(2007)^{0}K^{+}$ +						
$D^*(2010)^+ K^0)$						
$\overline{D}{}^0 D_{s1}(2536)^+ imes$	(2.2	\pm 0.7	$) \times 10^{-4}$		1447
$B(D_{s1}(2536)^+ ightarrow$						
$D^*(2007)^0 K^+)$						
$\overline{D}^{*}(2007)^{0} D_{s1}(2536)^{+} \times$	(5.5	\pm 1.6	$) \times 10^{-4}$		1339
$B(D_{s1}(2536)^+ \rightarrow$						
$D^{*}(2007)^{0}K^{+})$						
$\overline{D}^0 D_{s1}(2536)^+ \times$	(2.3	\pm 1.1) × 10 ⁻⁴		1447
$B(D_{s1}(2536)^+ \rightarrow D^{*+}K^0)$						
$\overline{D}^0 D_{s,I}(2700)^+ \times$	(5.6	\pm 1.8) × 10 ⁻⁴	S=1.7	_
$B(D_{s,I}(2700)^+ \rightarrow D^0 K^+)$,		
$\overline{D}^{*0} D_{s1}(2536)^+, D_{s1}^+ \rightarrow$	(3.9	± 2.6) × 10 ⁻⁴		1339
$D^{*+} K^0$,			,		
$\overline{D}^0 D_{sI}(2573)^+, D_{sI}^+ \rightarrow$	(8	± 15) × 10 ⁻⁶		_
$D^0 K^+$	(,		
$\overline{D}^{*0}D_{*1}(2573), D^+_{*1} \rightarrow$	<	2		$\times 10^{-4}$	CL=90%	1306
$D^0 K^+$						
$\overline{D}^*(2007)^0 D_{e^{-1}}(2573), D^+_{e^{-1}} \rightarrow$	<	5		$\times 10^{-4}$	CL=90%	1306
$D^0 K^+$				-		
$\overline{D}^0 \widetilde{D}_{-}^{*+}$	(7.6	\pm 1.6) × 10 ⁻³		1734
$\overline{D}^{*}(2007)^{0}D^{+}$	(82	+ 17	$) \times 10^{-3}$		1737
$(2001) D_s$	(0.2	1 .1	, ~ 10		1151

$\overline{D}^{*}(2007)^{0}D_{s}^{*+}$	(1.71	\pm	0.24) %		1651
$D_{s}^{(*)+}\overline{D}^{**0}$	(2.7	±	1.2) %		_
$\overline{D^{*}}(2007)^{0} D^{*}(2010)^{+}$	(8.1	±	1.7) × 10 ⁻⁴		1713
$\overline{D}^{0} D^{*} (2010)^{+} +$	<	1.30			%	CL=90%	1792
$\overline{D}^{*}(2007)^{0}D^{+}$							
$\overline{D}{}^{0}D^{*}(2010)^{+}$	(3.9	\pm	0.5	$) \times 10^{-4}$		1792
$\overline{D}{}^0 D^+$	(3.8	\pm	0.4	$) \times 10^{-4}$		1866
$\overline{D}^0 D^+ K^0$	(1.55	\pm	0.21	$) \times 10^{-3}$		1571
$\underline{D}^{+}\overline{D}^{*}(2007)^{0}$	(6.3	±	1.7) × 10 ⁻⁴		1791
$D^{*}(2007)^{0}D^{+}K^{0}$	(2.1	±	0.5	$) \times 10^{-3}$		1475
$D^0 D^* (2010)^+ K^0$	(3.8	±	0.4	$) \times 10^{-3}$		1476
$D^{*}(2007)^{0}D^{*}(2010)^{+}K^{0}$	(9.2	±	1.2	$) \times 10^{-3}$		1362
$\frac{D^0 D^0 K^+}{D^0 K^+}$	(1.45	±	0.33	$) \times 10^{-3}$	S=2.6	1577
$D^*(2007)^0 D^0 K^+$	(2.26	±	0.23	$) \times 10^{-3}$		1481
$D^{0}D^{*}(2007)^{0}K^{+}$	(6.3	±	0.5) × 10 ⁻³		1481
$D^*(2007)^0 D^*(2007)^0 K^+$	(1.12	±	0.13)%		1368
$D^- D^+ K^+$	(2.2	±	0.7) × 10 ⁻⁴		1571
$D^{-}D^{*}(2010)^{+}K^{+}$	(6.3	±	1.1) × 10 ⁻⁴		1475
$D^{*}(2010)^{-}D^{+}K^{+}$	(6.0	±	1.3	$) \times 10^{-4}$		1475
$D^{*}(2010)^{-}D^{*}(2010)^{+}K^{+}$	(1.32	±	0.18) × 10 ⁻³		1363
$(D+D^{*})(D+D^{*})K$	(4.05	±	0.30)%		_
$D_{s}^{\dagger}\pi^{\circ}$	(1.6	±	0.5) × 10 ⁻⁵		2270
$D_s^{*+}\pi^0$	<	2.6			$\times 10^{-4}$	CL=90%	2215
$D_s^+\eta$	<	4			$\times 10^{-4}$	CL=90%	2235
$D_{s}^{*+}\eta$	<	6			$\times 10^{-4}$	CL=90%	2178
$D_s^+ \rho^0$	<	3.0			imes 10 ⁻⁴	CL=90%	2197
$D_s^{*+} ho^0$	<	4			imes 10 ⁻⁴	CL=90%	2138
$D_s^+ \omega$	<	4			imes 10 ⁻⁴	CL=90%	2195
$D_s^{*+}\omega$	<	6			imes 10 ⁻⁴	CL=90%	2136
$D_{s}^{+}a_{1}(1260)^{0}$	<	1.8			imes 10 ⁻³	CL=90%	2079
$D_{s}^{*+}a_{1}(1260)^{0}$	<	1.3			imes 10 ⁻³	CL=90%	2015
$D_{s}^{+}K^{+}K^{-}$	(7.2	±	1.1	$) imes 10^{-6}$		2149
$D_{s}^{+}\phi$	<	4.2			imes 10 ⁻⁷	CL=90%	2141
$D_{s}^{*+}\phi$	<	1.2			imes 10 ⁻⁵	CL=90%	2079
$D_s^+\overline{K}^0$	<	8			imes 10 ⁻⁴	CL=90%	2242
$D_{s}^{*+}\overline{K}^{0}$	<	9			imes 10 ⁻⁴	CL=90%	2185
$D_{s}^{+}\overline{K}^{*}(892)^{0}$	<	4.4			imes 10 ⁻⁶	CL=90%	2172
$D_{s}^{+}K^{*0}$	<	3.5			imes 10 ⁻⁶	CL=90%	2172
$D_s^{*+}\overline{K}^*(892)^0$	<	3.5			imes 10 ⁻⁴	CL=90%	2112
$\tilde{D_s} \pi^+ K^+$	(1.80	\pm	0.22	$) \times 10^{-4}$		2222
$D_{s}^{*-}\pi^{+}K^{+}$	(1.45	±	0.24) × 10 ⁻⁴		2164
3	`						

$D_{s}^{-}\pi^{+}K^{*}(892)^{+}$	<	5		imes 10 ⁻³	CL=90%	2138
$D_{s}^{*-}\pi^{+}K^{*}(892)^{+}$	<	7		imes 10 ⁻³	CL=90%	2076
$D_{s}^{-}K^{+}K^{+}$	(9.7	\pm 2.1	$) imes 10^{-6}$		2149
$D_s^{*-}K^+K^+$	<	1.5		imes 10 ⁻⁵	CL=90%	2088
Charm	oniur	n mo	des			
$\eta_c K^+$	(1.09	\pm 0.09) × 10 ⁻³	S=1.1	1751
$\eta_c K^+, \eta_c \rightarrow K^0_S K^+ \pi^{\pm}$	(2.7	\pm 0.6) × 10 ⁻⁵		_
$\eta_{c} {\cal K}^{*}(892)^{+}$	(1.0	$^+$ 0.5 $^-$ 0.4	$) imes 10^{-3}$		1646
$\eta_c K^+ \pi^+ \pi^-$	<	3.9		$ imes 10^{-4}$	CL=90%	1684
$\eta_c K^+ \omega$ (782)	<	5.3		imes 10 ⁻⁴	CL=90%	1475
$\eta_{c} K^{+} \eta$	<	2.2		imes 10 ⁻⁴	CL=90%	1588
$\eta_c K^+ \pi^0$	<	6.2		imes 10 ⁻⁵	CL=90%	1723
$\eta_c(2S)K^+$	(4.4	\pm 1.0	$) \times 10^{-4}$		1320
$\eta_{m{c}}(2S)m{K}^+$, $\eta_{m{c}} o m{ ho}\overline{m{ ho}}$	(3.5	\pm 0.8	$) \times 10^{-8}$		_
$\eta_c(2S) K^+, \ \eta_c \rightarrow \kappa^0 \kappa^{\pm} \pi^{\pm}$	(3.4	$^{+}$ 2.3 $^{-}$ 1.6) × 10 ⁻⁶		-
$h(1P)K^{+} h > 1/ab\pi^{+}\pi^{-}$	/	2.4		× 10−6	CI00%	1401
$X(3730)^0 K^+ X^0 \rightarrow n n$	<	5.4 1.6		$\times 10^{-5}$	CL = 90%	1401
$X(3730)^0 K^+ X^0 \rightarrow n \pi^0$		4.0 5.7		$^{\times 10}_{\times 10^{-6}}$	CL = 90%	_
$\chi_{1}(3130) K^{+}$		2.6		$\times 10^{-4}$	CL_90%	1141
$\chi_{c1}(3872)K^+ \chi_1 \rightarrow n\overline{n}$		2.0 5		$^{-10}_{-9}$	CL - 95%	-
$\chi_{c1}(3872)K^+, \chi_{c1} \rightarrow pp$		5 8.6	+ 0.8	$^{\times 10}$	CL—9370	11/1
$\chi_{c1}(5072)\pi^{-}, \chi_{c1} \rightarrow J/\psi \pi^{+}\pi^{-}$	(0.0	⊥ 0.0) × 10		1141
$\chi_{c1}(3872)K^+, \chi_{c1} \rightarrow I/\psi_{\gamma}$	(2.1	\pm 0.4) × 10 ⁻⁶	S=1.1	1141
$\chi_{c1}(3872)K^+, \chi_{c1} \rightarrow \chi_{c1}(25)\chi_{c1}$	(4	± 4) × 10 ⁻⁶	S=2.5	1141
$\psi(25)\gamma \\ \chi_{c1}(3872)K^+, \ \chi_{c1} \rightarrow \psi(25)\gamma \\ \chi_{c1}(3872)K^+, \ \chi_{c1}(38$	<	7.7		imes 10 ⁻⁶	CL=90%	1141
$J/\psi(1S)\eta$ $\chi_{c1}(3872)K^+, \ \chi_{c1} \rightarrow$	<	6.0		imes 10 ⁻⁵	CL=90%	1141
$\chi_{c1}^{D^0} D^0 \chi_{c1}^{-1} (3872) K^+, \ \chi_{c1} \to 0$	<	4.0		imes 10 ⁻⁵	CL=90%	1141
$D^+ D^-$ $\chi_{c1}(3872)K^+, \chi_{c1} \rightarrow$	(1.0	± 0.4) × 10 ⁻⁴		1141
$\chi_{c1}(3872)K^+, \chi_{c1} \rightarrow \chi_{c1}(3872)K^+$	(8.5	\pm 2.6) $ imes$ 10 $^{-5}$	S=1.4	1141
$\chi_{c1}(3872)^{0}K^{+}, \ \chi_{c1}^{0} \rightarrow$	<	3.0		imes 10 ⁻⁵	CL=90%	_
$\eta_c \pi^+ \pi^-$ $\chi_{c1}(3872)^0 K^+, \chi^0_{c1} \rightarrow$	<	6.9		imes 10 ⁻⁵	CL=90%	_
$ \begin{array}{c} \eta_{c} \omega(782) \\ \chi_{c1}(3872) K^{+}, \ \chi_{c1} \rightarrow \\ \chi_{c1}(1P) \pi^{+} \pi^{-} \end{array} $	<	1.5		imes 10 ⁻⁶	CL=90%	_

X(3915)K ⁺	<	2.8	imes 10 ⁻⁴	CL=90%	1103
$X(3915)^0 K^+, X^0 \rightarrow \eta_c \eta$	<	4.7	imes 10 ⁻⁵	CL=90%	-
$X(3915)^0 K^+, X^0 \to \eta_c \pi^0$	<	1.7	imes 10 ⁻⁵	CL=90%	_
$X(4014)^0 K^+, X^0 \rightarrow \eta_c \eta$	<	3.9	imes 10 ⁻⁵	CL=90%	_
$X(4014)^0 K^+, X^0 \to \eta_c \pi^0$	<	1.2	imes 10 ⁻⁵	CL=90%	_
$Z_c(3900)^0 K^+, Z_c^0 \rightarrow$	<	4.7	imes 10 ⁻⁵	CL=90%	_
$n_c \pi^+ \pi^-$					
$X(4020)^0 K^+, X^0 \rightarrow$	<	1.6	imes 10 ⁻⁵	CL=90%	_
$\eta_c \pi^+ \pi^-$					
$\chi_{c1}(3872) K^*(892)^+, \chi_{c1} \rightarrow$	<	4.8	imes 10 ⁻⁶	CL=90%	939
$J/\psi\gamma$					
$\chi_{c1}(3872) K^*(892)^+, \chi_{c1} \rightarrow$	<	2.8	imes 10 ⁻⁵	CL=90%	939
$\psi(2S)\gamma$					
$\chi_{c1}(3872)^+ K^0, \chi_{c1}^+ \rightarrow$	[f] <	6.1	imes 10 ⁻⁶	CL=90%	_
$\frac{1}{\sqrt{2}}(1.5)\pi^{+}\pi^{0}$					
$\gamma_{c1}(3872) K^0 \pi^+ \gamma_{c1} \rightarrow$	(1 06	$+ 0.31) \times 10^{-5}$		_
$J/\psi(1S)\pi^{+}\pi^{-}$	(1.00	± 0.01) × 10		
$Z_{2}(4430)^{+} K^{0} Z^{+} \rightarrow I/\psi \pi^{+}$	<	15	× 10 ⁻⁵	CI =95%	_
$Z(1130) + K^0 Z^+ \rightarrow$		1.0	× 10 ⁻⁵	CL -05%	_
$z_c(4450)$ K , $z_c \rightarrow$		4.7	× 10	CL—9570	
$\psi(2S)\pi'$		• •	10-5		
$\psi(4200)$ ° K ', ψ ° \rightarrow	<	2.9	$\times 10^{-5}$	CL=95%	_
$J/\psi\pi'\pi$		1 4	10-5		
$X(3915)K', X \rightarrow J/\psi\gamma$ $X(2020)0K^+, X^0, J/\psi\gamma$	<	1.4	× 10 9	CL=90%	-
$\lambda(3930)^{\circ} \Lambda^{+}, \ \lambda^{\circ} \rightarrow J/\psi\gamma$	< (2.5	$\times 10^{-3}$	CL=90%	-
$J/\psi(15) K^{+}$	(1.010	$0.028) \times 10^{-3}$		1684
$J/\psi(15) K^{+} \pi^{+}$	(1.14	\pm 0.11) × 10 °	C 0 F	1051
$J/\psi(15) K + \pi + \pi$	(8.1	\pm 1.3) × 10 +	S=2.5	1612
$J/\psi(15) K^+ K^- K^+$	(3.37	± 0.29) × 10 °		1252
$\lambda(3915)K', \Lambda \rightarrow pp$	< (1.1	$\times 10^{-3}$	CL=95%	-
$J/\psi(15) K^{+}(892)^{+}$	(1.43	± 0.08) × 10 ⁻³		15/1
$J/\psi(15) \wedge (1270)^{+}$	(1.8	± 0.5) × 10 ³		1390
$J/\psi(15) \times (1400)^{+}$	< (5	$\times 10^{-4}$	CL=90%	1308
$J/\psi(15)\eta K'$	(1.24	\pm 0.14) × 10 1		1510
$\chi_{c1-odd}(3872)$ K ⁺ ,	<	3.8	× 10 °	CL=90%	-
$\chi_{c1-odd} \rightarrow J/\psi \eta$		7 4	10-6		
$\psi(4100) K^+, \ \psi \to \ J/\psi \eta$	<	1.4	× 10 °	CL=90%	-
$J/\psi(15)\eta^{2}\kappa^{2}$	< (8.8	$\times 10^{-5}$	CL=90%	1273
J/Ψ(13)ΦΛ '	(5.0	\pm 0.4) × 10 ⁻⁵		1227
$J/\psi(1S)$ $K_1(1650)$, $K_1 ightarrow$	(6	$^{+10}_{-6}$) × 10 ⁻⁶		_
ϕ K ⁺					
$J/\psi(1S) {\cal K}^*(1680)^+$, ${\cal K}^* o$	(3.4	$+ 1.9) \times 10^{-6}$		_
ϕK^+	`		- 2.2 '		

$J/\psi(1S) K_2^*(1980), \ K_2^* \to UK^+$	(1.5	+ -	0.9 0.5) × 10 ⁻⁶		-
ϕK^+ $J/\psi(15) K(1830)^+,$ $K(1920)^+$	(1.3	+	$\begin{array}{c} 1.3\\ 1.1 \end{array}$) × 10 ⁻⁶		-
$\begin{array}{rcl} & \kappa(1830)^+ \rightarrow & \phi \kappa^+ \\ & \chi_{c1}(4140) \kappa^+, & \chi_{c1} \rightarrow \\ & I/\psi(1S) \phi \end{array}$	(10	±	4) × 10 ⁻⁶		-
$\chi_{c1}(4274)K^+, \ \chi_{c1} \rightarrow J/\psi(1S)\phi$	(3.6	+ -	2.2 1.8) × 10 ⁻⁶		-
$\chi_{c0}(4500)K^+, \ \chi_c^0 \rightarrow J/\psi(1S)\phi$	(3.3	+ -	2.1 1.7) × 10 ⁻⁶		-
$\chi_{c0}(4700)K^+, \ \chi_{c0} \rightarrow J/\psi(1S)\phi$	(6	+ -	5 4) × 10 ⁻⁶		-
$J/\psi(1S)\omega K^+$	(3.20	+	0.60) × 10 ⁻⁴		1388
$\chi_{c1}(3872)K^+, \ \chi_{c1} \rightarrow I/\psi_{c2}$	(6.0	±	2.2) × 10 ⁻⁶		1141
$X(3915)K^+, X \rightarrow J/\psi \omega$	(3.0	+	0.9) × 10 ⁻⁵		1103
$I/\eta/(1S)\pi^+$	(3 88	+	0.7) $\times 10^{-5}$		1728
$J/\psi(1S)\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	(1.17	±	0.13	$) \times 10^{-5}$		1635
$\psi(2S)\pi^{+}\pi^{+}\pi^{-}$	(1.9	±	0.4	$) \times 10^{-5}$		1304
$J/\psi(1S)\rho^+$	(5.0	±	0.8	$) \times 10^{-5}$		1611
$J/\psi(1S)\pi^+\pi^0$ nonresonant	<	7.3			× 10 ⁻⁶	CL=90%	1717
$J/\psi(1S)a_1(1260)^+$	<	1.2			imes 10 ⁻³	CL=90%	1415
$J/\psi(1S)\rho\overline{p}\pi^+$	<	5.0			imes 10 ⁻⁷	CL=90%	643
$J/\psi(1S)\rho\overline{\Lambda}$	(1.18	\pm	0.31	$) imes 10^{-5}$		567
$J/\psi(1S)\overline{\Sigma}^0 p$	<	1.1			× 10 ⁻⁵	CL=90%	_
$J/\psi(1S)D^+$	<	1.2			imes 10 ⁻⁴	CL=90%	871
$J/\psi(1S)\overline{D}^0\pi^+$	<	2.5			imes 10 ⁻⁵	CL=90%	665
$\psi(2S)\pi^+$	(2.44	\pm	0.30	$) imes 10^{-5}$		1347
$\psi(2S)K^+$	(6.21	\pm	0.22	$) \times 10^{-4}$		1284
$\psi(2S)K^{*}(892)^{+}$	(6.7	\pm	1.4	$) \times 10^{-4}$	S=1.3	1116
$\psi(2S)K^+\pi^+\pi^-$	(4.3	\pm	0.5	$) \times 10^{-4}$		1179
$\psi(2S)\phi(1020)K^+$	(4.0	\pm	0.7	$) \times 10^{-6}$		417
$\psi(3770)K^+$	(4.9	\pm	1.3	$) \times 10^{-4}$		1218
$\psi(3770)K+,\psi \rightarrow D^0\overline{D}^0$	(1.5	\pm	0.5	$) \times 10^{-4}$	S=1.4	1218
$\psi(3770)K+,\psi ightarrow D^+D^-$	(9.4	\pm	3.5	$) \times 10^{-5}$		1218
$\psi(3770)K^+$, $\psi \rightarrow p\overline{p}$	<	2			$\times 10^{-7}$	CL=95%	-
ψ (4040) K^+	<	1.3			$\times 10^{-4}$	CL=90%	1003
$\psi(4160)K^+$	(5.1	±	2.7) × 10 ⁻⁴		868
$\psi(4160) K^+, \psi \rightarrow D^0 D^0$	(8	±	5	$) \times 10^{-5}$		_
$\chi_{c0} \pi^+$, $\chi_{c0} \rightarrow \pi^+ \pi^-$	<	1			$\times 10^{-7}$	CL=90%	1531
$\chi_{c0} K^+$	(1.49	+ _	0.15 0.14) × 10 ⁻⁴		1478

$\chi_{c0} K^*(892)^+$	<	$2.1 \times 10^{-4} CL=90\%$	1341
$\chi_{c1}(1P)\pi^+$	(2.2 \pm 0.5) $ imes$ 10 $^{-5}$	1468
$\chi_{c1}(1P)K^+$	(4.84 \pm 0.23 $)\times10^{-4}$	1412
$\chi_{c1}(1P) K^*(892)^+$	(3.0 \pm 0.6 $)\times10^{-4}$ S=1.1	1265
$\chi_{c1}(1P) K^0 \pi^+$	(5.8 \pm 0.4) $ imes$ 10 ⁻⁴	1370
$\chi_{c1}(1P) K^+ \pi^0$	($3.29~\pm~0.35$ $)\times10^{-4}$	1373
$\chi_{c1}(1P)K^{+}\pi^{+}\pi^{-}$	($3.74~\pm~0.30$ $)\times10^{-4}$	1319
$\chi_{c1}(2P)K^+, \chi_{c1}(2P) \rightarrow$	<	$1.1 \times 10^{-5} ext{ CL}=90\%$	_
$\pi^{+}\pi^{-}\chi_{c1}(1P)$			
$\chi_{c2}K^+$	(1.1 \pm 0.4) $ imes$ 10 $^{-5}$	1379
$\chi_{c2} K^*(892)^+$	<	$1.2 \times 10^{-4} \text{ CL}=90\%$	1228
$\chi_{c2} K^0 \pi^+$	(1.16 \pm 0.25 $)\times10^{-4}$	1336
$\chi_{c2} K^+ \pi^0$	<	6.2 $\times 10^{-5}$ CL=90%	1339
$\chi_{c2} K^+ \pi^+ \pi^-$	(1.34 \pm 0.19) $\times10^{-4}$	1284
$\chi_{c2}(3930)\pi^+, \ \chi_{c2} \rightarrow \pi^+\pi^-$	<	$1 \times 10^{-7} \text{ CL}=90\%$	1437
$h_c(1P)K^+$	<	$3.8 \times 10^{-5} \text{ CL}=90\%$	1401
$h_c(1P) K^+, h_c \rightarrow p\overline{p}$	<	6.4 $\times 10^{-8}$ CL=95%	_
<i>K</i> or <i>K</i> or	• K*	nodes	0614
$\kappa^{\circ}\pi^{+}$ $\kappa^{+}=0$	(2.37 ± 0.08) × 10 ⁻⁵	2614
$\kappa + \pi^{\circ}$	(1.29 ± 0.05) × 10 ⁻⁵	2615
ηκ	(7.06 ± 0.25) × 10 ⁻⁵	2528
$\eta' K^*(892)^+$	($4.8 \begin{array}{c} + & 1.8 \\ - & 1.6 \end{array}) \times 10^{-6}$	2472
$\eta' K_0^*(1430)^+$	(5.2 \pm 2.1) $ imes$ 10 $^{-6}$	_
$\eta' K_2^{*}(1430)^+$	(2.8 \pm 0.5) $ imes$ 10 $^{-5}$	2346
ηK^{+}	(2.4 \pm 0.4) \times 10 ⁻⁶ S=1.7	2588
$\eta K^{*}(892)^{+}$	(1.93 ± 0.16) $\times 10^{-5}$	2534
$\eta K_0^*(1430)^+$	(1.8 ± 0.4) $\times 10^{-5}$	_
$n K_{2}^{*}(1430)^{+}$	(9.1 \pm 3.0) \times 10 ⁻⁶	2414
$(1205) K^{+} \times B(-(1205))$		20 + 0.8 $10-6$	0455
$\eta(1295) \wedge \times B(\eta(1295) \rightarrow \pi\pi\pi)$	($2.9 - 0.7 \times 10^{-5}$	2455
$n(1405) K^+ \times B(n(1405) \rightarrow$	<	$1.3 \times 10^{-6} \text{ CL}=90\%$	2425
$n\pi\pi$)			
$\eta(1405) K^+ \times B(\eta(1405) \rightarrow$	<	1.2 $\times 10^{-6}$ CL=90%	2425
<i>K</i> * <i>K</i>)			
$n(1475) \stackrel{?}{K^+} \times B(n(1475) \rightarrow$	($1.38 + 0.21$) $\times 10^{-5}$	2407
K^*K	($-0.18^{+0.10}$	2407
$f_1(1285)K^+$	<	$20 \times 10^{-6} \text{ CL} - 00\%$	2458
$f_1(1420) K^+ \times B(f_1(1420) \rightarrow 0)$		$2.0 \times 10^{-6} \text{ Cl} - 0.0\%$	2430 2420
$n\pi\pi$		2.5 A 10 CL-90/0	2720
$f_1(1420) K^+ \times B(f_1(1420)) \rightarrow$	<	4.1 $\times 10^{-6}$ CI -00%	2420
K*K)			2120

$\phi(1680) \mathcal{K}^+ imes B(\phi(1680) ightarrow \mathcal{K}^* \mathcal{K})$	<	3.4			imes 10 ⁻⁶	CL=90%	2344
$f_0(1500) K^+$	(3.7	±	2.2) × 10 ⁻⁶		2398
$\tilde{\omega}K^+$	(6.5	\pm	0.4	$) \times 10^{-6}$		2558
ω K*(892) ⁺	<	7.4			× 10 ⁻⁶	CL=90%	2503
$\omega(\kappa \pi)^{*+}_{0}$	(2.8	\pm	0.4	$) \times 10^{-5}$		_
$\omega K_{0}^{*}(1430)^{+}$	(2.4	±	0.5) $\times 10^{-5}$		_
$\omega K_{2}^{*}(1430)^{+}$	(2.1	±	0.4	$) \times 10^{-5}$		2380
$a_0(980)^+ K^0 \times B(a_0(980)^+ \rightarrow$	<	3.9		-	× 10 ⁻⁶	CL=90%	_
$\eta \pi^+) = \eta \pi^+ \times B(a_0(980)^0 o n\pi^0)$	<	2.5			× 10 ⁻⁶	CL=90%	_
$K^{*}(892)^{0}\pi^{+}$	(1.01	+	0.08	$) \times 10^{-5}$		2562
$K^{*}(892)^{+}\pi^{0}$	(6.8		0.9	$) \times 10^{-6}$		2563
$K^{+}\pi^{-}\pi^{+}$	(5.10		0.29	$) \times 10^{-5}$		2609
$K^+\pi^-\pi^+$ nonresonant	(1.63	+	0.21) × 10 ⁻⁵		2609
ω (782) K^+	(6	±	9) × 10 ⁻⁶		2558
$K^+ f_0(980) \times B(f_0(980) \rightarrow$	(9.4	+	1.0 1.2) × 10 ⁻⁶		2522
$\pi^+\pi^-$)	(1 07		0.07	<u>م</u> ــــــــــــــــــــــــــــــــــــ		
$I_2(1270)^{\circ} K^{\circ}$	(1.07	±	0.27) × 10 °		_
$P(f_{1270})^{0} \times \pi^{+}\pi^{-}$	<	1.07			× 10 °	CL=90%	_
$D(10(1370) \rightarrow \pi^+\pi^-)$	/	1 17			v 10−5	CI _00%	_
$P(1450) \land \land \pi^+ \pi^-)$	<	1.17			X 10	CL=90%	
$f'(1525) K^+ \times$	/	21			× 10−6	CI	2202
P(f/(1525)) = -+)	<	5.4			× 10	CL=90/0	2392
$B(T_2(1525) \to \pi^+\pi^-)$,	~ -		~ -	×6		
$K + \rho^{\circ}$	(3.7	±	0.5) × 10 ⁻⁰		2559
$\kappa_0^*(1430)^0 \pi^+$	(3.9	+	0.6 0.5) × 10 ⁻⁵	S=1.4	2445
$K_0^*(1430)^+ \pi^0$	(1.19	+	0.20 0.23	$) imes 10^{-5}$		_
$K_2^*(1430)^0 \pi^+$	(5.6	+	2.2 1.5	$) imes 10^{-6}$		2445
$K^{*}(1410)^{0}\pi^{+}$	<	4.5			imes 10 ⁻⁵	CL=90%	2448
$K^{*}(1680)^{0}\pi^{+}$	<	1.2			imes 10 ⁻⁵	CL=90%	2358
$K^+ \pi^{\dot{0}} \pi^0$	(1.62	±	0.19	$) \times 10^{-5}$		2610
$f_0(980) K^+ \times B(f_0 \rightarrow \pi^0 \pi^0)$	(2.8	\pm	0.8	$) \times 10^{-6}$		2522
$\mathcal{K}^-\pi^+\pi^+$	<	4.6			× 10 ⁻⁸	CL=90%	2609
${\cal K}^- \pi^+ \pi^+$ nonresonant	<	5.6			imes 10 ⁻⁵	CL=90%	2609
$K_1(1270)^0 \pi^+$	<	4.0			imes 10 ⁻⁵	CL=90%	2484
$K_1(1400)^0 \pi^+$	<	3.9			imes 10 ⁻⁵	CL=90%	2451
$\kappa^0 \pi^+ \pi^0$	<	6.6			imes 10 ⁻⁵	CL=90%	2609
$\kappa^0 ho^+$	(7.3	+	1.0 1.2) × 10 ⁻⁶		2558

_

_

_

–

$K^{*}(892)^{+}K^{+}K^{-}$	(3.6	±	0.5	$) imes 10^{-5}$		2466
$K^{*}(892)^{+}\phi$	(10.0	±	2.0	$) \times 10^{-6}$	S=1.7	2460
$\phi(\kappa\pi)^{*+}_0$	(8.3	±	1.6	$) \times 10^{-6}$		-
$\phi K_1(1270)^+$	(6.1	\pm	1.9	$) \times 10^{-6}$		2375
$\phi K_1(1400)^+$	<	3.2			$\times 10^{-6}$	CL=90%	2339
$\phi K^*(1410)^+$	<	4.3			$\times 10^{-0}$	CL=90%	-
$\phi K_0^*(1430)^+$	(7.0	±	1.6) × 10 ⁻⁰		_
$\phi K_2^*(1430)^+$	(8.4	±	2.1) × 10 ⁻⁰		2333
$\phi K_2^*(1770)^+$	<	1.50			× 10 ⁻⁵	CL=90%	-
$\phi K_2^*(1820)^+$	<	1.63			$\times 10^{-5}$	CL=90%	-
$a_{1}^{+}K^{*0}$	<	3.6			× 10 ⁻⁶	CL=90%	-
$K^+\phi\phi$	(5.0	±	1.2) × 10 ⁻⁶	S=2.3	2306
$\eta' \eta' K^+$	<	2.5			$\times 10^{-5}$	CL=90%	2338
$\omega \phi K^{+}$	<	1.9			$\times 10^{-0}$	CL=90%	2374
$X(1812)K \to B(X \to \omega \phi)$	< (3.2		0.00	$\times 10^{-7}$	CL=90%	-
κ (092) γ	(3.92	±	0.22) × 10 °	5=1.7	2504
$K_1(1270)^+ \gamma$	(4.4	+	0.6) × 10 ⁻⁵		2486
η K ⁺ γ	(7.9	\pm	0.9	$) \times 10^{-6}$		2588
$\eta' {\cal K}^+ \gamma$	(2.9	$^+$	1.0 0.9	$) imes 10^{-6}$		2528
$\phi K^+ \gamma$	(2.7	±	0.4	$) imes 10^{-6}$	S=1.2	2516
$K^+\pi^-\pi^+\gamma$	(2.58	\pm	0.15	$) imes 10^{-5}$	S=1.3	2609
$K^*(892)^0 \pi^+ \gamma$	(2.33	±	0.12) × 10 ⁻⁵		2562
$K^+ ho^0 \gamma$	(8.2	±	0.9) × 10 ⁻⁶		2559
$(K^+\pi^-)_{\sf NR}\pi^+\gamma$	(9.9	+	1.7 2.0	$) \times 10^{-6}$		2609
$\kappa^0 \pi^+ \pi^0 \gamma$	(4.6	±	0.5	$) imes 10^{-5}$		2609
$ extsf{K}_1(1400)^+ \gamma$	(10	+	5 4	$) \times 10^{-6}$		2453
${\cal K}^*(1410)^+\gamma$	(2.7	+	0.8 0.6	$) imes 10^{-5}$		_
$K^*_0(1430)^0 \pi^+ \gamma$	(1.32	+	0.26) × 10 ⁻⁶		2445
$K_2^{\circ}(1430)^+\gamma$	(1.4	±	0.92	$) imes 10^{-5}$		2447
$\bar{K^{*}(1680)^{+}\gamma}$	(6.7	+	1.7	$) imes 10^{-5}$		2360
$K_{2}^{*}(1780)^{+}\gamma$	<	3.9		1.7	imes 10 ⁻⁵	CL=90%	2341
$K_{4}^{*}(2045)^{+}\gamma$	<	9.9			imes 10 ⁻³	CL=90%	2244
l ight unfla	vored	meso	n r	node	ic i		

LIGHT UNTIAVORED MESON MODES

$ ho^+\gamma$	(9.8	± 2.	5) $ imes$ 10 $^{-7}$	7	2583
$\pi^+\pi^0$	(5.5	± 0.4	4) $\times 10^{-6}$	S=1.2	2636
$\pi^+\pi^+\pi^-$	(1.52	± 0.1	14) $ imes$ 10 $^{-5}$	5	2630
$\rho^0 \pi^+$	(8.3	\pm 1.2	2)×10 ^{−6}	ò	2581
$\pi^+ f_0(980), \ f_0 \rightarrow \ \pi^+ \pi^-$	<	1.5		imes 10 ⁻⁶	⁵ CL=90%	2545

$\pi^+ f_2(1270)$	(1.6	+	0.7 0.4	$) \times 10^{-6}$		2484
$ ho$ (1450) ⁰ π^+ , $ ho^0 ightarrow \pi^+\pi^-$	(1.4	+	0.6 0.9) × 10 ⁻⁶		2434
$f_0(1370)\pi^+, f_0 \rightarrow \pi^+\pi^-$	<	4.0			imes 10 ⁻⁶	CL=90%	2460
$f_0(500)\pi^+$, $f_0 \to \pi^+\pi^-$	<	4.1			imes 10 ⁻⁶	CL=90%	_
$\pi^+\pi^-\pi^+$ nonresonant	(5.3	+	$\begin{array}{c} 1.5 \\ 1.1 \end{array}$) × 10 ⁻⁶		2630
$\pi^+\pi^0\pi^0$	<	8.9			imes 10 ⁻⁴	CL=90%	2631
$ ho^+\pi^0$	(1.09	\pm	0.14	$) \times 10^{-5}$		2581
$\pi^+\pi^-\pi^+\pi^0$	<	4.0			imes 10 ⁻³	CL=90%	2622
$ ho^+ ho^0$	(2.40	\pm	0.19	$) \times 10^{-5}$		2523
$ ho^+ f_0(980), f_0 \rightarrow \pi^+ \pi^-$	<	2.0			imes 10 ⁻⁶	CL=90%	2486
$a_1(1260)^+ \pi^0$	(2.6	\pm	0.7	$) \times 10^{-5}$		2494
$a_1(1260)^0 \pi^+$	(2.0	\pm	0.6	$) \times 10^{-5}$		2494
$\omega \pi^+$	(6.9	\pm	0.5	$) \times 10^{-6}$		2580
$\omega \rho^+$	(1.59	\pm	0.21	$) \times 10^{-5}$		2522
$\eta \pi^+$	(4.02	\pm	0.27	$) \times 10^{-6}$		2609
$\eta \rho^+$	(7.0	\pm	2.9	$) \times 10^{-6}$	S=2.8	2553
$\eta' \pi^+$	(2.7	\pm	0.9	$) \times 10^{-6}$	S=1.9	2551
$\eta' \rho^+$	(9.7	\pm	2.2	$) \times 10^{-6}$		2492
$\phi \pi^+$	<	1.5			imes 10 ⁻⁷	CL=90%	2539
$\phi \rho^+$	<	3.0			imes 10 ⁻⁶	CL=90%	2480
$a_0(980)^0 \pi^+$, $a_0^0 \to \eta \pi^0$	<	5.8			imes 10 ⁻⁶	CL=90%	-
$a_0(980)^+ \pi^0$, $a_0^+ \to \eta \pi^+$	<	1.4			imes 10 ⁻⁶	CL=90%	-
$\pi^+\pi^+\pi^+\pi^-\pi^-$	<	8.6			imes 10 ⁻⁴	CL=90%	2608
$ ho_{1}^{0}a_{1}(1260)^{+}$	<	6.2			imes 10 ⁻⁴	CL=90%	2433
$ ho^0 a_2(1320)^+$	<	7.2			imes 10 ⁻⁴	CL=90%	2411
$b_1^0\pi^+$, $b_1^0 ightarrow\omega\pi^0$	(6.7	\pm	2.0	$) \times 10^{-6}$		-
$b_{1}^{+}\pi^{0}$, $b_{1}^{+} \rightarrow \omega \pi^{+}$	<	3.3			imes 10 ⁻⁶	CL=90%	_
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	<	6.3			$ imes 10^{-3}$	CL=90%	2592
$b_{1}^{+} \rho^{0}, \ b_{1}^{+} \rightarrow \ \omega \pi^{+}$	<	5.2			imes 10 ⁻⁶	CL=90%	_
$a_1(1260)^{+}a_1(1260)^{0}$	<	1.3			%	CL=90%	2336
$b_1^0 \rho^+, \ b_1^0 \rightarrow \omega \pi^0$	<	3.3			$\times 10^{-6}$	CL=90%	_
1' ' 1							

Charged particle (h^{\pm}) modes

$h^{\pm}={\it K}^{\pm}$ or π^{\pm}						
$h^+\pi^0$	(1.6	$^+$ 0.7 $^-$ 0.6	$) imes 10^{-5}$		2636
ωh^+	(1.38	$^{+\ 0.27}_{-\ 0.24}$	$) imes 10^{-5}$		2580
$h^+ X^0$ (Familon)	<	4.9		imes 10 ⁻⁵	CL=90%	_
$K^+ X^0$, $X^0 ightarrow \mu^+ \mu^-$	<	1		imes 10 ⁻⁷	CL=95%	-

Baryon modes

$p\overline{p}\pi^+$	(1.62	\pm	0.20	$) \times 10^{-6}$		2439
$ ho \overline{ ho} \pi^+$ nonresonant	<	5.3			imes 10 ⁻⁵	CL=90%	2439
р р К ⁺	(5.9	\pm	0.5	$) \times 10^{-6}$	S=1.5	2348
$\Theta(1710)^{++}\overline{ ho}, \hspace{0.2cm} \Theta^{++} ightarrow$	[g] <	9.1			imes 10 ⁻⁸	CL=90%	_
pK^+					7		
$f_J(2220)K^+, f_J \rightarrow p\overline{p}$	[g] <	4.1			$\times 10^{-7}$	CL=90%	2135
$p\Lambda(1520)$	(3.1	±	0.6) × 10 ⁻⁷	-	2322
<i>ppK</i> ' nonresonant	<	8.9		0.0	× 10 ⁻⁵	CL=90%	2348
р <u></u> <i>Б К</i> *(892)+	(3.6	+	0.8 0.7) × 10 ⁻⁶		2215
$f_J(2220) K^{*+}$, $f_J ightarrow p \overline{p}$	<	7.7			imes 10 ⁻⁷	CL=90%	2059
рЛ	(2.4	+	1.0 0.9	$) imes 10^{-7}$		2430
$p\overline{\Lambda}\gamma$	(2.4	+	0.5 0.4) × 10 ⁻⁶		2430
$p\overline{\Lambda}\pi^0$	(3.0	+	0.7) × 10 ⁻⁶		2402
$p\overline{\Sigma}(1385)^0$	<	4.7		0.0	× 10 ⁻⁷	CI =90%	2362
$\Delta^+\overline{\Lambda}$	<	8.2			$\times 10^{-7}$	CL=90%	
$p\overline{\Sigma}\gamma$	<	4.6			imes 10 ⁻⁶	CL=90%	2413
$\rho \overline{\Lambda} \pi^+ \pi^-$	(1.13	±	0.13	$) imes 10^{-5}$		2367
$p\overline{\Lambda}\pi^+\pi^-$ nonresonant	(5.9	±	1.1	$) \times 10^{-6}$		2367
$\rho \overline{\Lambda} \rho^0$, $\rho^0 \rightarrow \pi^+ \pi^-$	(4.8	\pm	0.9	$) \times 10^{-6}$		2214
$p\overline{\Lambda}f_2(1270), f_2 \rightarrow \pi^+\pi^-$	(2.0	±	0.8	$) \times 10^{-6}$		2026
$p\overline{\Lambda}K^+\overline{K}^-$	(4.1	±	0.7	$) \times 10^{-6}$		2132
$p\overline{\Lambda}\phi$	(8.0	±	2.2	$) \times 10^{-7}$		2119
$\overline{p}\Lambda K^+ K^-$	(3.7	\pm	0.6	$) \times 10^{-6}$		2132
$\Lambda\overline{\Lambda}\pi^+$	<	9.4			imes 10 ⁻⁷	CL=90%	2358
$\Lambda\overline{\Lambda}K^+$	(3.4	\pm	0.6	$) imes 10^{-6}$		2251
$\Lambda\overline{\Lambda}K^{*+}$	(2.2	+	1.2 0.9	$) imes 10^{-6}$		2098
$\Lambda(1520)\overline{\Lambda}K^+$	(2.2	±	0.7) × 10 ⁻⁶		2126
$\Lambda \overline{\overline{\Lambda}}(1520) K^+$	<	2.08			× 10 ⁻⁶		2126
$\overline{\Delta}^{0} p$	<	1.38			imes 10 ⁻⁶	CL=90%	2403
$\Delta^{++}\overline{p}$	<	1.4			imes 10 ⁻⁷	CL=90%	2403
$D^+ \rho \overline{\rho}$	<	1.5			imes 10 ⁻⁵	CL=90%	1860
$D^{*}(2010)^{+} \rho \overline{\rho}$	<	1.5			imes 10 ⁻⁵	CL=90%	1786
$\overline{D}{}^{0}\rho\overline{\rho}\pi^{+}$	(3.72	\pm	0.27	$) \times 10^{-4}$		1789
$\overline{D}^{*0} p \overline{p} \pi^+$	(3.73	\pm	0.32	$) \times 10^{-4}$		1709
$D^- \rho \overline{\rho} \pi^+ \pi^-$	(1.66	\pm	0.30	$) \times 10^{-4}$		1705
$D^{*-} p \overline{p} \pi^+ \pi^-$	(1.86	\pm	0.25	$) \times 10^{-4}$		1621
$p\overline{\Lambda}^0\overline{D}^0$	(1.43	\pm	0.32	$) imes 10^{-5}$		_
$\underline{p}\Lambda^0 \bar{D^*}(2007)^0$	<	5			imes 10 ⁻⁵	CL=90%	_
$\Lambda_c^- p \pi^+$	(2.3	±	0.4	$) \times 10^{-4}$	S=2.2	1980
$\overline{\Lambda}_c^- \Delta(1232)^{++}$	<	1.9			imes 10 ⁻⁵	CL=90%	1928

$\overline{\Lambda}_{c}^{-} \Delta_{X}(1600)^{++}$	(4.7	\pm 1.0	$) \times 10^{-5}$		-
$\overline{\Lambda}_{c}^{-}\Delta_{X}(2420)^{++}$	(3.7	\pm 0.8	$) imes 10^{-5}$		_
$(\overline{\Lambda}_{c}^{-}p)_{s}\pi^{+}$	[<i>h</i>] (3.1	\pm 0.7	$) imes 10^{-5}$		_
$\overline{\Sigma}_{c}(2520)^{0} p$	<	3		imes 10 ⁻⁶	CL=90%	1904
$\overline{\Sigma}_c(2800)^0 p$	(2.6	\pm 0.9	$) imes 10^{-5}$		_
$\overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{0}$	(1.8	\pm 0.6	$) \times 10^{-3}$		1935
$\overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{+} \pi^{-}$	(2.2	\pm 0.7	$) imes 10^{-3}$		1880
$\overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{+} \pi^{-} \pi^{0}$	<	1.34		%	CL=90%	1823
$\Lambda_c^+ \Lambda_c^- K^+$	(4.9	\pm 0.7	$) imes 10^{-4}$		_
$\Xi_c(2930)\Lambda_c^+, \ \Xi_c \rightarrow \ K^+\Lambda_c^-$	(1.7	\pm 0.5	$) imes 10^{-4}$		-
$\overline{\Sigma}_{c}(2455)^{0} p$	(2.9	\pm 0.7	$) imes 10^{-5}$		1938
$\overline{\Sigma}_{c}(2455)^{0} p \pi^{0}$	(3.5	\pm 1.1	$) imes 10^{-4}$		1896
$\overline{\Sigma}_{c}(2455)^{0} p \pi^{-} \pi^{+}$	(3.5	\pm 1.1	$) imes 10^{-4}$		1845
$\Sigma_{c}(2455)^{}p\pi^{+}\pi^{+}$	(2.37	\pm 0.20	$) \times 10^{-4}$		1845
$\overline{\Lambda}_{c}(2593)^{-}/\overline{\Lambda}_{c}(2625)^{-}p\pi^{+}$	<	1.9		imes 10 ⁻⁴	CL=90%	-
$\Xi_c^0 \Lambda_c^+$	(9.5	\pm 2.3	$) \times 10^{-4}$		1144
$\overline{\Xi}^0_c \Lambda^+_c, \ \overline{\Xi}^0_c \to \overline{\Xi}^+ \pi^-$	(1.76	\pm 0.29	$) imes 10^{-5}$		1144
$\overline{\Xi}^{0}_{c}\Lambda^{+}_{c}, \ \overline{\Xi}^{0}_{c} \rightarrow \Lambda K^{+}\pi^{-}$	(1.14	± 0.26	$) imes 10^{-5}$		1144
$\overline{\Xi}_{c}^{\bar{0}}\Lambda_{c}^{\bar{+}}, \ \overline{\Xi}_{c}^{\bar{0}} \rightarrow \ pK^{-}K^{-}\pi^{+}$	(5.5	\pm 1.9	$) imes 10^{-6}$		-

Lepton Family number (*LF*) or Lepton number (*L*) or Baryon number (*B*) violating modes, or/and $\Delta B = 1$ weak neutral current (*B1*) modes

B1	<	4.9		imes 10 ⁻⁸	CL=90%	2638
B1	<	8.0		imes 10 ⁻⁸	CL=90%	2638
B1	(1.76 =	± 0.23	$) \times 10^{-8}$		2634
B1	<	1.4		imes 10 ⁻⁵	CL=90%	2638
B1	[a] (4.51 =	± 0.23	$) \times 10^{-7}$	S=1.1	2617
B1	(5.5 =	± 0.7	$) \times 10^{-7}$		2617
B1	(4.41 =	± 0.23	$) \times 10^{-7}$	S=1.2	2612
B1	(4.37 =	± 0.27	$) \times 10^{-7}$		2612
B1	<	2.25		imes 10 ⁻³	CL=90%	1687
B1	<	1.6		imes 10 ⁻⁵	CL=90%	2617
B1	<	3.0		imes 10 ⁻⁵	CL=90%	2583
B1	[<i>a</i>] (1.01 =	± 0.11	$) imes 10^{-6}$	S=1.1	2564
B1	(1.55	$+ 0.40 \\- 0.31$	$) \times 10^{-6}$		2564
B1	(9.6 =	± 1.0	$) imes 10^{-7}$		2560
B1	<	4.0		imes 10 ⁻⁵	CL=90%	2564
B1	(4.3 =	± 0.4	$) imes 10^{-7}$		2593
B1	(7.9	$+ 2.1 \\- 1.7$	$) \times 10^{-8}$		2490
LF	<	6.4		imes 10 ⁻³	CL=90%	2637
LF	<	6.4		imes 10 ⁻³	CL=90%	2637
	 B1 LF LF 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

$\pi^+ e^{\pm} \mu^{\mp}$	LF	<	1.7	imes 10 ⁻⁷	CL=90%	2637
$\pi^+ e^+ \tau^-$	LF	<	7.4	imes 10 ⁻⁵	CL=90%	2338
$\pi^+ e^- \tau^+$	LF	<	2.0	imes 10 ⁻⁵	CL=90%	2338
$\pi^+ e^{\pm} \tau^{\mp}$	LF	<	7.5	imes 10 ⁻⁵	CL=90%	2338
$\pi^+ \mu^+ \tau^-$	LF	<	6.2	imes 10 ⁻⁵	CL=90%	2333
$\pi^+\mu^-\tau^+$	LF	<	4.5	imes 10 ⁻⁵	CL=90%	2333
$\pi^+ \mu^\pm \tau^\mp$	LF	<	7.2	imes 10 ⁻⁵	CL=90%	2333
$K^+ e^+ \mu^-$	LF	<	9.1	imes 10 ⁻⁸	CL=90%	2615
$K^+ e^- \mu^+$	LF	<	1.3	imes 10 ⁻⁷	CL=90%	2615
$K^+ e^{\pm} \mu^{\mp}$	LF	<	9.1	imes 10 ⁻⁸	CL=90%	2615
$K^+ e^+ au^-$	LF	<	4.3	imes 10 ⁻⁵	CL=90%	2312
$K^+ e^- \tau^+$	LF	<	1.5	imes 10 ⁻⁵	CL=90%	2312
$K^+ e^{\pm} \tau^{\mp}$	LF	<	3.0	imes 10 ⁻⁵	CL=90%	2312
$K^+ \mu^+ \tau^-$	LF	<	4.5	imes 10 ⁻⁵	CL=90%	2298
$K^+ \mu^- \tau^+$	LF	<	2.8	imes 10 ⁻⁵	CL=90%	2298
$K^+ \mu^{\pm} \tau^{\mp}$	LF	<	4.8	imes 10 ⁻⁵	CL=90%	2298
$K^{*}(892)^{+}e^{+}\mu^{-}$	LF	<	1.3	imes 10 ⁻⁶	CL=90%	2563
$K^{*}(892)^{+}e^{-}\mu^{+}$	LF	<	9.9	imes 10 ⁻⁷	CL=90%	2563
$K^*(892)^+ e^\pm \mu^\mp$	LF	<	1.4	imes 10 ⁻⁶	CL=90%	2563
$\pi^- e^+ e^+$	L	<	2.3	imes 10 ⁻⁸	CL=90%	2638
$\pi^- \mu^+ \mu^+$	L	<	4.0	imes 10 ⁻⁹	CL=95%	2634
$\pi^- e^+ \mu^+$	L	<	1.5	imes 10 ⁻⁷	CL=90%	2637
$ ho^- e^+ e^+$	L	<	1.7	imes 10 ⁻⁷	CL=90%	2583
$\rho^-\mu^+\mu^+$	L	<	4.2	imes 10 ⁻⁷	CL=90%	2578
$ ho^- e^+ \mu^+$	L	<	4.7	imes 10 ⁻⁷	CL=90%	2582
$K^-e^+e^+$	L	<	3.0	imes 10 ⁻⁸	CL=90%	2617
$K^- \mu^+ \mu^+$	L	<	4.1	imes 10 ⁻⁸	CL=90%	2612
$K^- e^+ \mu^+$	L	<	1.6	imes 10 ⁻⁷	CL=90%	2615
$K^{*}(892)^{-}e^{+}e^{+}$	L	<	4.0	imes 10 ⁻⁷	CL=90%	2564
$K^{*}(892)^{-}\mu^{+}\mu^{+}$	L	<	5.9	imes 10 ⁻⁷	CL=90%	2560
$K^{*}(892)^{-}e^{+}\mu^{+}$	L	<	3.0	imes 10 ⁻⁷	CL=90%	2563
$D^-e^+e^+$	L	<	2.6	imes 10 ⁻⁶	CL=90%	2309
$D^-e^+\mu^+$	L	<	1.8	imes 10 ⁻⁶	CL=90%	2307
$D^-\mu^+\mu^+$	L	<	6.9	imes 10 ⁻⁷	CL=95%	2303
$D^{*-}\mu^+\mu^+$	L	<	2.4	imes 10 ⁻⁶	CL=95%	2251
$D_s^- \mu^+ \mu^+$	L	<	5.8	imes 10 ⁻⁷	CL=95%	2267
$\overline{D}^{\bar{0}}\pi^{-}\mu^{+}\mu^{+}$	L	<	1.5	imes 10 ⁻⁶	CL=95%	2295
$\Lambda^0 \mu^+$	L,B	<	6	imes 10 ⁻⁸	CL=90%	_
$\Lambda^0 e^+$	L,B	<	3.2	imes 10 ⁻⁸	CL=90%	_
$\overline{\Lambda}^0 \mu^+$	L,B	<	6	imes 10 ⁻⁸	CL=90%	_
$\overline{\Lambda}^{0}e^{+}$	L,B	<	8	imes 10 ⁻⁸	CL=90%	_

B⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

$$\begin{array}{l} \text{Mass } m_{B^0} = 5279.64 \pm 0.13 \ \text{MeV} \\ m_{B^0} - m_{B^\pm} = 0.31 \pm 0.06 \ \text{MeV} \\ \text{Mean life } \tau_{B^0} = (1.519 \pm 0.004) \times 10^{-12} \ \text{s} \\ c\tau = 455.4 \ \mu\text{m} \\ \tau_{B^+} / \tau_{B^0} = 1.076 \pm 0.004 \quad (\text{direct measurements}) \end{array}$$

$B^0 - \overline{B}^0$ mixing parameters

$$\begin{split} \chi_d &= 0.1858 \pm 0.0011 \\ \Delta m_{B^0} &= m_{B^0_H} - m_{B^0_L} = (0.5065 \pm 0.0019) \times 10^{12} \ \hbar \ {\rm s}^{-1} \\ &= (3.334 \pm 0.013) \times 10^{-10} \ {\rm MeV} \\ x_d &= \Delta m_{B^0} / \Gamma_{B^0} = 0.769 \pm 0.004 \\ {\rm Re}(\lambda_{CP} \ / \ |\lambda_{CP}|) \ {\rm Re}(z) &= 0.047 \pm 0.022 \\ \Delta \Gamma \ {\rm Re}(z) &= -0.007 \pm 0.004 \\ {\rm Re}(z) &= (-4 \pm 4) \times 10^{-2} \quad {\rm (S} = 1.4) \\ {\rm Im}(z) &= (-0.8 \pm 0.4) \times 10^{-2} \end{split}$$

CP violation parameters

$$\begin{aligned} &\operatorname{Re}(\epsilon_{B^0})/(1+|\epsilon_{B^0}|^2) = (-0.5 \pm 0.4) \times 10^{-3} \\ &A_{T/CP}(B^0 \leftrightarrow \overline{B}^0) = 0.005 \pm 0.018 \\ &A_{CP}(B^0 \rightarrow D^*(2010)^+ D^-) = 0.037 \pm 0.034 \\ &A_{CP}(B^0 \rightarrow [K^+\pi^-]_D K^*(892)^0) = -0.03 \pm 0.04 \\ &R_d^+ = \Gamma(B^0 \rightarrow [\pi^+K^-]_D K^{*0}) / \Gamma(B^0 \rightarrow [\pi^-K^+]_D K^{*0}) = \\ & 0.06 \pm 0.032 \\ &R_d^- = \Gamma(\overline{B}^0 \rightarrow [\pi^-K^+]_D K^{*0}) / \Gamma(\overline{B}^0 \rightarrow [\pi^+K^-]_D K^{*0}) = \\ & 0.06 \pm 0.032 \\ &A_{CP}(B^0 \rightarrow \eta' K^*(892)^0) = -0.07 \pm 0.18 \\ &A_{CP}(B^0 \rightarrow \eta' K^*_0(1430)^0) = -0.19 \pm 0.17 \\ &A_{CP}(B^0 \rightarrow \eta K^*_0(1430)^0) = 0.14 \pm 0.18 \\ &A_{CP}(B^0 \rightarrow \eta K^*_0(1430)^0) = 0.06 \pm 0.13 \\ &A_{CP}(B^0 \rightarrow \eta K^*_0(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \rightarrow \eta K^*_0(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \rightarrow \eta K^*_0(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \rightarrow \omega K^{*0}) = 0.45 \pm 0.25 \\ &A_{CP}(B^0 \rightarrow \omega K^*_2(1430)^0) = -0.37 \pm 0.17 \\ &A_{CP}(B^0 \rightarrow \omega K^*_2(1430)^0) = -0.37 \pm 0.17 \\ &A_{CP}(B^0 \rightarrow \omega K^*_1(1430)^0) = -0.37 \pm 0.17 \\ &A_{CP}(B^0 \rightarrow \omega K^*_1(1430)^0) = -0.37 \pm 0.17 \\ &A_{CP}(B^0 \rightarrow \omega K^*_1(1430)^0) = -0.37 \pm 0.17 \\ &A_{CP}(B^0 \rightarrow \omega K^*_1(1430)^0) = -0.37 \pm 0.17 \\ &A_{CP}(B^0 \rightarrow \omega K^*_1(1430)^0) = -0.37 \pm 0.17 \\ &A_{CP}(B^0 \rightarrow \omega K^*_1(1430)^0) = -0.37 \pm 0.17 \\ &A_{CP}(B^0 \rightarrow \omega K^*_1(1430)^0) = -0.37 \pm 0.17 \\ &A_{CP}(B^0 \rightarrow \omega K^*_1(1430)^0) = -0.37 \pm 0.17 \\ &A_{CP}(B^0 \rightarrow \omega K^*_1(1430)^0) = -0.37 \pm 0.17 \\ &A_{CP}(B^0 \rightarrow \kappa^*_1\pi^-\pi^0) = (0 \pm 6) \times 10^{-2} \\ \end{aligned}$$

$$\begin{split} &A_{CP}(B^0 \to \rho^- K^+) = 0.20 \pm 0.11 \\ &A_{CP}(B^0 \to \rho(1450)^- K^+) = -0.10 \pm 0.33 \\ &A_{CP}(B^0 \to K^+ \pi^- \pi^0 \text{ nonresonant}) = 0.10 \pm 0.18 \\ &A_{CP}(B^0 \to K^0 \pi^+ \pi^-) = -0.01 \pm 0.05 \\ &A_{CP}(B^0 \to K^*(892)^+ \pi^-) = -0.27 \pm 0.04 \\ &A_{CP}(B^0 \to K^*(1680)^+ \pi^-) = -0.29 \pm 0.24 \\ &A_{CP}(B^0 \to K^*(1680)^+ \pi^-) = -0.07 \pm 0.14 \\ &A_{CP}(B^0 \to K^*(1680)^+ \pi^-) = -0.07 \pm 0.14 \\ &A_{CP}(B^0 \to K^*(1892)^0 \pi^+ \pi^-) = 0.07 \pm 0.11 \\ &A_{CP}(B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.07 \pm 0.05 \\ &A_{CP}(B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.07 \pm 0.05 \\ &A_{CP}(B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.07 \pm 0.05 \\ &A_{CP}(B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.01 \pm 0.05 \\ &A_{CP}(B^0 \to K^*(892)^0 K^+ K^-) = 0.01 \pm 0.05 \\ &A_{CP}(B^0 \to K^*(892)^0 K^+ K^-) = 0.01 \pm 0.05 \\ &A_{CP}(B^0 \to K^*(892)^0 K^- \pi^+) = 0.2 \pm 0.4 \\ &A_{CP}(B^0 \to K^*(892)^0 K^- \pi^+) = 0.2 \pm 0.4 \\ &A_{CP}(B^0 \to K^*(892)^0 K^- \pi^+) = 0.2 \pm 0.4 \\ &A_{CP}(B^0 \to K^*(892)^0 \chi) = -0.00 \pm 0.011 \\ &A_{CP}(B^0 \to K^*(892)^0 \chi) = -0.00 \pm 0.011 \\ &A_{CP}(B^0 \to K^*(892)^0 \chi) = -0.00 \pm 0.011 \\ &A_{CP}(B^0 \to K^*(892)^0 \chi) = -0.006 \pm 0.011 \\ &A_{CP}(B^0 \to K^*(892)^0 \chi) = -0.006 \pm 0.011 \\ &A_{CP}(B^0 \to K^*(892)^0 \chi) = -0.006 \pm 0.011 \\ &A_{CP}(B^0 \to K^*(892)^0 \chi) = -0.008 \pm 0.15 \\ &A_{CP}(B^0 \to \Phi^- \pi^+) = -0.03 \pm 0.08 \\ &A_{CP}(B^0 \to \Phi^- \pi^+) = -0.05 \pm 0.10 \\ &A_{CP}(B^0 \to \Phi^- \pi^+) = -0.05 \pm 0.10 \\ &A_{CP}(B^0 \to K^*0 \ell^+ \ell^-) = -0.21 \pm 0.19 \\ &A_{CP}(B^0 \to K^*0 \ell^+ \ell^-) = -0.03 \pm 0.012 \\ &A_{CP}(B^0 \to K^*0 \ell^+ \ell^-) = -0.03 \pm 0.012 \\ &A_{CP}(B^0 \to K^*0 \ell^+ \ell^-) = -0.03 \pm 0.10 \\ &A_{CP}(B^0 \to K^*0 \ell^+ \ell^-) = -0.03 \pm 0.10 \\ &A_{CP}(B^0 \to K^*0 \ell^+ \ell^-) = -0.03 \pm 0.10 \\ &A_{CP}(B^0 \to K^*0 \ell^+ \ell^-) = -0.03 \pm 0.10 \\ &A_{CP}(B^0 \to K^*0 \ell^+ \ell^-) = -0.03 \pm 0.10 \\ &A_{CP}(B^0 \to K^*0 \ell^+ \ell^-) = -0.03 \pm 0.10 \\ &A_{CP}(B^0 \to K^*0 \ell^+ \ell^-) = -0.03 \pm 0.10 \\ &A_{CP}(B^0 \to K^*0 \ell^+ \ell^-) = -0.03 \pm 0.10 \\ &A_{CP}(B^0 \to K^*0 \ell^+ \ell^-) = -0.03 \pm 0.10 \\ &A_{CP}(B^0 \to K^*0 \ell^+ \ell^-) = -0.03 \pm 0.10 \\ &A_{CP}(B^0 \to K^*0 \ell^+ \ell^-) = -0.03 \pm 0.10 \\ &A_{CP}(B^0 \to K^*0 \ell^+ \ell^-) = -0.03 \pm 0.10 \\ &A_{CP}(B^0 \to K^*0 \ell^+ \ell^-) = -0.01 \pm 0.01 \pm 0$$

$$\begin{array}{l} C_{+} \left(B^{0} \rightarrow D^{*+} D^{*-} \right) = 0.00 \pm 0.10 \quad (\text{S} = 1.6) \\ \textbf{S}_{+} \left(\textbf{B}^{0} \rightarrow D^{*+} D^{*-} \right) = -0.73 \pm 0.09 \\ C_{-} \left(B^{0} \rightarrow D^{*+} D^{*-} \right) = 0.1 \pm 1.6 \quad (\text{S} = 3.5) \\ C \left(B^{0} \rightarrow D^{*+} D^{*-} \right) = 0.1 \pm 1.6 \quad (\text{S} = 3.5) \\ C \left(B^{0} \rightarrow D^{*+} D^{*-} \right) = -0.12 \pm 0.21 \pm 0.24 \\ C_{D^{+} D^{--}} \left(B^{0} \rightarrow D^{+} D^{-} \right) = -0.22 \pm 0.24 \quad (\text{S} = 2.5) \\ \textbf{S}_{D^{+} D^{--}} \left(\textbf{B}^{0} \rightarrow D^{+} D^{-} \right) = -0.76 \stackrel{+0.15}{-0.13} \quad (\text{S} = 1.2) \\ C_{J/\psi(15)\pi^{0}} \left(B^{0} \rightarrow J/\psi(15)\pi^{0} \right) = -0.08 \pm 0.32 \quad (\text{S} = 2.2) \\ C \left(B^{0} \rightarrow J/\psi(15)\rho^{0} \right) = -0.06 \pm 0.06 \\ \textbf{S} \left(\textbf{B}^{0} \rightarrow J/\psi(15)\rho^{0} \right) = -0.06 \pm 0.06 \\ \textbf{S} \left(\textbf{B}^{0} \rightarrow J/\psi(15)\rho^{0} \right) = -0.66 \pm 0.12 \\ C_{D^{(*)}_{CP}h^{0}} \left(\textbf{B}^{0} \rightarrow D^{(*)}_{CP}h^{0} \right) = -0.66 \pm 0.12 \\ C_{L^{0}}\phi_{D} \left(\textbf{B}^{0} \rightarrow K^{0}\pi^{0} \right) = 0.58 \pm 0.17 \\ C_{I}^{(958)}\kappa_{5}^{0} \left(B^{0} \rightarrow \eta'(958)\kappa_{5}^{0} \right) = -0.04 \pm 0.20 \quad (\text{S} = 2.5) \\ \textbf{S}_{I}^{(958)}\kappa_{5}^{0} \left(\textbf{B}^{0} \rightarrow \eta'(958)\kappa_{5}^{0} \right) = 0.43 \pm 0.17 \quad (\text{S} = 1.5) \\ C_{\eta'}\kappa^{0} \left(\textbf{B}^{0} \rightarrow \eta' \textbf{K}^{0} \right) = -0.66 \pm 0.04 \\ \textbf{S}_{I}^{(\mathbf{K}} \left(\textbf{B}^{0} \rightarrow \eta' \textbf{K}^{0} \right) = -0.06 \pm 0.04 \\ \textbf{S}_{I}^{(\mathbf{K}} \left(\textbf{B}^{0} \rightarrow \eta' \textbf{K}^{0} \right) = 0.05 \pm 0.17 \quad (\text{S} = 1.5) \\ C_{\eta'}(958)\kappa_{5}^{0} \left(B^{0} \rightarrow \eta'(958)\kappa_{5}^{0} \right) = 0.43 \pm 0.17 \quad (\text{S} = 1.5) \\ C_{\eta'}(958)\kappa_{5}^{0} \left(B^{0} \rightarrow \eta' \textbf{K}^{0} \right) = 0.06 \pm 0.04 \\ \textbf{S}_{I}^{(\mathbf{K}} \left(\textbf{B}^{0} \rightarrow \eta' \textbf{K}^{0} \right) = 0.21 \pm 0.20 \\ \textbf{S}_{W^{5}} \left(\textbf{B}^{0} \rightarrow \mu^{0} \textbf{K}^{0}_{5} \right) = 0.70 \pm 0.21 \\ C \left(B^{0} \rightarrow \kappa_{5}^{0}\pi^{0}\pi^{0} \right) = -0.21 \pm 0.20 \\ S_{D^{0}}\kappa_{5}^{0} \left(B^{0} \rightarrow \rho^{0} \textbf{K}^{0}_{5} \right) = 0.50 \pm 0.16 \\ S_{I_{0}}\kappa_{5}^{0} \left(\textbf{B}^{0} \rightarrow \rho^{0} \textbf{K}^{0}_{5} \right) = 0.50 \pm 0.16 \\ S_{I_{0}}\kappa_{5}^{0} \left(\textbf{B}^{0} \rightarrow f_{0}(1270) \textbf{K}^{0}_{5} \right) = 0.3 \pm 0.4 \\ S_{I_{0}}\kappa_{5}^{0} \left(B^{0} \rightarrow f_{x}(1300) \textbf{K}^{0}_{5} \right) = -0.2 \pm 0.5 \\ C_{I_{x}}\kappa_{5}^{0} \left(\textbf{B}^{0} \rightarrow f_{x}(1300) \textbf{K}^{0}_{5} \right) = 0.13 \pm 0.35 \\ S_{K^{0}}\pi^{+}\pi^{-} \left(\textbf{B}^{0} \rightarrow \kappa^{0}\pi^{+}\pi^{-} \text{noresonant} \right) = -0.01 \pm 0.33 \\ C_{K^{0}}\pi^{+}\pi^{-} \left(\textbf{B}^{0} \rightarrow \kappa^{0}\pi^{+}\pi^{-} \text{noresonant} \right) =$$

$$\begin{aligned} & \mathcal{L}_{K_{0}^{0}K_{5}^{0}}\left(B^{0}\rightarrow K_{5}^{0}K_{5}^{0}\right)=0.0\pm0.4 \quad (S=1.4) \\ & \mathcal{L}_{K_{5}^{0}K_{5}^{0}}\left(B^{0}\rightarrow K^{0}_{5}K_{5}^{0}\right)=-0.8\pm0.5 \\ & \mathcal{L}_{K+K-K_{5}^{0}}\left(B^{0}\rightarrow K^{+}K^{-}K_{5}^{0} \text{ nonresonant}\right)=-0.66\pm0.08 \\ & \mathbf{J}_{K+K-K_{5}^{0}}\left(B^{0}\rightarrow K^{+}K^{-}K_{5}^{0} \text{ inclusive}\right)=0.01\pm0.09 \\ & \mathbf{J}_{K+K-K_{5}^{0}}\left(B^{0}\rightarrow K^{+}K^{-}K_{5}^{0} \text{ inclusive}\right)=-0.65\pm0.12 \\ & \mathcal{L}_{\phi K_{5}^{0}}\left(B^{0}\rightarrow \phi K_{5}^{0}\right)=0.01\pm0.14 \\ & \mathbf{J}_{\phi K_{5}^{0}}\left(B^{0}\rightarrow \phi K_{5}^{0}\right)=0.59\pm0.14 \\ & \mathcal{L}_{\kappa_{5}K_{5}K_{5}}\left(B^{0}\rightarrow K_{5}K_{5}K_{5}\right)=-0.23\pm0.14 \\ & \mathcal{L}_{\kappa_{5}K_{5}K_{5}}\left(B^{0}\rightarrow K_{5}K_{7}K_{5}\right)=-0.23\pm0.14 \\ & \mathcal{L}_{\kappa_{5}K_{5}K_{5}}\left(B^{0}\rightarrow K_{5}K_{5}K_{5}\right)=-0.23\pm0.14 \\ & \mathcal{L}_{\kappa_{5}K_{5}K_{5}}\left(B^{0}\rightarrow K_{5}K_{5}K_{5}\right)=-0.23\pm0.14 \\ & \mathcal{L}_{\kappa_{5}K_{5}K_{5}}\left(B^{0}\rightarrow K_{5}K_{5}\pi^{+}\pi^{-}\gamma\right)=0.14\pm0.25 \\ & \mathcal{L}_{\kappa_{5}}^{0}\sigma_{\gamma}\left(B^{0}\rightarrow K_{5}^{0}\pi^{0}\gamma\right)=-0.04\pm0.16 \quad (S=1.2) \\ & \mathcal{L}_{\kappa_{5}}^{0}\sigma_{\gamma}\left(B^{0}\rightarrow K^{0}\phi\gamma\right)=-0.5\pm0.19 \\ & \mathcal{L}_{\kappa_{5}}^{0}\phi_{\gamma}\left(B^{0}\rightarrow K^{0}\phi\gamma\right)=-0.5\pm0.19 \\ & \mathcal{L}_{0}^{0}\phi_{\gamma}\left(B^{0}\rightarrow \pi^{+}\pi^{-}\right)=-0.03\pm0.07 \\ & \mathcal{L}_{0}\pi_{\alpha}\left(B^{0}\rightarrow \pi^{+}\pi^{-}\right)=-0.03\pm0.07 \\ & \mathcal{L}_{0}\pi_{\alpha}\left(B^{0}\rightarrow \pi^{+}\pi^{-}\right)=-0.03\pm0.07 \\ & \mathcal{L}_{0}\pi_{\alpha}\left(B^{0}\rightarrow \pi^{+}\pi^{-}\right)=-0.03\pm0.07 \\ & \mathcal{L}_{0}\pi_{\alpha}\left(B^{0}\rightarrow \mu^{+}\pi^{-}\right)=-0.05\pm0.01 \\ & \mathcal{L}_{0}\pi_{\alpha}\left(B^{0}\rightarrow \rho^{+}\pi^{-}\right)=-0.01\pm0.08 \\ & \mathcal{L}_{0}\pi_{\alpha}\left(B^{0}\rightarrow \rho^{+}\pi^{-}\right)=-0.01\pm0.08 \\ & \mathcal{L}_{0}\pi_{\alpha}\left(B^{0}\rightarrow \rho^{+}\pi^{-}\right)=-0.01\pm0.08 \\ & \mathcal{L}_{0}\pi_{\alpha}\left(B^{0}\rightarrow \rho^{0}\pi^{0}\right)=-0.23\pm0.34 \\ & \mathcal{L}_{0}\pi_{\alpha}\left(B^{0}\rightarrow \mu^{+}\pi^{-}\right)=-0.03\pm0.34 \\ & \mathcal{L}_{0}\pi_{\alpha}\left(B^{0}\rightarrow \rho^{0}\pi^{0}\right)=-0.23\pm0.34 \\ & \mathcal{L}_{0}\pi_{\alpha}\left(B^{0}\rightarrow \rho^{0}\pi^{0}\right)=-0.23\pm0.34 \\ & \mathcal{L}_{0}\pi_{\alpha}\left(B^{0}\rightarrow \mu^{+}\pi^{-}\right)=-0.05\pm0.11 \\ &$$

$$\begin{aligned} \Delta C_{a_1\pi} & (B^0 \to a_1(1260)^+ \pi^-) = 0.43 \pm 0.14 \quad (S = 1.3) \\ \Delta S_{a_1\pi} & (B^0 \to a_1(1260)^+ \pi^-) = -0.11 \pm 0.12 \\ C & (B^0 \to b_1^- \pi^+) = -1.04 \pm 0.24 \\ \Delta C & (B^0 \to b_1^- \pi^+) = -1.04 \pm 0.24 \\ C_{\rho^0\rho^0} & (B^0 \to \rho^0\rho^0) = 0.3 \pm 0.7 \\ C_{\rho\rho} & (B^0 \to \rho^+ \rho^-) = -0.01 \pm 0.13 \\ |\lambda| & (B^0 \to J/\psi K^*(892)^0) < 0.25, CL = 95\% \\ \cos 2\beta & (B^0 \to J/\psi K^*(892)^0) = 1.7^{+0.7}_{-0.9} & (S = 1.6) \\ \cos 2\beta & (B^0 \to J/\psi K^*(892)^0) = 1.7^{+0.7}_{-0.9} & (S = 1.6) \\ \cos 2\beta & (B^0 \to J/\psi K^*(892)^0) = 1.7^{+0.7}_{-0.9} & (S = 1.6) \\ \cos 2\beta & (B^0 \to J/\psi K^*(892)^0) = 1.7^{+0.7}_{-0.9} & (S = 1.6) \\ \cos 2\beta & (B^0 \to J/\psi K^*(892)^0) = 1.7^{+0.7}_{-0.9} & (S = 1.6) \\ \cos 2\beta & (B^0 \to J/\psi K^*(892)^0) = 1.7^{+0.7}_{-0.9} & (S = 1.6) \\ \cos 2\beta & (B^0 \to J/\psi K^*(892)^0) = 1.7^{+0.7}_{-0.9} & (S = 1.6) \\ (S_- S_+)/2 & (B^0 \to D^- \pi^+) = -0.039 \pm 0.011 \\ (S_- S_+)/2 & (B^0 \to D^- \pi^+) = -0.046 \pm 0.023 \\ (S_- S_+)/2 & (B^0 \to D^- \pi^+) = -0.024 \pm 0.032 \\ (S_- S_+)/2 & (B^0 \to D^- \rho^+) = -0.024 \pm 0.032 \\ (S_- S_+)/2 & (B^0 \to D^- \rho^+) = -0.10 \pm 0.06 \\ C_{\eta c} K_0^s & (B^0 \to \eta c K_0^s) = 0.03 \pm 0.17 \\ C_{c \overline{c} K^{(s)}} & (B^0 \to J/\psi (S) K^0) = (0.5 \pm 1.7) \times 10^{-2} \\ sin(2\beta) = 0.695 \pm 0.019 \\ C_{J/\psi}(S_1K^0) & (B^0 \to J/\psi (S) K^0) = 0.701 \pm 0.017 \\ C_{J/\psi} K^{*0} & (B^0 \to J/\psi K^{*0}) = 0.03 \pm 0.10 \\ S_{J/\psi} K^{*0} & (B^0 \to \chi_{c0} K_0^s) = -0.7 \pm 0.5 \\ C_{\chi_{c1}} K_0^s & (B^0 \to \chi_{c1} K_0^s) = 0.63 \pm 0.10 \\ sin(2\beta_{eff}) (B^0 \to \chi_{c1} K_0^s) = 0.63 \pm 0.10 \\ sin(2\beta_{eff}) (B^0 \to \phi K^0) = 0.22 \pm 0.30 \\ sin(2\beta_{eff}) (B^0 \to \phi K^0) = 0.22 \pm 0.30 \\ sin(2\beta_{eff}) (B^0 \to \phi K^0) = 0.22 \pm 0.30 \\ sin(2\beta_{eff}) (B^0 \to (K_0^s \pi^+ \pi^-]_{D^{(s)}} h^0) = 0.80 \pm 0.16 \\ \beta_{eff} (B^0 \to (K_0^s \pi^+ \pi^-]_{D^{(s)}} h^0) = (22 \pm 5)^\circ 2\beta_{eff} (B^0 \to J/\psi \rho^0) = (42^{+11})^\circ \end{aligned}$$

$$\begin{aligned} |\lambda| & (B^{0} \rightarrow [K_{S}^{0}\pi^{+}\pi^{-}]_{D^{(*)}} h^{0}) = 1.01 \pm 0.08 \\ |\sin(2\beta + \gamma)| > 0.40, \ CL = 90\% \\ 2 & \beta + \gamma = (83 \pm 60)^{\circ} \\ \alpha &= (84.9^{+5.1}_{-4.5})^{\circ} \\ x_{+}(B^{0} \rightarrow DK^{*0}) = 0.04 \pm 0.17 \\ x_{-}(B^{0} \rightarrow DK^{*0}) = -0.16 \pm 0.14 \\ y_{+}(B^{0} \rightarrow DK^{*0}) = -0.68 \pm 0.22 \\ y_{-}(B^{0} \rightarrow DK^{*0}) = 0.20 \pm 0.25 \quad (S = 1.2) \\ r_{B^{0}}(B^{0} \rightarrow DK^{*0}) = 0.220^{+0.047}_{-0.047} \\ \delta_{B^{0}}(B^{0} \rightarrow DK^{*0}) = (194^{+30}_{-22})^{\circ} \end{aligned}$$

 \overline{B}^0 modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the *B* are listed in the B^{\pm}/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0 \overline{B}{}^0$ and 50% $B^+ B^-$ production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_s , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \rightarrow D^{\pm} X$, the values usually are multiplicities, not branching fractions. They can be greater than one.

B ⁰ DECAY MODES		Fraction (Γ_i/Γ)	Scale factor/ Confidence level	р (MeV/c)	
$\ell^+ u_\ell X$	[<i>a</i>]	(10.33± 0.28)	%	_	
$e^+ \nu_e X_c$		(10.1 \pm 0.4)	%	_	
$D\ell^+ u_\ell X$		$($ 9.4 \pm 0.9 $)$	%	_	
$D^-\ell^+ u_\ell$	[a]	(2.31 ± 0.10)	%	2309	
$D^- \tau^+ u_{ au}$		(1.08 ± 0.23)	%	1909	
$D^*(2010)^- \ell^+ u_\ell$	[a]	(5.05 ± 0.14)	%	2257	
$D^{*}(2010)^{-}\tau^{+}\nu_{\tau}$		(1.57 ± 0.10)	% S=1.1	1838	
$\overline{D}{}^0 \pi^- \ell^+ u_\ell$		$($ 4.1 \pm 0.5 $)$	$\times 10^{-3}$	2308	
$D_0^*(2300)^- \ell^+ \nu_\ell, \ D_0^{*-} \to \overline{D}_0^{*-} = 0$		(3.0 ± 1.2)	$\times 10^{-3}$ S=1.8	_	
$D_{2}^{*}(2460)^{-}\ell^{+}\nu_{\ell}, D_{2}^{*-} \rightarrow \overline{D}_{2}^{0}\pi^{-}$		(1.21± 0.33)	$\times 10^{-3}$ S=1.8	2065	
$\overline{D}^{(*)} n \pi^{\mathcal{D}} \ell^{+} \nu_{\ell} (n \geq 1)$		$(2.3~\pm~0.5~)$	%	-	

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update

$\overline{D}^{*0}\pi^{-}\ell^{+}\mu_{\ell}$	(58 ±	$0.8.1 \times 10^{-3}$	S—1 /	2256				
$D (2420)^{-} \ell^{+} \mu_{1} D^{-}$		0.0 ±	$(0.0) \times 10^{-3}$	5=1.4	2250				
$D_1(2420) \ell \nu_\ell, D_1 = \frac{1}{2}$	→ (2.00±	$(0.26) \times 10^{-5}$		_				
$D^{*\circ}\pi$ D'(2430) - $\ell^+\mu_{\circ}$ D'-	\ (21⊥	$(0,0) \times 10^{-3}$		_				
$D_1(2430) = 0$	→ (5.1 ±	0.9×10^{-1}		_				
$D^{**}\pi$ $D^{*}(2460)^{-}\ell^{+}\mu_{*}$ D^{*-}	· (6 ° ⊥	$1.2.) \times 10^{-4}$		2065				
$D_2(2400) \ell \nu_\ell, D_2 = -$	→ (0.0 ±	1.2) × 10		2005				
$D^{+\circ}\pi$ $D^{-}\pi^{+}\pi^{-}\ell^{+}\mu_{0}$	(12 ⊥	05 \ 10-3		2200				
$D^* \pi^+ \pi^- \ell^+ \mu_e$	(1.3 ⊥ 1.4 +	$(0.5) \times 10^{-3}$		2299				
$\rho^{-}\ell^{+}\mu_{0}$) [] ($2.94 \pm$	$(0.3) \times 10^{-4}$		2277				
$p \sim \nu_{\ell}$ $\pi^{-} \ell^{+} \mu_{\ell}$	[ª] ([ɔ] ($2.94 \pm$	$(0.21) \times 10^{-4}$		2000				
$\pi^{-} \tau^{+} \nu_{\ell}$	[ª] (1.50 ±	$(0.00) \times 10^{-4}$	CI 00%	2030				
$\Lambda + \nu_{\tau}$		2.5	~ 10	CL=9070	2009				
Inclusive modes									
	(78 ±	8)%		_				
	($8.1 \pm$	1.5)%		_				
$D^{\circ}X$	(47.4 ±	2.8)%		_				
	< ,	3.9	%	CL=90%	_				
DX	(36.9 ±	3.3)%		_				
$D_s^+ X$	(10.3 $^+$	$^{2.1}_{1.8}$) %		-				
$D_s^- X$	<	2.6	%	CL=90%	_				
$\Lambda_c^{+} X$	<	3.1	%	CL=90%	_				
$\overline{\Lambda}_{c}^{-}X$	(5.0 +	$\frac{2.1}{1.5}$)%		_				
$\overline{c}X$	(95 +	5)%		_				
cX	(24.6 ±	3.1)%		_				
\overline{c}/cX	(1	119 ±	6)%		_				
,) mode							
$D^- \sigma^+$, D , Of L		⊳ 0 12) ∨ 10−3	C 1 1	2206				
$D^{-}a^{+}$	(2.32± 76 ⊥	$(0.13) \times 10^{-3}$	5=1.1	2300				
$D^{-} \kappa^{0} \pi^{+}$	(1.0 ⊥ 1.0 ⊥	1.2×10^{-4}		2255				
$D^{-}K^{*}(802)^{+}$	(4.9 ⊥ 15 ⊥	$(0.9) \times 10^{-4}$		2209				
$D^{-}\omega\pi^{+}$	(+.3 ⊥ 28 ⊥	$(0.7) \times 10^{-3}$		2211				
$D^- \kappa^+$	(2.0 ⊥ 1.86+	$(0.0) \times 10^{-4}$		2204				
$D^{-}K^{+}\pi^{+}\pi^{-}$	(1.00±	$(0.20) \times 10^{-4}$		2215				
$D^{-}K^{+}\overline{K}^{0}$	(3.3 ±	$\times 10^{-4}$	CI 90%	2188				
$D^{-}K^{+}\overline{K}^{*}(892)^{0}$	(8.8 +	1.9×10^{-4}	62 5070	2070				
$\overline{D}^0 \pi^+ \pi^-$	(8.8 +	$(0.5) \times 10^{-4}$		2301				
$D^*(2010)^-\pi^+$	(2.74±	$(0.13) \times 10^{-3}$		2255				
$\overline{D}^{0}K^{+}K^{-}$	(5.9 +	$0.5) \times 10^{-5}$		2191				
$D^-\pi^+\pi^+\pi^-$	(6.0 ±	$0.7) \times 10^{-3}$	S=1.1	2287				
($D^-\pi^+\pi^+\pi^-$) nonresonar	nt (3.9 ±	1.9) × 10 ⁻³	_	2287				
$D^-\pi^+ ho^0$	($1.1~\pm$	1.0) $\times 10^{-3}$		2206				
$D^{-}a_{1}(1260)^{+}$	($6.0~\pm$	3.3 $)\times10^{-3}$		2121				

$D^*(2010)^-\pi^+\pi^0$	($1.5~\pm$	0.5)%		2248
$D^{*}(2010)^{-}\rho^{+}$	($6.8 \pm$	$0.9) \times 10^{-3}$		2180
$D^{*}(2010)^{-}K^{+}$	($2.12\pm$	$0.15) \times 10^{-4}$		2226
$D^{*}(2010)^{-}K^{0}\pi^{+}$	($3.0 \pm$	0.8) $\times 10^{-4}$		2205
$D^{*}(2010)^{-}K^{*}(892)^{+}$	($3.3~\pm$	0.6) $\times 10^{-4}$		2155
$D^{*}(2010)^{-}K^{+}K^{0}$	<	4.7	$\times 10^{-4}$	CL=90%	2131
$D^{*}(2010)^{-}K^{+}K^{*}(892)^{0}$	($1.29\pm$	$(0.33) \times 10^{-3}$		2007
$D^*(2010)^-\pi^+\pi^+\pi^-$	($7.21\pm$	$(0.29) \times 10^{-3}$		2235
$(D^*(2010)^-\pi^+\pi^+\pi^-)$ non-	($0.0 \pm$	2.5) $\times 10^{-3}$		2235
$D^*(2010)^- \pi^+ \rho^0$	(5.7 ±	3.2) $\times 10^{-3}$		2150
$D^*(2010)^- a_1(1260)^+$	($1.30\pm$	0.27) %		2061
$\overline{D}_1(2420)^0 \pi^- \pi^+, \ \overline{D}_1^0 \rightarrow$	($1.47\pm$	$(0.35) \times 10^{-4}$		_
$D^{*-}\pi^+$	(,		
$D^{*}(2010)^{-}K^{+}\pi^{-}\pi^{+}$	(4.7 ±	0.4) $ imes 10^{-4}$		2181
$D^{*}(2010)^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	($1.76\pm$	0.27) %		2218
$D^{*-}3\pi^{+}2\pi^{-}$	(4.7 ±	$(0.9) \times 10^{-3}$		2195
$D^{*}(2010)^{-}\omega\pi^{+}$	($2.46\pm$	$(0.18) \times 10^{-3}$	S=1.2	2148
\overline{D} (2430)0 \overline{D}	(a 7 +	0.8) 10-4		1000
$D_1(2450)^*\omega, D_1^* \rightarrow D^{*-}\pi^+$	(2.7 _	0.4) × 10 ·		1992
$D^{*-} ho(1450)^+$, $ ho^+ ightarrow \omega \pi^+$	(1.07+	$\binom{0.40}{0.34} \times 10^{-3}$		_
$\overline{D}_1(2420)^0 \omega, \ \overline{D}_1^0 \rightarrow$	(7.0 ±	2.2) $\times 10^{-5}$		1995
$D^{*-}\pi^+$	· ·		,		
$\overline{D}_2^*(2460)^0\omega, \ \overline{D}_2^0 \rightarrow$	($4.0\ \pm$	1.4) $ imes$ 10 ⁻⁵		1975
$D^{*-}\pi^+$		_		-	
D^* $b_1(1235)$, b_1 \rightarrow	<	7	$\times 10^{-5}$	CL=90%	_
$\overline{D}^{**-} \frac{\omega \pi^+}{\pi^+}$	[e] ($1.9~\pm$	0.9) $ imes$ 10 ⁻³		_
$D_1(2420)^- \pi^+ D^- \rightarrow$	(00 +	$2.0 \rightarrow 10^{-5}$		_
$D_1(2+20)$ ", D_1 "	(5.5 _	2.5 / ~ 10		
$D_1(2420)^-\pi^+, D_1^- \rightarrow$	<	3.3	imes 10 ⁻⁵	CL=90%	-
$\frac{D^{*-}\pi^{+}\pi^{-}}{D^{*}(2460)^{-}\pi^{+}}$	(0.00	0.16) > 10-4		2062
$D_2(2400) \pi^+, (D_2) \rightarrow D^0 \pi^-$	(2.38±	$0.10) \times 10^{-1}$		2062
$\overline{D}_{0}^{*}(2400)^{-}\pi^{+}, \ (D_{0}^{*})^{-} \rightarrow$	($7.6~\pm$	0.8 $)\times10^{-5}$		2090
$D^{\circ}\pi^{-}$ $D_{2}^{*}(2460)^{-}\pi^{+}, \ (D_{2}^{*})^{-} \rightarrow$	<	2.4	imes 10 ⁻⁵	CL=90%	_
$\frac{D^{*-}\pi^{+}\pi^{-}}{D_{2}^{*}(2460)^{-}\rho^{+}}$	<	4.9	$\times 10^{-3}$	CL=90%	1974
$D^{\overline{0}}\overline{D}^{0}$	(1.4 \pm	0.7) $ imes$ 10 $^{-5}$		1868
$D^{*0}\overline{D}{}^{0}$	<	2.9	× 10 ⁻⁴	CL=90%	1794
$D^{-}D^{+}$	(2.11+	$0.18) \times 10^{-4}$	/ V	1864
$D^{\pm}D^{*\mp}(CP$ -averaged)	(6.1 +	$0.6) \times 10^{-4}$		_
D^-D^+	(7.2 +	$0.8) \times 10^{-3}$		1812
S	(

$D^*(2010)^- D_{s1}(2536)^+,$ $D^+ \to D^{*0} \kappa^+ + D^{*+} \kappa^0$	($5.0~\pm~1.4$) $\times10^{-4}$		1336
$D_{s1}^{*} \rightarrow D^{*} K^{+} D^{*} K^{+}$ $D^{*}(2010)^{-} D_{s1}(2536)^{+}$,	($3.3~\pm~1.1$) $\times10^{-4}$		1336
$D^+_{s1} ightarrow D^{*0} K^+$				
$D^{*-}D_{s1}(2536)^+, D^+_{s1} \rightarrow D^{*+}_{s1} \kappa^0$	($5.0~\pm~1.7$) $\times10^{-4}$		1336
$D^+ K^\circ$ $D^- D_{sJ}(2573)^+, D_{sJ}^+ \rightarrow$	($3.4~\pm~1.8$) $\times10^{-5}$		1414
$D^{0}K^{+}$ $D^{*}(2010)^{-}D_{sJ}(2573)^{+}$,	<	2×10^{-4}	CL=90%	1304
$D^+_{sJ} ightarrow D^0 K^+$				
$D^- D_{sJ}(2700)^+$, $D^+_{sJ} \rightarrow$	(7.1 \pm 1.2) $\times10^{-4}$		_
$D^{\circ}K^{+}$ $D^{+}\pi^{-}$	($74 + 13 > 10^{-7}$		2306
$D^+\pi^-$	($2.16\pm 0.26) \times 10^{-5}$		2300
$D_{s}^{*+}\pi^{-}$	($2.10\pm0.20)\times10^{-5}$	S-1 /	2216
D_s^+ a_s^-	($2.1 \pm 0.4 \times 10^{-5}$	5—1.4 CI —00%	2213
$D_{s}^{*+} \rho$	< (2.4×10^{-5}	CL=90/0	2197
$D_s^+ \rho$	($4.1 \pm 1.3 \times 10^{-5}$		2138
$D_s^* a_0$	<	1.9 × 10 °	CL=90%	_
$D_s^+ a_0$	<	3.6×10^{-3}	CL=90%	_
$D_{s}^{\prime} a_{1}(1260)^{-1}$	<	2.1 $\times 10^{-3}$	CL=90%	2080
$D_{s}^{*+}a_{1}(1260)^{-}$	<	1.7 $\times 10^{-3}$	CL=90%	2015
$D_{s}^{+}a_{2}^{-}$	<	1.9 $\times 10^{-4}$	CL=90%	_
$D_{s}^{*+}a_{2}^{-}$	<	2.0 $\times 10^{-4}$	CL=90%	
$D_s^- K^+$	($2.7~\pm~0.5$ $)\times10^{-5}$	S=2.7	2242
$D_s^{*-}K^+$	($2.19 \pm \ 0.30) \times 10^{-5}$		2185
$D_{s}^{-}K^{*}(892)^{+}$	($3.5~\pm~1.0$ $)\times10^{-5}$		2172
$D_s^{*-} K^*(892)^+$	(3.2 $\substack{+\\ -\end{array} \substack{1.5\\ 1.3}$) $\times10^{-5}$		2112
$D_{c}^{-}\pi^{+}K^{0}$	(9.7 \pm 1.4 $)\times10^{-5}$		2222
$D_{s}^{*-}\pi^{+}K^{0}$	<	1.10×10^{-4}	CL=90%	2164
$D_{-}^{s}K^{+}\pi^{+}\pi^{-}$	(1.7 ± 0.5) $ imes 10^{-4}$		2198
$D^{s} \pi^{+} K^{*}(892)^{0}$	<	3.0 $\times 10^{-3}$	CL=90%	2138
$D^{*-}\pi^+ K^* (892)^0$	~	1.6×10^{-3}	CI = 90%	2076
$\overline{D}^{0} K^{0}$	Ì	$52 + 07) \times 10^{-5}$	22 50/0	2280
$\frac{D}{D^0}K^+\pi^-$	(3.2 ± 0.7) × 10 8.8 + 1.7) × 10 ⁻⁵		2200
$\overline{D}^{0} K^{*}(892)^{0}$	(4.5 ± 0.6) $\times 10^{-5}$		2213
$\overline{D}^{0} K^{*}(1410)^{0}$	<	6.7×10^{-5}	CL=90%	2062
$\overline{D}^0 K_0^*(1430)^0$	($7 \pm 7) \times 10^{-6}$		2058
$\overline{D}^0 K_2^{(1430)}^{0}$	($2.1~\pm~0.9~)\times10^{-5}$		2057
$D_0^*(2300)^- K^+, D_0^{*-} \rightarrow \overline{200}$	(1.9 ± 0.9) $\times 10^{-5}$		_
$D^{\circ}\pi$				

$D_2^*(2460)^- K^+, \ D_2^{*-} \to \overline{\Sigma_2^0}$	($2.03\pm$	$0.35) \times 10^{-5}$		2029
$D^{0}\pi^{-}$ $D_{3}^{*}(2760)^{-}K^{+}, D_{3}^{*-} \rightarrow \overline{D}_{3}^{*}$	<	1.0	$\times 10^{-6}$	CL=90%	_
$\frac{D^0 \pi^-}{D^0 K^+ \pi^-}$ poprocopont	_	2 7	× 10 ⁻⁵	CL 00%	2261
$\overline{D}^{0} = 0$	< (3.7	$\times 10^{-4}$	CL=90%	2201
$\overline{D}^{0} \pi^{0}$	(2.63±	$(0.14) \times 10^{-4}$		2308
$\frac{D}{D} \rho^{2}$	(3.21±	$(0.21) \times 10^{-4}$		2237
$\frac{D^{\circ}}{D^{0}}$	(1.56±	$(0.21) \times 10^{-4}$	C 0 F	
\overline{D}^{0}	(2.30±	$(0.32) \times 10^{-4}$	5=2.5	2274
$\overline{D}^{0}\eta$	(1.38±	$(0.16) \times 10^{-4}$	S=1.3	2198
$D^{2}\omega$	(2.54±	$(0.16) \times 10^{-6}$		2235
$D^{2} \varphi$	< (2.3	× 10 °	CL=95%	2183
$D^{*}K^{+}\pi$	(5.3 ±	3.2)×10 °		2261
$D^0 K^* (892)^0$	(2.2 +	$(0.9)_{1.0}$) × 10 ⁻⁶		2213
$\overline{D}^{*0}\gamma$	<	2.5	imes 10 ⁻⁵	CL=90%	2258
$\overline{D}^{*}(2007)^{0}\pi^{0}$	($2.2 \pm$	0.6) $\times 10^{-4}$	S=2.6	2256
$\overline{D}^*(2007)^0 \rho^0$	<	5.1	× 10 ⁻⁴	CL=90%	2182
$\overline{D}^*(2007)^0 n$	($2.3 \pm$	0.6) $\times 10^{-4}$	S=2.8	2220
$\overline{D}^{*}(2007)^{0}n'$	($1.40\pm$	$(0.22) \times 10^{-4}$		2141
$\overline{D}^{*}(2007)^{0}\pi^{+}\pi^{-}$	(6.2 ±	2.2) $\times 10^{-4}$		2249
$\overline{D}^{*}(2007)^{0}K^{0}$	(3.6 +	$1.2) \times 10^{-5}$		2227
$\frac{1}{D^*}(2007)^0 K^*(892)^0$	<	6.9	× 10 ⁻⁵	CI = 90%	2157
$D^{*}(2007)^{0}K^{*}(892)^{0}$	<	4.0	$\times 10^{-5}$	CI = 90%	2157
$D^{*}(2007)^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	(27 +	$(0.5) \times 10^{-3}$	02 00/0	2219
$D^{*}(2010)^{+}D^{*}(2010)^{-}$	(<u> </u>	$(0.6) \times 10^{-4}$		1711
$\frac{D}{D^*}(2007)^0\omega$	(36 +	$11) \times 10^{-4}$	S=3.1	2180
$D^{*}(2010)^{+}D^{-}$	(6.1 +	$1.1) \times 10^{-4}$	S-1.6	1700
$D^{*}(2007)^{0} \overline{D}^{*}(2007)^{0}$		0.1 <u>+</u>	$\times 10^{-5}$	CI 90%	1715
$D^{-}D^{0}K^{+}$	(9 1 07+	$(11) \times 10^{-3}$	CL=9070	1574
$D^{-}D^{*}(2007)^{0}K^{+}$	(1.07 ±	$(0.11) \times 10^{-3}$		1/78
$D^{*}(2010)^{-}D^{0}K^{+}$	($3.3 \pm 2.47 \pm$	$(0.4) \times 10^{-3}$		1/70
$D^{*}(2010)^{-}D^{*}(2007)^{0}K^{+}$	($2.77 \pm$ 1.06 \pm	$0.21) \times 10$		1366
$D^{-}D^{+}K^{0}$	(1.00 ±	$(1.03) \times 10^{-4}$		1568
$D^{*}(2010)^{-}D^{+}K^{0} +$	(6.0 ±	$(1.7) \times 10^{-3}$		1/73
$D^{-}D^{*}(2010) + K^{0}$	(0.4 ⊥	0.5) ~ 10		1475
$D^{*}(2010)^{-}D^{*}(2010)^{+}K^{0}$	(81 +	$(0,7) \times 10^{-3}$		1360
$D^{*-} D < (2536)^{+} D^{+} \rightarrow$	(80 ±	$(0.1) \times 10^{-4}$		1336
$D = D_{s1}(2550)$, $D_{s1} \rightarrow D^{*+} \kappa^0$	(0.0 <u> </u>	2.4) × 10		1330
$D^{\circ} K^{\circ}$	(27 +	1 1) ~ 10-4		1574
$\overline{D}^{0} D^{*} (2007)^{0} K^{0} +$	(2.7 ⊥ 11 ⊥	$(1.1) \times 10^{-3}$		1/78
$D^{*}(2007)^{0} D^{0} \kappa^{0}$	(1.1 <u>1</u>	0.5 / 10		1470
$D^{*}(2007)^{0} D^{*}(2007)^{0} K^{0}$	(21⊥	001~10-3		1265
$(\overline{D} \perp \overline{D^*}) (D \perp D^*) K$		2.4 ±	0.9×10^{-5}		1202
(D+D)(D+D)K	(3.08±	0.20) %		_

Charmonium modes

$\eta_c K^0$	(7.9 \pm 1.2) $\times10^{-4}$	1751
$\eta_c(1S) K^+ \pi^-$	(5.7 ± 0.7) $\times 10^{-4}$	1722
$\eta_c(1S) K^+ \pi^- (NR)$	($5.9~\pm~1.3$ $)\times10^{-5}$	_
$X(4100)^-K^+$, $X^- ightarrow$	(1.9 \pm 0.9) $\times10^{-5}$	_
$\eta_c \pi^-$			
$\eta_c(1S) K^*(1410)^0$	(1.8 ± 1.4) $\times 10^{-4}$	1395
$\eta_{c}(1S) K_{0}^{*}(1430)^{\circ}$	($1.6 \pm 0.4) \times 10^{-4}$	1388
$\eta_{c}(1S) K_{2}^{*}(1430)^{0}$	(4.7 $\stackrel{+}{} \stackrel{2.2}{_{-} 2.6}$) $ imes$ 10 ⁻⁵	1387
$\eta_{c}(1S) K^{*}(1680)^{0}$	(3 ± 4) $ imes 10^{-5}$	1166
$\eta_c(1S) K_0^*(1950)^0$	(4.2 $\begin{array}{c} + & 2.8 \\ - & 4.0 \end{array}$) $\times 10^{-5}$	_
$\eta_{c} K^{*}(892)^{0}$	(5.2 \pm 0.8) $\times 10^{-4}$ S=1.5	1646
$\eta_c(2S) K^{*0}$	<	3.9 $\times 10^{-4}$ CL=90%	1159
$h_c(1P)K^{*0}$	<	4 $\times 10^{-4}$ CL=90%	1253
$J/\psi(1S) K^0$	(8.73 \pm 0.32) \times 10 ⁻⁴	1683
$J/\psi(1S)K^+\pi^-$	($1.15\pm~0.05) imes 10^{-3}$	1652
$J/\psi(1S) K^{*}(892)^{0}$	($1.27\pm~0.05)\times10^{-3}$	1571
$J/\psi(1S)\eta K_{S_2}^0$	(5.4 \pm 0.9) $ imes$ 10 ⁻⁵	1508
$J/\psi(1S)\eta' K^0_S$	<	2.5 $\times 10^{-5}$ CL=90%	1271
$J/\psi(1S)\phi K^0$	(4.9 \pm 1.0) $\times 10^{-5}$ S=1.3	1224
$J/\psi(1S)\omega K^0$	(2.3 ± 0.4) $\times 10^{-4}$	1386
$\chi_{c1}(3872) \mathcal{K}^0, \ \chi_{c1} \rightarrow I/\psi_{c0}$	($6.0 \pm 3.2) \times 10^{-6}$	1140
$X(3915), X \rightarrow J/\psi \omega$	($2.1 + 0.9 \times 10^{-5}$	1102
$J/\psi(1S) K(1270)^0$	(1.3 ± 0.5) × 10 ⁻³	1391
$J/\psi(1S)\pi^0$	($1.66\pm 0.10) \times 10^{-5}$	1728
$J/\psi(1S)\eta$	(1.08 ± 0.23) $\times 10^{-5}$ S=1.5	1673
$J/\psi(1S)\pi^+\pi^-$	($3.96\pm~0.17) imes10^{-5}$	1716
$J/\psi(1S)\pi^+\pi^-$ nonresonant	<	1.2 $\times 10^{-5}$ CL=90%	1716
$J/\psi(1S) {\it f}_0(500), \;\; {\it f}_0 ightarrow \; \pi \pi$	(8.0 $\stackrel{+}{_{-}} \stackrel{1.1}{_{0.9}}$) $\times 10^{-6}$	_
$J/\psi(1S)f_2$	(3.3 \pm 0.5 $)\times10^{-6}$ S=1.5	_
$J/\psi(1S) ho^0$	($2.55^{+}_{-} \begin{array}{c} 0.18\\ 0.16 \end{array}) \times 10^{-5}$	1612
$J/\psi(1S)f_0(980),\ f_0 ightarrow$	<	1.1 $\times 10^{-6}$ CL=90%	_
$J/\psi(1S) ho(1450)^0$, $ ho^0 o$	(2.9 $\substack{+\\ - \end{array} \substack{1.6\\ 0.7}$) $\times 10^{-6}$	_
$J/\psi ho(1700)^0$, $ ho^0 \to \pi^+ \pi^-$	($2.0~\pm~1.3$ $)\times10^{-6}$	_
$J/\psi(1S)\omega$	($1.8 \ + \ 0.7 \ - \ 0.5$ $) imes 10^{-5}$	1609
$J/\psi(1S)K^{+}K^{-}$	($2.51\pm 0.35) \times 10^{-6}$	1533
$J/\psi(1S)$ $a_0(980), a_0 ightarrow K^+ K^-$	(4.7 \pm 3.4) $\times 10^{-7}$	_

$J/\psi(1S)\phi$	<	1.9	imes 10 ⁻⁷	CL=90%	1520
$J/\psi(1S)\eta'(958)$	(7.6 \pm 2.4)	imes 10 ⁻⁶		1546
$J/\psi(1S) K^0 \pi^+ \pi^-$	(4.4 ± 0.4)	$ imes 10^{-4}$		1611
$J/\psi(1S) K^0 K^- \pi^+ + \text{c.c.}$	<	2.1	$ imes 10^{-5}$	CL=90%	1467
$J/\psi(1S) K^0 K^+ K^-$	($2.5~\pm~0.7$)	$ imes 10^{-5}$	S=1.8	1249
$J/\psi(1S) K^0 \rho^0$	(5.4 ± 3.0)	$ imes 10^{-4}$		1390
$J/\psi(1S)K^*(892)^+\pi^-$	(8 ± 4)	$ imes 10^{-4}$		1514
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	($1.43 \pm 0.12)$	$ imes 10^{-5}$		1670
$J/\psi(1S) f_1(1285)$	Ì	8.2 ± 2.1)	$ imes 10^{-6}$		1385
$J/\psi(1S) K^{*}(892)^{0} \pi^{+} \pi^{-}$	(6.6 ± 2.2)	$ imes 10^{-4}$		1447
$\chi_{c1}(3872)^{-}K^{+}$	<	5	$ imes 10^{-4}$	CL=90%	_
$\chi_{c1}(3872)^{-}K^{+},$	[f] <	4.2	$ imes 10^{-6}$	CL=90%	_
$\chi_{c1}(3872)^- \rightarrow$					
$J/\psi(1S)\pi^{-}\pi^{0}$					
$\chi_{c1}(3872) \tilde{K}^0, \chi_{c1} \rightarrow$	($4.3~\pm~1.3$)	$ imes 10^{-6}$		1140
$J/\psi \pi^+ \pi^-$					
$\chi_{c1}(3872) K^0, \ \chi_{c1} \rightarrow J/\psi \gamma$	<	2.4	imes 10 ⁻⁶	CL=90%	1140
$\chi_{c1}(3872) K^*(892)^0, \chi_{c1} \rightarrow$	<	2.8	imes 10 ⁻⁶	CL=90%	940
$J/\psi\gamma$					
$\chi_{c1}(3872) K^0, \ \chi_{c1} \rightarrow \psi(2S) \gamma$	<	6.62	imes 10 ⁻⁶	CL=90%	1140
$\chi_{c1}(3872) K^*(892)^0, \chi_{c1} \rightarrow$	<	4.4	$ imes 10^{-6}$	CL=90%	940
$\psi(2S)\gamma$					
$\chi_{c1}(3872)K^0, \chi_{c1} \rightarrow$	($1.7~\pm~0.8$)	$ imes 10^{-4}$		1140
$D^0 \overline{D}^0 \pi^0$					
$\chi_{c1}(3872) K^0, \ \chi_{c1} \to D^{*0} D^0$	($1.2~\pm~0.4$)	$\times 10^{-4}$		1140
$\chi_{c1}(3872) K^+ \pi^-, \chi_{c1} \to$	(7.9 \pm 1.4)	imes 10 ⁻⁶		_
$J/\psi \pi^+ \pi^-$			<i>.</i>		
$\chi_{c1}(3872) K^*(892)^0, \ \chi_{c1} \rightarrow$	($4.0~\pm~1.5$)	$\times 10^{-6}$		-
$J/\psi \pi^+ \pi^-$					
$Z_c(4430)^{\pm} K^{\mp}, Z_a^{\pm} \rightarrow$	(6.0 + 3.0	imes 10 ⁻⁵		583
$\psi(2S)\pi^{\pm}$		- 2.4 /			
$7(-2)^{\pm}$	(-4 + 4.0			500
$Z_c(4430)^- K^+, Z_c^- \rightarrow$	(5.4 - 1.2	× 10 °		583
$J/\psi \pi^{\perp}$			7		
$Z_c(3900)^{\perp}K^+, Z_c^{\perp} \rightarrow$	<	9	$\times 10^{-7}$		_
$J/\psi \pi^{\pm}$					
$Z_c(4200)^{\pm} K^{\mp}, X^{\pm} \rightarrow$	($2.2 + 1.3 \\ 0.8 $	imes 10 ⁻⁵		_
$J/\psi \pi^{\pm}$		- 0.0 /			
$J/\psi(1S) p \overline{p}$	<	5.2	$ imes 10^{-7}$	CL=90%	862
$J/\psi(1S)\gamma$	<	1.5	$ imes 10^{-6}$	CL=90%	1732
$J/\psi(1S)\overline{D}^0$	<	1.3	$ imes 10^{-5}$	CL=90%	877
$\psi(2S)\pi^0$	(1.17± 0.19)	$ imes 10^{-5}$		1348
$\psi(2S)K^0$	Ì	5.8 ± 0.5)	$ imes 10^{-4}$		1283
$\psi(3770) K^0, \ \psi \rightarrow \overline{D}{}^0 D^0$	<	1.23	$ imes 10^{-4}$	CL=90%	1217

$\psi(3770) K^0, \ \psi \rightarrow D^- D^+$	<	1.88	imes 10 ⁻⁴	CL=90%	1217
$\psi(2S)\pi^{+}\pi^{-}$	($2.22\pm$	$0.35) \times 10^{-5}$		1331
$\psi(2S)K^+\pi^-$	(5.8 ±	0.4) $\times 10^{-4}$		1239
$\psi(2S) K^*(892)^0$	($5.9~\pm$	0.4) $\times 10^{-4}$		1116
$\chi_{c0} \mathrm{K}^{0}$	(1.11^{+}_{-}	$_{0.21}^{0.24}$) × 10 ⁻⁶		1477
$\chi_{c0} K^* (892)^0$	($1.7~\pm$	0.4) × 10 ⁻⁴		1342
$\chi_{c1}\pi^0$	($1.12\pm$	$(0.28) \times 10^{-5}$		1468
$\chi_{c1} K^0$	($3.93\pm$	$(0.27) \times 10^{-4}$		1411
$\chi_{c1}\pi^-K^+$	($4.97\pm$	$(0.30) \times 10^{-4}$		1371
$\chi_{c1} K^* (892)^0$	($2.38\pm$	0.19) × 10 ⁻⁴	S=1.2	1265
$X(4051)^K^+,~X^- ightarrow$	(3.0 +	$^{4.0}_{1.8}$) $\times10^{-5}$		_
$\chi_{c1\pi}$			20.0 -		
$X(4248)^- K^+, X^- ightarrow$	(4.0 +	$^{20.0}_{1.0}$) × 10 ⁻⁵		
$\chi_{c1}\pi^{-}$,				
$\chi_{c1}\pi^+\pi^-\kappa^-$	($3.2 \pm$	$0.5) \times 10^{-4}$		1318
$\chi_{c1}\pi\pi^{\kappa}K$	($3.5 \pm$	$0.6) \times 10^{-4}$		1321
$\chi_{c2} K^{\circ}$	<	1.5	$\times 10^{-5}$	CL=90%	1379
$\chi_{c2} K^* (892)^{\circ}$	(4.9 ±	1.2) $\times 10^{-5}$	S=1.1	1228
$\chi_{c2}\pi^-K^+$	($7.2~\pm$	1.0) $\times 10^{-5}$		1338
$\chi_{c2}\pi^{+}\pi^{-}K^{0}$	<	1.70	$\times 10^{-4}$	CL=90%	1282
$\chi_{c2}\pi^{-}\pi^{0}K^{+}$	<	7.4	imes 10 ⁻⁵	CL=90%	1286
$\psi(4660) K^0$, $\psi \to \Lambda^+_c \Lambda^c$	<	2.3	imes 10 ⁻⁴	CL=90%	_
	K or K* r	nodes			
$K^+\pi^-$	($1.96\pm$	$0.05) \times 10^{-5}$		2615
$K^0 \pi^0$	($9.9~\pm$	0.5 $)\times10^{-6}$		2615
1.1.0					

$K^0 \pi^0$
$\eta' K^0$
$\eta' K^* (892)^0$
$\eta' K_0^* (1430)^0$
$\eta' K_2^{*}(1430)^0$
ηK^{0}
η K*(892) ⁰
$\eta K_0^* (1430)^0$
$\eta K_2^{*}(1430)^0$
$\omega K^{\overline{0}}$
$a_0(980)^0 K^0$, $a_0^0 \to \eta \pi^0$
$b_1^0 {\cal K}^0$, $b_1^0 ightarrow \omega \pi^0$
$a_0(980)^{\pm}K^{\mp}, a_0^{\pm} \rightarrow \eta \pi^{\pm}$
$b_1^- K^+$, $b_1^- \rightarrow \omega \pi^-$
$b_1^{ar 0} K^{st 0}$, $b_1^{ar 0} ightarrow \omega \pi^0$
$b_1^- K^{*+}$, $\bar{b}_1^- \rightarrow \omega \pi^-$
$\bar{a_0(1450)^{\pm}}\bar{K^{\mp}}, \ a_0^{\pm} \to \eta \pi^{\pm}$

(*	modes			
($(1.96\pm$	$0.05) \times 10^{-5}$		2615
($(9.9 \pm$	0.5) $ imes 10^{-6}$		2615
($(6.6 \pm$	0.4) $ imes 10^{-5}$	S=1.4	2528
($(2.8 \pm$	0.6) $\times10^{-6}$		2472
($6.3 \pm$	1.6) $ imes 10^{-6}$		2346
($1.37\pm$	$0.32) \times 10^{-5}$		2346
((1.23 _	$^{0.27}_{0.24})\times 10^{-6}$		2587
($(1.59\pm$	$0.10) \times 10^{-5}$		2534
($(1.10\pm$	$0.22) \times 10^{-5}$		2415
($($ 9.6 \pm	2.1 $)\times10^{-6}$		2414
($($ 4.8 \pm	0.4 $)\times10^{-6}$		2557
<	7.8	imes 10 ⁻⁶	CL=90%	_
<	7.8	imes 10 ⁻⁶	CL=90%	_
<	1.9	imes 10 ⁻⁶	CL=90%	-
($(7.4 \pm$	1.4) $\times10^{-6}$		_
<	8.0	imes 10 ⁻⁶	CL=90%	_
<	5.0	imes 10 ⁻⁶	CL=90%	-
<	3.1	imes 10 ⁻⁶	CL=90%	_

$K_{S}^{0}X^{0}$ (Familon)	<	5.3	imes 10 ⁻⁵	CL=90%	
$\omega K^{*}(892)^{0}$	($2.0 \pm$	0.5) $\times10^{-6}$		2503
$\omega(\kappa\pi)_0^{*0}$	($1.84\pm$	$0.25) \times 10^{-5}$		_
$\omega K_0^* (1430)^0$	($1.60\pm$	$0.34)\times10^{-5}$		2380
$\omega K_2^{*}(1430)^0$	($1.01\pm$	$0.23)\times10^{-5}$		2380
$\omega K^{\overline{+}} \pi^-$ nonresonant	($5.1~\pm$	1.0) $\times10^{-6}$		2542
$K^+ \pi^- \pi^0$	($3.78\pm$	$0.32)\times 10^{-5}$		2609
$K^+ \rho^-$	($7.0\ \pm$	0.9) $ imes$ 10 ⁻⁶		2559
$K^+ ho(1450)^-$	($2.4\ \pm$	1.2) $\times 10^{-6}$		_
$K^+ \rho(1700)^-$	(6 ±	7) $\times 10^{-7}$		_
$(K^+\pi^-\pi^0)$ nonresonant	($2.8 \pm$	0.6) $\times 10^{-6}$		2609
$(K\pi)_{0}^{*+}\pi^{-}, \ (K\pi)_{0}^{*+} \to K^{+}\pi^{0}$	(3.4 ±	0.5) × 10 ⁻⁵		_
$(K\pi)^{*0}_{0}\pi^{0}$, $(K\pi)^{*0}_{0} \rightarrow$	($8.6\ \pm$	1.7) $\times10^{-6}$		_
$K_{2}^{+\pi}(1430)^{0}\pi^{0}$	<	4.0	imes 10 ⁻⁶	CL=90%	2445
$K^{2}(1680)^{0}\pi^{0}$	<	7.5	imes 10 ⁻⁶	CL=90%	2358
$K_{2}^{*0}\pi^{0}$	[<i>i</i>] ($6.1 \pm$	1.6) $ imes$ 10 $^{-6}$		_
$K^0 \pi^+ \pi^-$	($4.94\pm$	0.18) × 10 ⁻⁵		2609
$K^0 \pi^+ \pi^-$ nonresonant	(1.39^+	$^{0.26}_{0.18})\times 10^{-5}$	S=1.6	2609
$\kappa^0 ho^0$	($3.4~\pm$	1.1) $\times10^{-6}$	S=2.3	2558
$K^{*}(892)^{+}\pi^{-}$	($7.5\ \pm$	0.4) $\times10^{-6}$		2563
${ m K_0^*(1430)^+\pi^-}$	($3.3\ \pm$	0.7) $\times10^{-5}$	S=2.0	_
$K_x^{*+}\pi^-$	[<i>i</i>] ($5.1\ \pm$	1.6) $\times10^{-6}$		_
${K^*(1410)^+\pi^-}$, ${K^{*+}} o$	<	3.8	imes 10 ⁻⁶	CL=90%	-
$(K\pi)_{0}^{*+}\pi^{-}, \ (K\pi)_{0}^{*+} \to$	($1.62\pm$	$0.13) \times 10^{-5}$		-
$K^{0}\pi^{+}$ $f_{0}(980)K^{0}$, $f_{0} \rightarrow \pi^{+}\pi^{-}$	(8.1 +	$0.8) \times 10^{-6}$	S=1.3	2522
$K^0 f_0(500)$	(1.6 +	$2.5_{1.6}$) × 10 ⁻⁷		_
$K^0 f_0(1500)$	($1.3 \pm$	0.8) $\times 10^{-6}$		2397
$f_2(1270)K^0$	(2.7 +	$\begin{pmatrix} 1.3 \\ 1.2 \end{pmatrix} \times 10^{-6}$		2459
$f_{\star}(1300) K0, f_{\star} \rightarrow \pi^{+} \pi^{-}$	($1.8 \pm$	$0.7) \times 10^{-6}$		_
$K^{*}(892)^{0}\pi^{0}$	(3.3 ±	0.6) $\times 10^{-6}$		2563
$K_2(1430)^+\pi^-$	($3.65\pm$	$(0.34) \times 10^{-6}$		2445
$\tilde{K^{*}(1680)^{+}}\pi^{-}$	($1.41\pm$	$0.10) \times 10^{-5}$		2358
$K^+\pi^-\pi^+\pi^-$	[<i>j</i>] <	2.3	× 10 ⁻⁴	CL=90%	2600
$ ho^{0}$ K $^{+}$ π^{-}	($2.8\ \pm$	0.7 $)\times10^{-6}$		2543
$f_0(980) K^+ \pi^-$, $f_0 \to \pi \pi$	(1.4 $\stackrel{+}{_}$	$^{0.5}_{0.6}$) $\times10^{-6}$		2506
$K^+\pi^-\pi^+\pi^-$ nonresonant	<	2.1	imes 10 ⁻⁶	CL=90%	2600
$K^{*}(892)^{0}\pi^{+}\pi^{-}$	($5.5\ \pm$	0.5 $)\times10^{-5}$		2557

0 0				
$K^{*}(892)^{0} ho^{0}$	($3.9~\pm~1.3~)\times10^{-6}$	S=1.9	2504
$K^{*}(892)^{0} f_{0}(980), f_{0} \rightarrow \pi \pi$	(3.9 $\substack{+\\ -1.8}$) $\times10^{-6}$	S=3.9	2466
$K_1(1270)^+ \pi^-$	<	$3.0 imes 10^{-5}$	CL=90%	2484
$K_1(1400)^+\pi^-$	<	2.7×10^{-5}	CL=90%	2451
$a_1(1260)^- K^+$	[<i>i</i>] (1.6 \pm 0.4 $)\times10^{-5}$		2471
$K^{*}(892)^{+}\rho^{-}$	($1.03\pm 0.26) \times 10^{-5}$		2504
$K_{0}^{*}(1430)^{+}\rho^{-}$	(2.8 ± 1.2) $\times 10^{-5}$		_
$K_1(1400)^0 \rho^0$	<	3.0 $\times 10^{-3}$	CL=90%	2388
$K_0^{(1430)0}\rho^0$	($2.7~\pm~0.6$ $)\times10^{-5}$		2381
$K_0^*(1430)^0 f_0(980), f_0 \to \pi\pi$	($2.7~\pm~0.9$ $)\times10^{-6}$		_
$K_2^*(1430)^0 f_0(980), f_0 \to \pi\pi$	(8.6 ± 2.0) $\times 10^{-6}$		_
K^+K^-	(7.8 ± 1.5) $\times 10^{-8}$		2593
$K^0 \overline{K}^0$	($1.21\pm 0.16) \times 10^{-6}$		2592
$K^0 K^- \pi^+$	(6.2 ± 0.7) $\times 10^{-6}$		2578
$K^{*}(892)^{\pm}K^{\mp}$	<	4 $\times 10^{-7}$	CL=90%	2540
$\overline{K}^{*0}K^{0} + K^{*0}\overline{K}^{0}$	<	9.6 $\times 10^{-7}$	CL=90%	_
$K^+ K^- \pi^0$	($2.2~\pm~0.6$ $)\times10^{-6}$		2579
$K^0_S K^0_S \pi^0$	<	9 $\times 10^{-7}$	CL=90%	2578
$K_{c}^{0}K_{c}^{0}\eta$	<	1.0×10^{-6}	CL=90%	2515
$K_{c}^{0}K_{c}^{0}\eta'$	<	2.0×10^{-6}	CL=90%	2453
$K_0 K_+ K$	($2.67 \pm 0.11) \times 10^{-5}$		2522
$K^0\phi$	(7.3 ± 0.7) $\times 10^{-6}$		2516
$f_0(980) K^0$, $f_0 \to K^+ K^-$	($7.0 + 3.5 - 3.0 \times 10^{-6}$		_
$f_0(1500) K^0$	($1.3 + 0.7 \times 10^{-5}$		2397
	(
$f'_2(1525)^0 K^0$	($3 + 3 - 4) \times 10^{-7}$		_
$f_0(1710) K^0$, $f_0 \rightarrow K^+ K^-$	(4.4 \pm 0.9) $\times 10^{-6}$		_
$K^{\circ}K^{+}K^{-}$ nonresonant	($3.3 \pm 1.0) \times 10^{-5}$		2522
K ^o _S K ^o _S K ^o _S	(6.0 ± 0.5) $\times 10^{-6}$	S=1.1	2521
$f_0(980) K^0, \ f_0 ightarrow K^0_S K^0_S$	(2.7 ± 1.8) $\times 10^{-6}$		_
$f_0(1710) K^0$, $f_0 ightarrow K^0_S K^0_S$	(5.0 $\substack{+\\ -\end{array}$ $\stackrel{5.0}{_2.6}$) $\times10^{-7}$		_
$f_2(2010) K^0, \;\; f_2 ightarrow \; K^0_S K^0_S$	($5 \pm 6) \times 10^{-7}$		_
$K^0_{\varsigma} K^0_{\varsigma} K^0_{\varsigma}$ nonresonant	($1.33 \pm \ 0.31) \times 10^{-5}$		2521
$K_{S}^{0}\breve{K}_{S}^{0}\breve{K}_{I}^{0}$	<	$1.6 imes 10^{-5}$	CL=90%	2521
<i>K</i> [*] (892) ⁰ <i>K</i> ⁺ <i>K</i> ⁻	($2.75\pm 0.26) \times 10^{-5}$		2467
$\hat{K}^{*}(892)^{0}\phi$	($1.00\pm 0.05) \times 10^{-5}$		2460
$K^+ K^- \pi^+ \pi^-$ nonresonant	<	7.17 $\times 10^{-5}$	CL=90%	2559
$K^{*}(892)^{0}K^{-}\pi^{+}$	($4.5~\pm~1.3$ $)\times10^{-6}$		2524
$K^{*}(892)^{0}\overline{K}^{*}(892)^{0}$	(8 ± 5) $\times 10^{-7}$	S=2.2	2485
$K^+ K^+ \pi^- \pi^-$ nonresonant	<	6.0 $\times 10^{-6}$	CL=90%	2559
$K^{*}(892)^{0}K^{+}\pi^{-}$	<	2.2×10^{-6}	CL=90%	2524

0			_	
$K^{*}(892)^{0}K^{*}(892)^{0}$	<	2 × 10 ⁻	⁷ CL=90%	2485
$K^{*}(892)^{+}K^{*}(892)^{-}$	<	2.0×10^{-1}	⁶ CL=90%	2485
$K_1(1400)^0 \phi$	<	5.0 × 10 ⁻	³ CL=90%	2339
$\phi(\kappa\pi)^{*0}_0$	($4.3~\pm~0.4$) $\times10^-$	6	_
$\phi(K\pi)_0^{*0} (1.60 < m_{K\pi} < 2.15)$	[k] <	1.7 × 10 ⁻	⁶ CL=90%	_
$K_0^*(1430)^0 K^- \pi^+$	<	3.18 × 10 ⁻	⁵ CL=90%	2403
$K_0^*(1430)^0 \overline{K}^*(892)^0$	<	3.3 × 10 ⁻	⁶ CL=90%	2360
$K_0^*(1430)^0 \overline{K}_0^*(1430)^0$	<	8.4 × 10 ⁻	6 CL=90%	2222
$K_0^*(1430)^0 \phi$	($3.9~\pm~0.8$) $ imes$ 10 $^-$	6	2333
$K_0^{(1430)0} K^{*}(892)^{0}$	<	1.7 × 10 ⁻	6 CL=90%	2360
$K_{0}^{*}(1430)^{0} K_{0}^{*}(1430)^{0}$	<	4.7 $\times 10^{-1}$	⁶ CL=90%	2222
$K^{*}(1680)^{0}\phi$	<	3.5×10^{-1}	⁶ CL=90%	2238
$K^{*}(1780)^{0}\phi$	<	2.7 × 10 ⁻	6 CL=90%	_
$K^{*}(2045)^{0}\phi$	<	1.53 × 10 ⁻	⁵ CL=90%	_
$K_{2}^{*}(1430)^{0}\rho^{0}$	<	1.1 × 10 ⁻	³ CL=90%	2381
$K_{2}^{(1430)0}\phi$	(6.8 \pm 0.9) $ imes$ 10 $^-$	6 S=1.2	2333
$K^{\hat{0}}\phi\phi$	(4.5 ± 0.9) $\times 10^{-1}$	6	2305
$\eta' \eta' \kappa^0$	<	3.1 × 10 ⁻	⁵ CL=90%	2337
$\eta \kappa^0 \gamma$	(7.6 \pm 1.8) $ imes$ 10 $^-$	6	2587
$\eta' \kappa^0 \gamma$	<	6.4 × 10 ⁻	⁶ CL=90%	2528
$K^0\phi\gamma$	($2.7~\pm~0.7$) $\times10^-$	6	2516
$K^+\pi^-\gamma$	(4.6 \pm 1.4) $\times10^{-}$	6	2615
$K^*(892)^0\gamma$	($4.18\pm~0.25)\times10^{-1}$	5 S=2.1	2565
$\mathcal{K}^*(1410)\gamma$	<	1.3 × 10 ⁻	⁴ CL=90%	2451
${\cal K}^+\pi^-\gamma$ nonresonant	<	2.6 × 10 ⁻	⁶ CL=90%	2615
$K^{*}(892)^{0}X(214), X \rightarrow$	[/] <	2.26 × 10 ⁻	⁸ CL=90%	_
$\mu^+\mu^-$			-	
$K^0\pi^+\pi^-\gamma$	($1.99\pm~0.18) \times 10^{-1}$	5	2609
$K^+\pi^-\pi^0\gamma$	(4.1 \pm 0.4) $ imes$ 10 ⁻	5	2609
$K_1(1270)^0 \gamma$	<	5.8 $\times 10^{-1}$	⁵ CL=90%	2486
$K_1(1400)^0 \gamma$	<	1.2 $\times 10^{-1}$	⁵ CL=90%	2454
$K_{2}^{*}(1430)^{0}\gamma$	($1.24 \pm 0.24) \times 10^{-1}$	5	2447
$K^{*}(1680)^{0}\gamma$	<	2.0	³ CL=90%	2360
$K_{3}^{*}(1780)^{\circ}\gamma$	<	8.3 $\times 10^{-1}$	⁵ CL=90%	2341
$K_{4}^{*}(2045)^{0}\gamma$	<	4.3 × 10 ⁻	³ CL=90%	2244

Light unflavored meson modes

($8.6 \pm$	1.5) $\times 10^{-7}$		2583
[/] <	1.73	imes 10 ⁻⁸	CL=90%	_
(4.4 _	$^{1.8}_{1.6}$) $\times10^{-7}$		2582
<	1.0	imes 10 ⁻⁷	CL=90%	2541
($5.12\pm$	$0.19) \times 10^{-6}$		2636
($1.59\pm$	$0.26)\times 10^{-6}$	S=1.4	2636
	([/] < ((($ \begin{array}{cccc} (& 8.6 \ \pm \\ [/] < & 1.73 \\ & (& 4.4 \ - \\ < & 1.0 \\ & (& 5.12 \pm \\ & (& 1.59 \pm \end{array}) \end{array} $	$ \begin{array}{ccccc} (&8.6\ \pm\ 1.5\)\times 10^{-7} \\ [/] < &1.73\ &\times 10^{-8} \\ (&4.4\ -\ 1.6\)\times 10^{-7} \\ < &1.0\ &\times 10^{-7} \\ (&5.12\pm\ 0.19)\times 10^{-6} \\ (&1.59\pm\ 0.26)\times 10^{-6} \end{array} $	$(8.6 \pm 1.5) \times 10^{-7}$ $[/] < 1.73 \times 10^{-8} \text{ CL}=90\%$ $(4.4 \pm 1.8) \times 10^{-7}$ $< 1.0 \times 10^{-7} \text{ CL}=90\%$ $(5.12 \pm 0.19) \times 10^{-6}$ $(1.59 \pm 0.26) \times 10^{-6} \text{ S}=1.4$

$n\pi^0$	(<i>1</i> 1 ⊥ 17)	× 10 ^{−7}		2610
<i>nn</i>	(4.1 ± 1.7)	× 10 × 10-6	CI00%	2010
$\frac{1}{1}$	< (1.0	× 10 ⁻⁶	CL = 90%	2002
$\eta' \eta'$	(1.2 ± 0.0	× 10 °	S=1.7	2551
	<	1.7	× 10 °	CL=90%	2400
$\eta^{\prime}\eta^{\prime}$	<	1.2	× 10 °	CL=90%	2523
$\eta' \rho^{\circ}$	<	1.3	$\times 10^{-0}$	CL=90%	2492
$\eta' f_0(980), f_0 \to \pi^+ \pi^-$	<	9	$\times 10^{-7}$	CL=90%	2454
$\eta \rho^{o}$	<	1.5	$\times 10^{-0}$	CL=90%	2553
$\eta f_0(980), f_0 \rightarrow \pi^+ \pi^-$	<	4	$\times 10^{-7}$	CL=90%	2516
$\omega \eta$	($9.4 \ + \ 4.0 \ - \ 3.1$)	$\times 10^{-7}$		2552
$\omega \eta'$	($1.0 \ + \ 0.5 \ - \ 0.4$)	imes 10 ⁻⁶		2491
$\omega \rho^{0}$	<	1.6	imes 10 ⁻⁶	CL=90%	2522
$\omega f_0(980), f_0 \to \pi^+ \pi^-$	<	1.5	$ imes 10^{-6}$	CL=90%	2485
ωω	(1.2 ± 0.4)	$ imes 10^{-6}$		2521
$\phi \pi^0$	<	1.5	$\times 10^{-7}$	CL=90%	2540
$\phi \eta$	<	5	$\times 10^{-7}$	CL=90%	2511
$\phi n'$	<	5	$\times 10^{-7}$	CL=90%	2448
$\phi \pi^+ \pi^-$	(1.8 ± 0.5)	$\times 10^{-7}$		2533
$\frac{1}{\phi} a^{0}$	<	33	× 10 ⁻⁷	CI = 90%	2480
$\phi f_0(980)$ $f_0 \rightarrow \pi^+ \pi^-$	<	3.8	$\times 10^{-7}$	CL = 90%	2441
$\phi \cdot \theta (0,0,0,0)$	<	7	$\times 10^{-7}$	CL = 90%	2479
$\phi \sim \phi$	<	28	× 10 ⁻⁸	CL = 90%	2435
$a_0(980)^{\pm}\pi^{\mp}$, $a_0^{\pm} \rightarrow n\pi^{\pm}$	<	3.1	$\times 10^{-6}$	CL = 90%	
$a_0(1450)^{\pm}\pi^{\mp}$ $a_0^{\pm} \rightarrow n\pi^{\pm}$		23	× 10 ⁻⁶	CI 90%	_
$\pi^{+}\pi^{-}\pi^{0}$		7.2	× 10 ⁻⁴	CL 90%	2631
$^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$ $^{\prime\prime}$		7.2	× 10 × 10-6	CL=9070	2031
$\rho \pi$	([m] (2.0 ± 0.5	$\times 10^{-5}$		2501
$p + \pi$ $\pi^+ \pi^- \pi^+ \pi^-$	[n] (2.30 ± 0.23	$\times 10^{-5}$	CL 000/	2501
-0 - +	<	1.12	× 10 °	CL=90%	2021
$\rho^{2}\pi^{+}\pi^{-}$	< ,	8.8	× 10 °	CL=90%	2575
$\rho^{\circ}\rho^{\circ}$	(9.6 ± 1.5)	× 10 '	.	2523
$f_0(980)\pi^+\pi^-$, $f_0 ightarrow$	<	3.0	× 10 ⁻⁰	CL=90%	_
$ ho^{0}$ f_{0}(980), f_{0} ightarrow \pi^{+}\pi^{-}	(7.8 \pm 2.5)	$\times 10^{-7}$		2486
$f_0(980) f_0(980), \ f_0 ightarrow$	<	1.9	$ imes 10^{-7}$	CL=90%	2447
$\pi^+\pi^-$, $f_0 ightarrow \pi^+\pi^-$					
$f_0(980) f_0(980), \ \ f_0 ightarrow \ \ \pi^+ \pi^-,$	<	2.3	$\times 10^{-7}$	CL=90%	2447
$f_0 \rightarrow K^+ K^-$					
$a_1(1260)^{\mp}\pi^{\pm}$	[<i>n</i>] ($2.6~\pm~0.5$)	$\times 10^{-5}$	S=1.9	2494
$a_2(1320)^{\mp}\pi^{\pm}$	[<i>n</i>] <	6.3	imes 10 ⁻⁶	CL=90%	2473
$\pi^+\pi^-\pi^0\pi^0$	<	3.1	$ imes 10^{-3}$	CL=90%	2622
$\rho^+ \rho^-$	(2.77± 0.19)	imes 10 ⁻⁵		2523
$a_1(1260)^0 \pi^0$	<	1.1	imes 10 ⁻³	CL=90%	2495
$\omega \pi^0$	<	5	$ imes 10^{-7}$	CL=90%	2580

1

_

_

_

Lepton Family number (LF) or Lepton number (L) or Baryon number (B)violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

$\gamma \gamma$	B1	<	3.2	$ imes$ 10 $^{-7}$ CL=90%	2640
e ⁺ e ⁻	B1	<	8.3	imes 10 ⁻⁸ CL=90%	2640
$e^+e^-\gamma$	B1	<	1.2	$ imes$ 10 $^{-7}$ CL=90%	2640
$\mu^+\mu^-$	B1	(1.4	$^+$ 1.6 - 1.4) $ imes$ 10 ⁻¹⁰ S=1.9	2638
$\mu^+\mu^-\gamma$	B1	<	1.6	$ imes 10^{-7}$ CL=90%	2638

$\mu^{+} \mu^{-} \mu^{+} \mu^{-}$	B1	<	6.9	\times 10 ⁻¹⁰ CL=95%	2629
$SP, S \rightarrow \mu^+ \mu^-, P$	B1	[p] <	6.0	$\times 10^{-10}$ CL=95%	-
$\tau \rightarrow \mu + \mu$ $\tau + \tau^{-}$	B1	<	2.1	$ imes 10^{-3}$ CL=95%	1952
$\pi^0 \ell^+ \ell^-$	B1	<	5.3	$\times 10^{-8}$ CL=90%	2638
$\pi^{0} e^{+} e^{-}$	B1	<	8.4	$\times 10^{-8}$ CL=90%	2638
$\pi^0 \mu^+ \mu^-$	B1	<	6.9	$\times 10^{-8}$ CL=90%	2634
$\eta \ell^+ \ell^-$	B1	<	6.4	$\times 10^{-8}$ CL=90%	2611
$\eta e^+ e^-$	B1	<	1.08	$\times 10^{-7}$ CL=90%	2611
$\eta \mu^+ \mu^-$	B1	<	1.12	$ imes 10^{-7}$ CL=90%	2607
$\pi^0 \nu \overline{\nu}$	B1	<	9	$\times 10^{-6}$ CL=90%	2638
$\kappa^0\ell^+\ell^-$	B1	[a] ($3.1 \ + \ 0.8 \ - \ 0.7$)	$\times 10^{-7}$	2616
$K^0 e^+ e^-$	B1	($1.6 \ + \ 1.0 \ - \ 0.8$)	$\times 10^{-7}$	2616
$\kappa^{0} \mu^{+} \mu^{-}$	B1	(3.39± 0.34)	$\times 10^{-7}$	2612
$K^0 \nu \overline{\nu}$	B1	<	2.6	$ imes 10^{-5}$ CL=90%	2616
$\rho^0 \nu \overline{\nu}$	B1	<	4.0	imes 10 ⁻⁵ CL=90%	2583
$K^*(892)^0 \ell^+ \ell^-$	B1	[a] (9.9 $\stackrel{+}{_{-}}$ $\stackrel{1.2}{_{-}}$)	$\times 10^{-7}$	2565
$K^{*}(892)^{0}e^{+}e^{-}$	B1	($1.03^+_{-} \begin{array}{c} 0.19\\ 0.17 \end{array}$	$\times 10^{-6}$	2565
$K^{*}(892)^{0}\mu^{+}\mu^{-}$	B1	($9.4~\pm~0.5$)	$\times 10^{-7}$	2560
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	B1	(2.1 ± 0.5)	$\times 10^{-8}$	2626
$K^{*}(892)^{0} \overline{\nu} \overline{\nu}$	B1	<	1.8	$ imes 10^{-5}$ CL=90%	2565
invisible	B1	<	2.4	$ imes 10^{-5}$ CL=90%	_
$ u \overline{ u} \gamma$	B1	<	1.7	$ imes 10^{-5}$ CL=90%	2640
$\phi \nu \overline{\nu}$	B1	<	1.27	$\times 10^{-4}$ CL=90%	2541
$e^{\pm}\mu^{\mp}$	LF	[<i>n</i>] <	1.0	$ imes 10^{-9}$ CL=90%	2639
$\pi^0 e^{\pm} \mu^{\mp}$	LF	<	1.4	$\times 10^{-7}$ CL=90%	2637
$K^0 e^{\pm} \mu^{\mp}$	LF	<	2.7	$\times 10^{-7}$ CL=90%	2615
$K^{*}(892)^{0} e^{+} \mu^{-}$	LF	<	1.6	$\times 10^{-7}$ CL=90%	2563
$K^*(892)^0 e^- \mu^+$	LF	<	1.2	$\times 10^{-7}$ CL=90%	2563
$K^*(892)^0 e^{\pm} \mu^+$	LF	<	1.8	$\times 10^{-7}$ CL=90%	2563
$e^{\pm}\tau^+$	LF	[<i>n</i>] <	2.8	$\times 10^{-5}$ CL=90%	2341
$\mu^{\pm}\tau^{+}$	LF	[<i>n</i>] <	2.2	$\times 10^{-5}$ CL=90%	2339
$\Lambda_{c}^{+}\mu^{-}$	L,B	<	1.4	$\times 10^{-0}$ CL=90%	2143
$\Lambda_c^+ e^-$	L,B	<	4	$\times 10^{-6}$ CL=90%	2145

B^{\pm}/B^0 ADMIXTURE

CP violation

$$\begin{split} &A_{CP}(B \to K^*(892)\gamma) = -0.003 \pm 0.011 \\ &A_{CP}(B \to s\gamma) = 0.015 \pm 0.011 \\ &A_{CP}(B \to (s+d)\gamma) = 0.010 \pm 0.031 \\ &A_{CP}(B \to X_s \ell^+ \ell^-) = 0.04 \pm 0.11 \\ &A_{CP}(B \to X_s \ell^+ \ell^-) (1.0 < q^2 < 6.0 \text{ GeV}^2/c^4) = -0.06 \pm 0.22 \\ &A_{CP}(B \to X_s \ell^+ \ell^-) (10.1 < q^2 < 12.9 \text{ or } q^2 > 14.2 \text{ GeV}^2/c^4) \\ &= 0.19 \pm 0.18 \\ &A_{CP}(B \to K^* e^+ e^-) = -0.18 \pm 0.15 \\ &A_{CP}(B \to K^* e^+ \ell^-) = -0.04 \pm 0.07 \\ &A_{CP}(B \to K^* \ell^+ \ell^-) = -0.04 \pm 0.07 \\ &A_{CP}(B \to \eta \text{ anything}) = -0.13^{+0.04}_{-0.05} \\ &\Delta A_{CP}(X_s \gamma) = A_{CP}(B^{\pm} \to X_s \gamma) - A_{CP}(B^0 \to X_s \gamma) = \\ &0.041 \pm 0.023 \\ \hline &\overline{A}_{CP}(B \to K^* \gamma) = (A_{CP}(B^+ \to X_s \gamma) + A_{CP}(B^0 \to X_s \gamma))/2 = 0.009 \pm 0.012 \\ &\Delta A_{CP}(B \to K^* \gamma) = A_{CP}(B^+ \to K^{*+} \gamma) - A_{CP}(B^0 \to K^{*0} \gamma) = 0.024 \pm 0.028 \\ \hline &\overline{A}_{CP}(B \to K^* \gamma) = (A_{CP}(B^+ \to K^{*+} \gamma) + A_{CP}(B^0 \to K^{*0} \gamma))/2 = -0.001 \pm 0.014 \end{split}$$

The branching fraction measurements are for an admixture of B mesons at the $\Upsilon(4S)$. The values quoted assume that $B(\Upsilon(4S) \rightarrow B\overline{B}) = 100\%$.

For inclusive branching fractions, e.g., $B \rightarrow D^{\pm}$ anything, the treatment of multiple D's in the final state must be defined. One possibility would be to count the number of events with one-or-more D's and divide by the total number of B's. Another possibility would be to count the total number of D's and divide by the total number of B's, which is the definition of average multiplicity. The two definitions are identical if only one D is allowed in the final state. Even though the "one-or-more" definition seems sensible, for practical reasons inclusive branching fractions are almost always measured using the multiplicity definition. For heavy final state particles, authors call their results inclusive branching fractions while for light particles some authors call their results multiplicities. In the B sections, we list all results as inclusive branching fractions, adopting a multiplicity definition. This means that inclusive branching fractions can exceed 100% and that inclusive partial widths can exceed total widths, just as inclusive cross sections can exceed total cross section.

 \overline{B} modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing.

B DECAY MODES		Fract	ion (Γ _i ,	/Г)		Cor	Sca nfid	le factor/ ence level(<i>р</i> MeV/c)
Semiler	otonic	and		nic	mod	es			
$\ell^+ \nu_{\ell}$ anything	[<i>a</i> , <i>q</i>]	(10.86	±	0.16)%			_
$D^{-}\ell^{+}\nu_{\ell}$ anything	[a]	(2.8	±	0.9)%			_
$\overline{D}{}^0\ell^+ u_\ell$ anything	[a]	(7.3	\pm	1.5) %			_
$\overline{D}\ell^+ u_\ell$		(2.42	\pm	0.12) %			2310
$D^{*-} \ell^+ u_\ell$ anything	[<i>r</i>]	(6.7	±	1.3) × 10 ⁻	-3		-
$\underline{D}^*\ell^+\nu_\ell$	[<i>s</i>]	(4.95	±	0.11) %			2257
$D^{**}\ell^+\nu_\ell$	[<i>a</i> ,t]	(2.7	±	0.7) %	2		-
$D_1(2420)\ell^+\nu_\ell$ anything		(3.8	±	1.3) × 10 ⁻	-3	S=2.4	_
$D\pi\ell^+\nu_\ell$ anything +		(2.6	±	0.5) %		S=1.5	_
$D^* \pi \ell^+ \nu_\ell$ anything		,				\ 0 /			
$D\pi\ell + \nu_{\ell}$ anything		(1.5	±	0.6)%			_
$\overline{D}^{\pi\ell} \mathcal{V}_{\ell}$ anything $\overline{D}^{*}(2460)\ell^{\pm} \mathcal{U}_{\ell}$ anything		(1.9	±	0.4) %	-3		_
$D_2(2400)\ell + \nu_\ell$ anything		(4.4	±	1.0) × 10	Ū		_
$\overline{D} \pi^+ \pi^- \ell^+ \mu_\ell$ anything		(1.00	±	0.34) %	-3		-
$\frac{D}{D} * \pi^+ \pi^- \ell^+ \mu_c$		(1.02	Ξ	0.32) \times 10	-4		2301
$D^{-}\ell^{+}\mu_{\ell}$ anything	[_]		9.4 7	1	3.2	$) \times 10$ $\sim 10^{-10}$	-3	CI	2241
$D_s \ell = \nu_\ell$ anything	[ª]		, E			× 10	-3	CL = 90/0	
$D_s \ell^+ \nu_\ell \Lambda^+$ anything	[a]	<	5			× 10	-3	CL=90%	_
$D_{s} \ell + \nu_{\ell} \kappa^{\circ}$ anything	[a]	< ,	1			$\times 10$	5	CL=90%	_
$X_c \ell + \nu_\ell$		(10.65	±	0.16)%	_3		_
$X_{\mu}\ell + \nu_{\ell}$	r 1	(2.13	±	0.30) × 10	-5		_
$K^{-}\ell^{+}\nu_{\ell}$ anything	[a]	(0.3	±	0.6) %	-3		_
$K^0 / \overline{K}^0 \ell^+ \mu_\ell$ anything	[a]	(10	±	4 0 5) × 10	-		_
$\overline{D}_{\tau}^{+} \mu$	[ª]		4.0	 	0.5) / 0	-3		1011
$D^{*}\tau^{+}\nu_{\tau}$		(9.9 1.50		0.08) %			1838
,	א ר*	、 ~	D	ما م	_	,			
D^{\pm} any thing), D	, or	02 1	ae	1 0) 0/			
$D^0 / \overline{D^0}$ anything		(23.1 61 E	T	1.2) %		C_1 2	_
$D^*(2010)^{\pm}$ anything			01.5 22 5	T +	2.9 1 5) %		5=1.5	_
$D^*(2007)^0$ anything		(22.5		2.7)%			_
D^{\pm} anything	[n]	(20.0	+	0.8)%			_
D_s^{\pm} anything	['']	(6.3	-	1.0) //			
D_s anything $D^{*\pm}\overline{D}(*)$		(0.3	±	1.0) %			_
$\nu_s \nu_{\gamma}$		(3.4	±	0.6) %			_
$\frac{D}{D}D_{s0}(2317)$			seen						1605
$D D_{sJ}(2457)$			seen		07				-
$D^{(*)}D^{(*)}K^{0} + D^{(*)}\overline{D}^{(*)}K^{\pm}$	[n,u]	(7.1	+ -	2.7 1.7) %			_

$ \begin{array}{l} b \to c \overline{c} \overline{s} \\ D_s^{(*)} \overline{D}^{(*)} \\ D^* D^* (2010)^{\pm} \\ D D^* (2010)^{\pm} + D^* D^{\pm} \\ D D^{\pm} \\ D_s^{(*) \pm} \overline{D}^{(*)} X (n \pi^{\pm}) \\ D^* (2010) \gamma \\ D_s^+ \pi^-, D_s^{*+} \pi^-, D_s^+ \rho^-, \\ D_s^{*+} \rho^-, D_s^+ \pi^0, D_s^{*+} \pi^0, \end{array} $	[<i>n</i> , <i>u</i>] [<i>n</i>] [<i>n</i>] [<i>n</i> , <i>u</i>] [<i>n</i>]	((< < < (< <	22 3.9 5.9 5.5 3.1 9 1.1 4	± ± +	4 0.4 5 4) %) % $\times 10^{-3}$ $\times 10^{-3}$ $\times 10^{-3}$) % $\times 10^{-3}$ $\times 10^{-4}$	CL=90% CL=90% CL=90% CL=90% CL=90%	
$D_{s}^{+}\eta, D_{s}^{*+}\eta, D_{s}^{+}\rho^{0}, \\D_{s}^{*+}\rho^{0}, D_{s}^{+}\omega, D_{s}^{*+}\omega \\D_{s1}(2536)^{+} \text{ anything}$		<	9.5			imes 10 ⁻³	CL=90%	_
C	harm	oniu	m mo	des				
$J/\psi(1S)$ anything		(1.094	4±	0.03	2) %	S=1.1	_
$J/\psi(1S)$ (direct) anything		(7.8	\pm	0.4	$) \times 10^{-3}$	S=1.1	_
$\psi(2S)$ anything		(3.07	±	0.21) × 10 ⁻³		_
$\chi_{c1}(1P)$ anything		(3.55	\pm	0.27) × 10 ⁻³	S=1.3	_
$\chi_{c1}(1P)$ (direct) anything		(3.08	\pm	0.19) × 10 ⁻³		_
$\chi_{c2}(1P)$ anything		(10.0	\pm	1.7	$) \times 10^{-4}$	S=1.6	_
$\chi_{c2}(1P)({\sf direct})$ anything		(7.5	\pm	1.1	$) \times 10^{-4}$		_
$\eta_{c}(1S)$ anything		<	9			imes 10 ⁻³	CL=90%	_
$K\chi_{c1}(3872), \chi_{c1} \rightarrow$		(1.2	\pm	0.4	$) \times 10^{-4}$		1141
$D^{0}\overline{D}{}^{0}\pi^{0}$ $K\chi_{c1}(3872), \chi_{c1} \rightarrow$ $D^{*0}D^{0}$		(8.0	±	2.2	$) imes 10^{-5}$		1141
$KX(3940), X \to D^{*0}D^0$		<	6.7			$\times 10^{-5}$	CL=90%	1084
$KX(3915), X \rightarrow \omega J/\psi$	[v]	(7.1	±	3.4	$) \times 10^{-5}$		1103
			-			,		
	Ko	r <i>K</i> *	mode	S				
K^+ anything	[<i>n</i>]	(78.9	±	2.5)%		_
K^- anything		(00 10	±	5)%		_
K^0 / \overline{K}^0 anything	[]	(13	±	4) %		_
$K^*(802)^{\pm}$ anything	[<i>n</i>]	(04 10	±	4) %		
$K^{*}(802)^{0} / \overline{K}^{*}(802)^{0}$ anything	[6]	(10	т т	0) /0		
$K^{*}(892) \sim$	[11]	(14.0	 _	2.0	$) \sim 10^{-5}$		2565
		(т. <u>с</u>	 +	1.8) ~ 10		2505
$\eta \kappa \gamma$		(8.5	_	1.6) × 10 °		2588
$\kappa_1(1400)\gamma$		<	1.27		0.0	$\times 10^{-4}$	CL=90%	2454
$K_{2}^{*}(1430)\gamma$		(1.7	+ -	0.6 0.5) × 10 ⁻⁵		2447
$K_2(1770)\gamma$		<	1.2			imes 10 ⁻³	CL=90%	2342
$\mathcal{K}_{3}^{*}(1780)\gamma$		<	3.7			imes 10 ⁻⁵	CL=90%	2341

$K_{4}^{*}(2045)\gamma$	<	1.0			$ imes 10^{-3}$	CL=90%	2244
$\vec{K} \vec{\eta'}(958)$	(8.3	±	1.1	$) imes 10^{-5}$		2528
$K^*(892)\eta'(958)$	(4.1	\pm	1.1) × 10 ⁻⁶		2472
Kη	<	5.2			imes 10 ⁻⁶	CL=90%	2588
$K^*(892)\eta$	(1.8	±	0.5	$) \times 10^{-5}$		2534
$K\phi\phi$	(2.3	±	0.9	$) \times 10^{-6}$		2306
$b \rightarrow \overline{s}\gamma$	(3.49	\pm	0.19	$) \times 10^{-4}$		_
$\underline{b} \rightarrow \overline{d}\gamma$	(9.2	±	3.0	$) \times 10^{-6}$		_
$b \rightarrow \overline{s}$ gluon	<	6.8			%	CL=90%	_
η anything	(2.6	+	0.5 0.8) × 10 ⁻⁴		_
η' anything	(4.2	\pm	0.9	$) \times 10^{-4}$		_
K^+ gluon (charmless)	<	1.87			imes 10 ⁻⁴	CL=90%	_
K ⁰ gluon (charmless)	(1.9	\pm	0.7) × 10 ⁻⁴		_
Light	unflavore	d meso	n n	node	S		
$\rho\gamma$	(1.39	±	0.25) × 10 ⁻⁶	S=1.2	2583
$\rho/\omega\gamma$	(1.30	±	0.23) × 10 ⁻⁶	S=1.2	_
π^{\pm} anything	[<i>n</i> , <i>x</i>] (358	±	7) %		_
π^0 anything	(235	±	11) %		_
η anything	(17.6	±	1.6) %		_
$ ho^{0}$ anything	(21	±	5) %		_
ω anything	<	81			%	CL=90%	_
ϕ anything	(3.43	±	0.12)%		_
$\phi K^*(892)$	<	2.2			$\times 10^{-5}$	CL=90%	2460
π^+ gluon (charmless)	(3.7	±	0.8) × 10 ⁻⁴		_
	Baryon	modes	;				
$\Lambda_c^+ / \overline{\Lambda}_c^-$ anything	(3.6	\pm	0.4) %		_
Λ_c^+ anything	<	1.3			%	CL=90%	_
$\overline{\Lambda}_{c}^{-}$ anything	<	7			%	CL=90%	_
$\overline{\Lambda}_{c}^{-}\ell^{+}$ anything	<	9			imes 10 ⁻⁴	CL=90%	_
$\overline{\Lambda}_{-}^{-}e^{+}$ anything	<	1.8			imes 10 ⁻³	CL=90%	_
$\overline{\Lambda}_{c}^{c} \mu^{+}$ anything	< -	- 1.4			$\times 10^{-3}$	CL=90%	_
$\overline{\Lambda}_{c}^{-} p$ anything	(2.04	±	0.33) %		_
$\overline{\Lambda}_{c}^{-} p e^{+} \nu_{e}$	<	8			imes 10 ⁻⁴	CL=90%	2021
$\overline{\Sigma}_{c}^{}$ anything	(3.3	±	1.7	$) imes 10^{-3}$		_
$\overline{\Sigma}_{c}^{c}$ anything	<	8			imes 10 ⁻³	CL=90%	_
$\overline{\Sigma}_{c}^{0}$ anything	(3.7	±	1.7) × 10 ⁻³		_
$\overline{\Sigma}_{c}^{0} N(N = p \text{ or } n)$	<	1.2			imes 10 ⁻³	CL=90%	1938
Ξ_{c}^{0} anything, $\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+}$	(1.93	\pm	0.30	$) \times 10^{-4}$	S=1.1	_
$\overline{\Xi}_c^+, \ \overline{\Xi}_c^+ \rightarrow \ \overline{\Xi}^- \pi^+ \pi^+$	(4.5	+	1.3 1.2) × 10 ⁻⁴		_

p/\overline{p} anything	[<i>n</i>]	(8.0	±	0.4) %	_
p/\overline{p} (direct) anything	[<i>n</i>]	(5.5	\pm	0.5) %	-
$\overline{p}e^+ u_e$ anything		<	5.9			imes 10 ⁻⁴ CL=90%	_
$\Lambda/\overline{\Lambda}$ anything	[<i>n</i>]	(4.0	\pm	0.5) %	_
Λ anything			seen				_
$\overline{\Lambda}$ anything			seen				_
$\Xi^-/\overline{\Xi}^+$ anything	[<i>n</i>]	(2.7	\pm	0.6) × 10 ⁻³	_
baryons anything		(6.8	\pm	0.6) %	_
p p anything		(2.47	\pm	0.23) %	_
$\Lambda \overline{p} / \overline{\Lambda} p$ anything	[<i>n</i>]	(2.5	\pm	0.4) %	_
$\Lambda\overline{\Lambda}$ anything		<	5			imes 10 ⁻³ CL=90%	_

Lepton Family number (*LF*) violating modes or $\Delta B = 1$ weak neutral current (*B1*) modes

					,			
s e ⁺ e ⁻	B1	(6.7	\pm	1.7	$) \times 10^{-6}$	S=2.0	_
$s\mu^+\mu^-$	B1	(4.3	±	1.0	$) \times 10^{-6}$		_
$s\ell^+\ell^-$	B1	[a] (5.8	\pm	1.3	$) \times 10^{-6}$	S=1.8	-
$\pi \ell^+ \ell^-$	B1	<	5.9			imes 10 ⁻⁸	CL=90%	2638
$\pi e^+ e^-$	B1	<	1.10			imes 10 ⁻⁷	CL=90%	2638
$\pi\mu^+\mu^-$	B1	<	5.0			imes 10 ⁻⁸	CL=90%	2634
$K e^+ e^-$	B1	(4.4	±	0.6	$) \times 10^{-7}$		2617
$K^{*}(892)e^{+}e^{-}$	B1	(1.19	±	0.20	$) \times 10^{-6}$	S=1.2	2565
$K \mu^+ \mu^-$	B1	(4.4	±	0.4	$) \times 10^{-7}$		2612
$K^{*}(892)\mu^{+}\mu^{-}$	B1	(1.06	±	0.09	$) \times 10^{-6}$		2560
$K\ell^+\ell^-$	B1	(4.8	±	0.4	$) \times 10^{-7}$		2617
$K^*(892)\ell^+\ell^-$	B1	(1.05	±	0.10) × 10 ⁻⁶		2565
$K \nu \overline{\nu}$	B1	<	1.6			imes 10 ⁻⁵	CL=90%	2617
$K^* \nu \overline{\nu}$	B1	<	2.7			imes 10 ⁻⁵	CL=90%	_
$\pi \nu \overline{\nu}$	B1	<	8			imes 10 ⁻⁶	CL=90%	2638
$\rho \nu \overline{\nu}$	B1	<	2.8			imes 10 ⁻⁵	CL=90%	2583
$se^{\pm}\mu^{\mp}$	LF	[<i>n</i>] <	2.2			imes 10 ⁻⁵	CL=90%	_
$\pi e^{\pm} \mu^{\mp}$	LF	<	9.2			imes 10 ⁻⁸	CL=90%	2637
$\rho e^{\pm} \mu^{\mp}$	LF	<	3.2			imes 10 ⁻⁶	CL=90%	2582
$K e^{\pm} \mu^{\mp}$	LF	<	3.8			imes 10 ⁻⁸	CL=90%	2616
$K^*(892) e^\pm \mu^\mp$	LF	<	5.1			imes 10 ⁻⁷	CL=90%	2563

$B^{\pm}/B^0/B^0_s/b$ -baryon ADMIXTURE

These measurements are for an admixture of bottom particles at high energy (LHC, LEP, Tevatron, $Sp\overline{p}S$).

Mean life $\tau = (1.5662 \pm 0.0029) \times 10^{-12}$ s Mean life $\tau = (1.72 \pm 0.10) \times 10^{-12}$ s Charged *b*-hadron admixture Mean life $\tau = (1.58 \pm 0.14) \times 10^{-12}$ s Neutral *b*-hadron admixture Teharged *b*-hadron/T neutral *b*-hadron = 1.09 ± 0.13

$$\begin{split} &|\Delta \tau_b| / \tau_{b,\overline{b}} = -0.001 \pm 0.014 \\ &|\mathrm{Re}(\epsilon_b) / (1 + |\epsilon_b|^2) = (-1.3 \pm 0.4) \times 10^{-3} \end{split}$$

The branching fraction measurements are for an admixture of *B* mesons and baryons at energies above the $\Upsilon(4S)$. Only the highest energy results (LHC, LEP, Tevatron, $Sp\overline{p}S$) are used in the branching fraction averages. In the following, we assume that the production fractions are the same at the LHC, LEP, and at the Tevatron.

For inclusive branching fractions, e.g., $B \rightarrow D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

The modes below are listed for a \overline{b} initial state. *b* modes are their charge conjugates. Reactions indicate the weak decay vertex and do not include mixing.

b DECAY MODESScale factor/p**b DECAY MODES**Fraction (Γ_i/Γ)Confidence level (MeV/c)

PRODUCTION FRACTIONS

The production fractions for weakly decaying *b*-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFLAV) as described in the note " $B^0-\overline{B}^0$ Mixing" in the B^0 Particle Listings. The production fractions in *b*-hadronic *Z* decay or $p\overline{p}$ collisions at the Tevatron are also listed at the end of the section. Values assume

$$\begin{array}{ll} \mathsf{B}(\overline{b} \to \ B^+) = \mathsf{B}(\overline{b} \to \ B^0) \\ \mathsf{B}(\overline{b} \to \ B^+) + \mathsf{B}(\overline{b} \to \ B^0) + \mathsf{B}(\overline{b} \to \ B_5^0) + \mathsf{B}(b \to \ b\text{-baryon}) = 100\%. \end{array}$$

The correlation coefficients between production fractions are also reported:

 $cor(B_s^0, b\text{-baryon}) = -0.260$ $cor(B_s^0, B^{\pm} = B^0) = -0.136$ $cor(b\text{-baryon}, B^{\pm} = B^0) = -0.922.$ The notation for production fractions varies in the literature $(f_d, d_{B^0}, f(b \to \overline{B}^0), Br(b \to \overline{B}^0))$. We use our own branching fraction notation here, $B(\overline{b} \to B^0)$.

Note these production fractions are b-hadronization fractions, not the conventional branching fractions of b-quark to a B-hadron, which may have considerable dependence on the initial and final state kinematic and production environment.

B^+	(40.5 \pm 0.6) %
B^0	(40.5 \pm 0.6) %
B_s^0	(10.3 \pm 0.5) %
<i>b</i> -baryon	(8.8 \pm 1.2) %

DECAY MODES

Semileptonic and leptonic modes

u anything		($23.1\ \pm$	1.5)	%	
$\ell^+ u_\ell$ anything	[a]	($10.69\pm$	0.22)	%	
$e^+ u_e$ anything		($10.86\pm$	0.35)	%	
$\mu^+ u_\mu$ anything		($10.95 \begin{smallmatrix} + \\ - \end{smallmatrix}$	0.29 0.25)	%	
$D^-\ell^+ u_\ell$ anything	[a]	($2.2~\pm$	0.4)	%	S=1.9
$D^- \pi^+ \ell^+ u_\ell$ anything		($4.9\ \pm$	1.9)	$\times 10^{-3}$	
$D^-\pi^-\ell^+ u_\ell$ anything		($2.6\ \pm$	1.6)	$\times 10^{-3}$	
$\overline{D}^0 \ell^+ \nu_\ell$ anything	[a]	($6.79\pm$	0.34)	%	
$\overline{D}{}^0\pi^-\ell^+ u_\ell$ anything		($1.07\pm$	0.27)	%	
$\overline{D}{}^0 \pi^+ \ell^+ u_\ell$ anything		($2.3\ \pm$	1.6)	$\times 10^{-3}$	
$D^{*-}\ell^+ u_\ell$ anything	[a]	($2.75\pm$	0.19)	%	
$D^{*-}\pi^-\ell^+ u_\ell$ anything		(6 ±	7)	$\times 10^{-4}$	
$D^{*-}_{\underline{-}}\pi^+\ell^+\nu_\ell$ anything		($4.8\ \pm$	1.0)	$\times 10^{-3}$	
$D_j^0 \ell^+ u_\ell$ anything $ imes$	[a,y]	($2.6~\pm$	0.9)	$\times 10^{-3}$	
${}^{\circ}$ B($\overline{D}_{j}^{0} ightarrow~D^{*+}\pi^{-})$						
$D^j \ell^+ u_\ell$ anything $ imes$	[a,y]	($7.0~\pm$	2.3)	$\times 10^{-3}$	
$B(D^i ightarrow D^0 \pi^-)$						
$\overline{D}_2^*(2460)^0\ell^+ u_\ell$ anything		<	1.4		$\times 10^{-3}$	CL=90%
$- \times B(\overline{D}_2^*(2460)^0 \rightarrow$						
$D^{*-}\pi^{+})$						
$D_2^*(2460)^- \ell^+ u_\ell$ anything		(4.2 +	$\frac{1.5}{1.8}$)	$\times 10^{-3}$	5
$- \times B(D_2^*(2460)^- \rightarrow$				1.0		
$D^{0}\pi^{-})^{2}$						
$\overline{D}_2^*(2460)^{\acute{0}}\ell^+ u_\ell$ anything		($1.6~\pm$	0.8)	$\times 10^{-3}$	
$- \times B(\overline{D}_2^*(2460)^0 \to$						
$D^-\pi^+$)						

Υ.		,.	5				`	,
charmless $\ell \overline{\nu}_{\ell}$ $\tau^+ \nu_{\tau}$ anything $D^{*-} \tau \nu_{\tau}$ anything $\overline{c} \rightarrow \ell^- \overline{\nu}_{\ell}$ anything $c \rightarrow \ell^+ \nu$ anything	[a] [a]	((((1.7 2.41 9 8.02 1.6	± ± ± 2± -	0.5 0.23 4 0.19 0.4 0.5) × 1 3) %) × 1 9) %	10 ⁻³ 10 ⁻³	
Charmed me	eson	an	d bar	yo	n m	odes	5	
D ⁰ anything		(58.7	±	2.8) %		
$D^0 D_s^{\pm}$ anything	[<i>n</i>]	(9.1	+	4.0 2.8) %		
$D^{\mp}D^{\pm}_{s}$ anything	[<i>n</i>]	(4.0	+	2.3 1.8) %		
$\overline{D}{}^0 D^0$ anything	[<i>n</i>]	(5.1	+	2.0 1.8) %		
$D^0 D^\pm$ anything	[<i>n</i>]	(2.7	+	$1.8 \\ 1.6$) %		
$D^{\pm}D^{\mp}$ anything D^{-} anything	[<i>n</i>]	< (9 22.7	±	1.6	×) %	10-3	CL=90%
$D^*(2010)^+$ anything $D_1(2420)^0$ anything		(17.3 5.0	± ±	2.0 1.5)%)%		
$D^*(2010)^{\mp} D_s^{\pm}$ anything	[<i>n</i>]	(3.3	+	1.6 1.3) %		
$D^0 D^*(2010)^\pm$ anything	[<i>n</i>]	(3.0	+	1.1 0.9) %		
$D^*(2010)^\pmD^\mp$ anything	[<i>n</i>]	(2.5	+	1.2 1.0) %		
$D^*(2010)^\pmD^*(2010)^\mp$ anything	[<i>n</i>]	(1.2	±	0.4) %		
$\overline{D}D$ anything		(10	+	11 10) %		
$D_2^*(2460)^0$ anything		(4.7	\pm	2.7) %		
D_s^- anything		(14.7	±	2.1) %		
D_s^+ anything		(10.1	±	3.1) %		
Λ_c^+ anything		(7.7	±	1.1) %		
\overline{c}/c anything	[x]	(116.2	±	3.2) %		
Char	mor	niur	n mo	de	5			
$J/\psi(1S)$ anything		(1.16	δ±	0.10)%		
$\psi(2S)$ anything		(2.86	δ±	0.28	3) × (10-3	
$\chi_{c0}(1P)$ anything		(1.5	±	0.6) %		
$\chi_{c1}(1P)$ anything		(1.4	±	0.4) %	2	
$\chi_{c2}(1P)$ anything		(6.2	±	2.9) × 1	10-3	
$\chi_c(2P)$ anything, $\chi_c \rightarrow \phi \phi$		<	2.8			×	10-7	CL=95%
$\eta_c(1S)$ anything		(4.5	±	1.9) %	c	
$\eta_c(2S)$ anything, $\eta_c \rightarrow \phi \phi$		(3.2	±	1.7) × 1	10 ⁻⁰	
$\chi_{c1}(3872)$ anything, $\chi_{c1} \rightarrow \phi \phi$		<	4.5			X	10-'	CL=95%

X(3915) anything, $X \rightarrow \phi \phi$ < 3.1

 $imes 10^{-7}$ CL=95%

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		K or k	(* modes	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{s}\gamma$		(3.1 \pm 1.1) $\times10^{-4}$	-
K_{0}^{\pm} anything $(74 \pm 6)\%$ K_{0}^{\pm} anything $(29.0 \pm 2.9)\%$ π^{\pm} anything $(397 \pm 21)\%$ π^{0} anything $(377 \pm 21)\%$ π^{0} anything $(282\pm 0.23)\%$ Baryon modes p/\overline{p} anything $(13.1 \pm 1.1)\%$ $\Lambda/\overline{\Lambda}$ anything $(12.1 \pm 1.1)\%$ $\Lambda/\overline{\Lambda}$ anything $(1.7 \pm 1.0)\%$ $\Lambda/\overline{\Lambda}$ anything $(1.7 \pm 1.0)\%$ $\mu/\overline{\Lambda}$ anything $\pi/\overline{\Lambda}$ <tr< th=""><th>\overline{SV}</th><th>B1</th><th>$<$ 6.4 $\times 10^{-4}$</th><th>CL=90% -</th></tr<>	\overline{SV}	B1	$<$ 6.4 $\times 10^{-4}$	CL=90% -
K_{0}^{4} anything (29.0 ± 2.9)% π^{\pm} anything (397 ±21)% π^{0} anything (x) (278 ±60)% ϕ anything (x) (278 ±60)% ϕ anything (x) (282 ± 0.23)% Baryon modes p/\bar{p} anything (x) (2.82 ± 0.23)% Baryon modes p/\bar{p} anything (x) (2.82 ± 0.23)% b -baryon anything (x) (13.1 ± 1.1)% Λ/\bar{A} anything (x) (9.9 ± 0.6)% b -baryon anything (x) (10.2 ± 2.8)% Other modes (10.2 ± 2.8)% charged anything (x) (497 ± 7)% hadron ⁺ hadron ⁻ (x) (1.7 ± 0.7) × 10^{-5} charmless (x) 7 ± 21) × 10^{-3} DB = 1 weak neutral current (B1) modes $\mu^+ \mu^-$ anything B1 < 3.2 × 10^{-4} CL=90% B* $I(J^P) = \frac{1}{2}(1^{-1})$ I, J, P need confirmation. Quantum numbers shown are quark-model predictions. Mass $m_{B^+} - m_{B^+} = 45.37 \pm 0.21$ MeV $m_{B^+} - m_{B^+} = 45.37 \pm 0.21$ MeV $m_{B^+} - m_{B^{+0}} = 401.2^{+2.4}_{-2.7}$ MeV $m_{B^+} - m_{B^{+0}} = 401.2^{+2.4}_{-2.7}$ MeV $m_{B^+} - m_{B^{+0}} = 401.2^{+2.4}_$	K^{\pm} anything		$(74 \pm 6)\%$	_
Pion modes π^{0} anything (397 ± 21) % π^{0} anything $[x]$ (278 ±60) % ϕ anything (2.82 ± 0.23) % Baryon modes p/\overline{p} anything (13.1 ± 1.1) % Λ/\overline{A} anything (13.1 ± 1.1) % h/\overline{A} anything (13.1 ± 1.1) % h/\overline{A} anything (13.2 ± 2.8) % Debaryon anything (10.2 ± 2.8) % b-baryon anything (10.2 ± 2.8) % Cher modes (10.2 ± 2.8) % charged anything (10.2 ± 2.8) % b-baryon anything (10.2 ± 2.8) % Other modes (10.2 ± 2.8) % charged anything (10.2 ± 2.8) % b-baryon anything (10.2 ± 2.8) % charged anything (10.2 ± 2.8) % b-baryon anything $[x]$ (497 ± 7 % hadron ⁺ hadron ⁻ $(1.7 \pm 1.0) \times 10^{-5}$ charged anything $[x]$ (497 ± 3.2 % 10 ⁻⁴ $\mu^{+}\mu^{-}$ anything $B1 < 3.2 \times 10^{-4}$ CL=90% B* $P(de M)$ Quantum numbers shown are quark-model predictions. M	K ⁰ _S anything		(29.0 \pm 2.9)%	-
$\pi^{\pm} \text{ anything} \qquad (397 \pm 21)\% \\ \pi^{0} \text{ anything} \qquad [x] (278 \pm 60)\% \\ \phi \text{ anything} \qquad (z.82\pm 0.23)\% \\ \textbf{Baryon modes} \\ p/\bar{p} \text{ anything} \qquad (13.1 \pm 1.1)\% \\ A/\bar{A} \text{ anything} \qquad (13.1 \pm 1.1)\% \\ A/\bar{A} \text{ anything} \qquad (13.2 \pm 0.23)\% \\ \textbf{Baryon modes} \\ \phi \text{ b-baryon anything} \qquad (13.1 \pm 1.1)\% \\ (1.02 \pm 2.8)\% \\ \textbf{Other modes} \\ \text{charged anything} \qquad (10.2 \pm 2.8)\% \\ \textbf{Other modes} \\ \text{charged anything} \qquad (1.7 \pm 1.0) \times 10^{-5} \\ \text{charmless} \qquad (1.7 \pm 21) \times 10^{-3} \\ \textbf{\Delta} \textbf{B} = \textbf{1} \text{ weak neutral current } (\textbf{B1}) \text{ modes} \\ \mu^{+}\mu^{-} \text{ anything} \qquad B1 < 3.2 \times 10^{-4} \text{ CL=90\%} \\ \textbf{B}^{*} \qquad I(J^{P}) = \frac{1}{2}(1^{-}) \\ I, J, P \text{ need confirmation.} \\ \text{Quantum numbers shown are quark-model predictions.} \\ \text{Mass } m_{B^{*}} = 5324.70 \pm 0.22 \text{ MeV} \\ m_{B^{*}} - m_{B} = 45.22 \pm 0.21 \text{ MeV} \\ m_{B^{*}} - m_{B^{+}} = 45.37 \pm 0.21 \text{ MeV} \\ \textbf{B}\gamma \qquad \text{seen} \\ \textbf{B}^{*} \text{ DECAY MODES} \qquad Fraction (\Gamma_{I}/\Gamma) \qquad p (Mee B^{2}) \\ \textbf{Mass } m = 5725.9 \pm 2.5 \text{ MeV} \\ m_{B^{+}} - m_{B^{*0}} = 401.2 \pm 2.7 \text{ MeV} \\ \text{Full width } \Gamma = 31 \pm 6 \text{ MeV} (S = 1.1) \\ \textbf{B}_1(\text{5721})^+ \text{ DECAY MODES} \qquad Fraction (\Gamma_{I}/\Gamma) \qquad p (Mee B^{2}) \\ \textbf{Mass} = Fraction (\Gamma_{I}/\Gamma) \qquad p (Mee B^{2}) \\ \textbf{Mass} = Fraction (\Gamma_{I}/\Gamma) \qquad p (Mee B^{2}) \\ \textbf{Mass} = Fraction (\Gamma_{I}/\Gamma) \qquad p (Mee B^{2}) \\ \textbf{Mass} = Fraction (\Gamma_{I}/\Gamma) \qquad p (Mee B^{2}) \\ \textbf{Mass} = 5725.9 \pm 2.5 \text{ MeV} \\ \textbf{Mass} = 5725.9 \pm 2.7 \text{ MeV} \\ \textbf{Mass} = 5725.9 \pm 2$		Pion	modes	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	π^\pm anything		(397 ±21)%	-
	π^0 anything	[x]	(278 \pm 60) %	-
Baryon modes p/\overline{p} anything $(13.1 \pm 1.1) \%$ A/\overline{A} anything $(5.9 \pm 0.6) \%$ b -baryon anything $(10.2 \pm 2.8) \%$ Other modescharged anything $[x] (497 \pm 7) \%$ hadron ⁺ hadron ⁻ $(1.7 \pm 1.0) \times 10^{-5}$ charmless $(7 \pm 21) \times 10^{-3}$ $\Delta B = 1$ weak neutral current (B1) modes $\mu^+ \mu^-$ anything $B1 < 3.2 \times 10^{-4}$ CL=90% B^* $I(J^P) = \frac{1}{2}(1^-)$ I, J, P need confirmation.Quantum numbers shown are quark-model predictions.Mass $m_{B^*} = 5324.70 \pm 0.22$ MeV $m_{B^*} - m_B = 45.22 \pm 0.21$ MeV $m_{B^*} - m_B = 45.37 \pm 0.21$ MeVB1(5721) ⁺ $I(J^P) = \frac{1}{2}(1^+)$ I, J, P need confirmation.Mass $m = 5725.9 \pm 2.5$ MeV $m_{B^+} - m_{B^{+0}} = 401.2 \pm 2.4$ MeVFraction (Γ_i/Γ) p (MeFraction (Γ_i/Γ) p (MeFigure 6 confirmation.Mass $m = 5725.9 \pm 2.5$ MeV $m_{B^+_1} - m_{B^{+0}} = 401.2 \pm 2.4$ MeVFull width $\Gamma = 31 \pm 6$ MeVFraction (Γ_i/Γ) p (MeFraction (Γ_i/Γ) p (MeFull width $\Gamma = 31 \pm 6$ MeV $(S = 1.1)$	ϕ anything		($2.82\pm~0.23$) %	_
$p/\overline{p} \text{ anything } (13.1 \pm 1.1) \% (5.9 \pm 0.6) \% (10.2 \pm 2.8) \%$ $Other modes$ charged anything (10.2 ± 2.8) % $Dther modes$ (10.2 ± 2.1 MeV modes) $Dther modes$ (10.2 ± 2.1 MeV modes) $Dther modes$ (10.2 ± 2.1 MeV modes) $Dther mode = 10.2 \pm 2.1 MeV$ (10.2 Modes) $Dther mode = 10.2 \pm 2.7 MeV$ (10.2 Modes) $Dther mode = 10.2 \pm 2.7 MeV$ (10.2 Modes) $Dther mode = 10.2 \pm 2.7 MeV$ (10.2 Modes) $Dther mode = 10.2 \pm 2.7 MeV$ (10.2 Modes) $Dther mode = 10.2 \pm 2.7 MeV$ (10.2 Modes) $Dther mode = 10.2 \pm 2.7 MeV$ (10.2 Modes) $Dther mode = 10.2 \pm 2.7 MeV$ (10.2 Modes) $Dther mode = 10.2 \pm 2.7 MeV$ (10.2 Modes) $Dther mode = 10.2 \pm 2.7 MeV$ (10.2 Modes) $Dther mode = 10.2 \pm 2.7 MeV$ (10.2		Baryo	n modes	
A/\overline{A} anything (5.9 ± 0.6)% b-baryon anything (10.2 ± 2.8)% Other modes charged anything [x] (497 ± 7)% hadron ⁺ hadron ⁻ (1.7 $\pm \frac{1.0}{-0.7}$)× 10 ⁻⁵ charmless (7 ±21)× 10 ⁻³ $\Delta B = 1$ weak neutral current (B1) modes $\mu^+\mu^-$ anything B1 < 3.2 × 10 ⁻⁴ CL=90% B^* $I(J^P) = \frac{1}{2}(1^-)$ $I, J, P \text{ need confirmation.}$ Quantum numbers shown are quark-model predictions. Mass $m_{B^*} = 5324.70 \pm 0.22$ MeV $m_{B^*} - m_B = 45.22 \pm 0.21$ MeV $m_{B^*+} - m_{B^+} = 45.37 \pm 0.21$ MeV B^* DECAY MODES Fraction (Γ_i/Γ) p (Me $B\gamma$ seen $B_1(5721)^+$ $I(J^P) = \frac{1}{2}(1^+)$ $I, J, P \text{ need confirmation.}$ Mass $m = 5725.9 \pm \frac{2.5}{-2.7}$ MeV $m_{B^+} - m_{B^{*0}} = 401.2 \pm \frac{2.4}{-2.7}$ MeV Full width $\Gamma = 31 \pm 6$ MeV (S = 1.1) $B_1(5721)^+$ DECAY MODES Fraction (Γ_i/Γ) p (Me	p/ p anything	-	(13.1 \pm 1.1) %	-
b-baryon anything (10.2 ± 2.8)% Other modes charged anything [x] (497 ± 7)% hadron ⁺ hadron ⁻ (1.7 $\pm \frac{1.0}{-0.7}$) × 10 ⁻⁵ charmless (7 ±21) × 10 ⁻³ $\Delta B = 1$ weak neutral current (B1) modes $\mu^+ \mu^-$ anything B1 < 3.2 × 10 ⁻⁴ CL=90% B^* $I(J^P) = \frac{1}{2}(1^-)$ I, J, P need confirmation. Quantum numbers shown are quark-model predictions. Mass $m_{B^*} = 5324.70 \pm 0.22$ MeV $m_{B^*} - m_B = 45.22 \pm 0.21$ MeV $m_{B^{*+}} - m_{B^+} = 45.37 \pm 0.21$ MeV B^* DECAY MODES Fraction (Γ_i/Γ) p (Me $B\gamma$ seen $B_1(5721)^+$ $I(J^P) = \frac{1}{2}(1^+)$ I, J, P need confirmation. Mass $m = 5725.9 \pm 2.5$ MeV $m_{B^+} - m_{B^{*0}} = 401.2 \pm 2.7$ MeV Full width $\Gamma = 31 \pm 6$ MeV (S = 1.1) $B_1(5721)^+$ DECAY MODES Fraction (Γ_i/Γ) p (Me	Λ/Λ anything		$(5.9 \pm 0.6)\%$	-
Other modescharged anything[x] (497 ± 7) %hadron ⁺ hadron ⁻ (1.7 ± 1.0) × 10 ⁻⁵ charmless(7 ± 21) × 10 ⁻³ $\Delta B = 1$ weak neutral current (B1) modes $\mu^+ \mu^-$ anything $B1 < 3.2 \times 10^{-4}$ CL=90% B^* $I(J^P) = \frac{1}{2}(1^-)$ I, J, P need confirmation.Quantum numbers shown are quark-model predictions.Mass $m_{B^*} = 5324.70 \pm 0.22$ MeV $m_{B^*} - m_B = 45.22 \pm 0.21$ MeV $m_{B^*} - m_{B^+} = 45.37 \pm 0.21$ MeVB* DECAY MODESFraction (Γ_i/Γ) ρ (Me $B\gamma$ Seen $B_1(5721)^+$ $I(J^P) = \frac{1}{2}(1^+)$ I, J, P need confirmation.Mass $m = 5725.9 \pm 2.5$ MeV $m_{B_1^+} - m_{B^{*0}} = 401.2 \pm 2.7$ MeVFull width $\Gamma = 31 \pm 6$ MeV ($S = 1.1$) Equation (Γ_i/Γ) ρ (MeParticle (Γ_i/Γ) $P (MeDES)$ Fraction (Γ_i/Γ)	<i>b</i> -baryon anything		$(10.2 \pm 2.8)\%$	_
charged anything [x] (497 \pm 7)% hadron ⁺ hadron ⁻ ($1.7 \pm 1.0 - 3$) × 10 ⁻⁵ charmless (7 ± 21) × 10 ⁻³ $\Delta B = 1$ weak neutral current (B1) modes $\mu^{\pm} \mu^{-}$ anything B1 < 3.2 × 10 ⁻⁴ CL=90% B^{\pm} $l(J^{P}) = \frac{1}{2}(1^{-})$ l, J, P need confirmation. Quantum numbers shown are quark-model predictions. Mass $m_{B^{*}} = 5324.70 \pm 0.22$ MeV $m_{B^{*}} - m_{B} = 45.22 \pm 0.21$ MeV $m_{B^{*+}} - m_{B^{\pm}} = 45.37 \pm 0.21$ MeV B^{*} DECAY MODES Fraction (Γ_{i}/Γ) p (Me $B\gamma$ seen $B_{1}(5721)^{+}$ $l(J^{P}) = \frac{1}{2}(1^{+})$ l, J, P need confirmation. Mass $m = 5725.9 \pm 2.5 - 2.7$ MeV $m_{B_{1}^{+}} - m_{B^{*0}} = 401.2 \pm 2.7$ MeV Full width $\Gamma = 31 \pm 6$ MeV (S = 1.1) $B_{1}(5721)^{+}$ DECAY MODES Fraction (Γ_{i}/Γ) p (Me		Othe	r modes	
hadron ⁺ hadron ⁻ ($1.7 \pm 1.0 \\ -0.7 \end{pmatrix} \times 10^{-5}$ charmless (7 ± 21) × 10 ⁻³ $\Delta B = 1 \text{ weak neutral current (B1) modes}$ $\mu^+ \mu^- \text{ anything} B1 < 3.2 \times 10^{-4} \text{ CL}=90\%$ $B^* \qquad \qquad I(J^P) = \frac{1}{2}(1^-)$ $I, J, P \text{ need confirmation.}$ Quantum numbers shown are quark-model predictions. Mass $m_{B^*} = 5324.70 \pm 0.22 \text{ MeV}$ $m_{B^*} - m_B = 45.22 \pm 0.21 \text{ MeV}$ $m_{B^{*+}} - m_{B^+} = 45.37 \pm 0.21 \text{ MeV}$ $B^* \text{ DECAY MODES} \qquad \text{Fraction } (\Gamma_i/\Gamma) \qquad p \text{ (Me}$ $B\gamma \qquad \text{seen}$ $B_1(5721)^+ \qquad I(J^P) = \frac{1}{2}(1^+)$ $I, J, P \text{ need confirmation.}$ Mass $m = 5725.9 \pm 2.5 \\ m_{B_1^+} - m_{B^{*0}} = 401.2 \pm 2.7 \\ m_{B_1^+} - m_{B^{*0}} = 401.2 \pm 2.7 \\ \text{Full width } \Gamma = 31 \pm 6 \text{ MeV}$ (S = 1.1) $B_1(5721)^+ \text{ DECAY MODES} \qquad \text{Fraction } (\Gamma_i/\Gamma) \qquad p \text{ (Me}$	charged anything	[x]	$(497 \pm 7)\%$	_
charmless $(1 \ nd rotin + nd ro$	hadron $^+$ hadron $^-$		$(17 + 1.0) \times 10^{-5}$	_
$\Delta B = 1 \text{ weak neutral current } (B1) \text{ modes}$ $\mu^{+} \mu^{-} \text{ anything} \qquad B1 \qquad < 3.2 \qquad \times 10^{-4} \text{ CL}=90\%$ $B^{*} \qquad \qquad I(J^{P}) = \frac{1}{2}(1^{-})$ $I, J, P \text{ need confirmation.}$ Quantum numbers shown are quark-model predictions. Mass $m_{B^{*}} = 5324.70 \pm 0.22 \text{ MeV}$ $m_{B^{*}} - m_{B} = 45.22 \pm 0.21 \text{ MeV}$ $m_{B^{*+}} - m_{B^{+}} = 45.37 \pm 0.21 \text{ MeV}$ $B^{*} \text{ DECAY MODES} \qquad \text{Fraction } (\Gamma_{i}/\Gamma) \qquad p (Metric Barrier of the second s$	charmlass		$(1.1 - 0.7) \times 10^{-3}$	
$\Delta B = 1 \text{ weak neutral current } (B1) \text{ modes}$ $\mu^{+} \mu^{-} \text{ anything} \qquad B1 < 3.2 \times 10^{-4} \text{ CL}=90\%$ $B^{*} \qquad I(J^{P}) = \frac{1}{2}(1^{-})$ $I, J, P \text{ need confirmation.}$ Quantum numbers shown are quark-model predictions. Mass $m_{B^{*}} = 5324.70 \pm 0.22 \text{ MeV}$ $m_{B^{*}} - m_{B} = 45.22 \pm 0.21 \text{ MeV}$ $m_{B^{*+}} - m_{B^{+}} = 45.37 \pm 0.21 \text{ MeV}$ $B^{*} \text{ DECAY MODES} \qquad \text{Fraction } (\Gamma_{i}/\Gamma) \qquad p \text{ (Me})$ $B^{*} \text{ DECAY MODES} \qquad Fraction (\Gamma_{i}/\Gamma) \qquad p \text{ (Me})$ $Mass m = 5725.9^{+2.5}_{-2.7} \text{ MeV}$ $m_{B_{1}^{+}} - m_{B^{*0}} = 401.2^{+2.4}_{-2.7} \text{ MeV}$ Full width $\Gamma = 31 \pm 6 \text{ MeV}$ (S = 1.1) $B_{1}(5721)^{+} \text{ DECAY MODES} \qquad Fraction (\Gamma_{i}/\Gamma) \qquad p \text{ (Me})$	Charmiess		$(7 \pm 21) \times 10^{\circ}$	_
$\mu^{+} \mu^{-} \text{ anything} \qquad B1 \qquad < 3.2 \qquad \times 10^{-4} \text{ CL}=90\%$ $I(J^{P}) = \frac{1}{2}(1^{-})$ $I, J, P \text{ need confirmation.}$ Quantum numbers shown are quark-model predictions. Mass $m_{B^*} = 5324.70 \pm 0.22 \text{ MeV}$ $m_{B^*} - m_B = 45.22 \pm 0.21 \text{ MeV}$ $m_{B^{*+}} - m_{B^+} = 45.37 \pm 0.21 \text{ MeV}$ $B^* \text{ DECAY MODES} \qquad \text{Fraction } (\Gamma_i/\Gamma) \qquad p \text{ (Me}$ $B\gamma \qquad \text{seen}$ $I(J^{P}) = \frac{1}{2}(1^+)$ $I, J, P \text{ need confirmation.}$ Mass $m = 5725.9^{+2.5}_{-2.7} \text{ MeV}$ $m_{B^+} - m_{B^{*0}} = 401.2^{+2.4}_{-2.7} \text{ MeV}$ Full width $\Gamma = 31 \pm 6 \text{ MeV}$ (S = 1.1) $B_1(5721)^+ \text{ DECAY MODES} \qquad \text{Fraction } (\Gamma_i/\Gamma) \qquad p \text{ (Me}$	Δ <i>B</i>	l = 1 weak neutr	al current (<i>B1</i>) modes	
B^* $I(J^P) = \frac{1}{2}(1^-)$ I, J, P need confirmation.Quantum numbers shown are quark-model predictions. Mass $m_{B^*} = 5324.70 \pm 0.22$ MeV $m_{B^*} - m_B = 45.22 \pm 0.21$ MeV $m_{B^{*+}} - m_{B^+} = 45.37 \pm 0.21$ MeV B^* DECAY MODESFraction (Γ_i/Γ) I, J, P need confirmation. $B_1(5721)^+$ $I(J^P) = \frac{1}{2}(1^+)$ I, J, P need confirmation.Mass $m = 5725.9^{+2.5}_{-2.7}$ MeV $m_{B_1^+} - m_{B^{*0}} = 401.2^{+2.4}_{-2.7}$ MeV Full width $\Gamma = 31 \pm 6$ MeV (S = 1.1) $B_1(5721)^+$ Fraction (Γ_i/Γ) p (Me	$\mu^+\mu^-$ anything	B1	$< 3.2 \times 10^{-4}$	CL=90% –
$m_{B^{*+}}^{B^{*-}} - m_{B^{+}}^{B} = 45.37 \pm 0.21 \text{ MeV}$ B* DECAY MODES Fraction (Γ_i/Γ) p (Me $B\gamma$ Seen B1(5721)+ $I(J^P) = \frac{1}{2}(1^+)$ I, J, P need confirmation. Mass $m = 5725.9^{+2.5}_{-2.7} \text{ MeV}$ $m_{B_1^+} - m_{B^{*0}} = 401.2^{+2.4}_{-2.7} \text{ MeV}$ Full width $\Gamma = 31 \pm 6 \text{ MeV}$ (S = 1.1) B1(5721)+ DECAY MODES Fraction (Γ_i/Γ) p (Me	B* Quantum number Mass m _B m _{D*} = n	rs shown are qua $_{*} = 5324.70 \pm 0.000$	$I(J^P) = \frac{1}{2}(1^-)$ I, J, P need confirma rk-model predictions. 0.22 MeV 21 MeV	tion.
B* DECAY MODESFraction (Γ_i/Γ) p (Me $B\gamma$ seen $B_1(5721)^+$ $I(J^P) = \frac{1}{2}(1^+)$ I, J, P need confirmation.Mass $m = 5725.9^{+2.5}_{-2.7}$ MeV $m_{B_1^+} - m_{B^{*0}} = 401.2^{+2.4}_{-2.7}$ MeV Full width $\Gamma = 31 \pm 6$ MeV (S = 1.1)B_1(5721)^+ DECAY MODESFraction (Γ_i/Γ) p (Me	$m_{B^{*+}} - m_{B^{*+}}$	$m_{B^+} = 45.37 \pm$	0.21 MeV	
B* DECAY MODESFraction (Γ_i/Γ) p (Me $B\gamma$ seen $B_1(5721)^+$ $I(J^P) = \frac{1}{2}(1^+)$ I, J, P need confirmation.Mass $m = 5725.9^{+2.5}_{-2.7}$ MeV $m_{B_1^+} - m_{B^{*0}} = 401.2^{+2.4}_{-2.7}$ MeVFull width $\Gamma = 31 \pm 6$ MeV $S = 1.1$ B_1(5721)^+ DECAY MODESFraction (Γ_i/Γ) p (Me	D	D		
Bγ seen $ \begin{bmatrix} B_1(5721)^+ & I(J^P) = \frac{1}{2}(1^+) \\ I, J, P \text{ need confirmation.} \end{bmatrix} $ Mass $m = 5725.9^{+2.5}_{-2.7} \text{ MeV}$ $m_{B_1^+} - m_{B^{*0}} = 401.2^{+2.4}_{-2.7} \text{ MeV}$ Full width $\Gamma = 31 \pm 6 \text{ MeV}$ (S = 1.1) B₁(5721)⁺ DECAY MODES Fraction (Γ_i/Γ) p (Met	B* DECAY MODES		Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\begin{array}{c} \textbf{B_1(5721)^+} & I(J^P) = \frac{1}{2}(1^+) \\ I, J, P \text{ need confirmation.} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$B\gamma$	5	seen	45
$\begin{array}{c} \textbf{B_1(5721)^+} & I(J^P) = \frac{1}{2}(1^+) \\ I, J, P \text{ need confirmation.} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$				
$I, J, P \text{ need confirmation.}$ Mass $m = 5725.9^{+2.5}_{-2.7} \text{ MeV}$ $m_{B_1^+} - m_{B^{*0}} = 401.2^{+2.4}_{-2.7} \text{ MeV}$ Full width $\Gamma = 31 \pm 6 \text{ MeV}$ (S = 1.1) $B_1(5721)^+ \text{ DECAY MODES} \qquad \text{Fraction } (\Gamma_i/\Gamma) \qquad p \text{ (Methed Models)}$	<i>B</i> ₁ (5721) ⁺		$I(J^{P}) = \frac{1}{2}(1^{+})$	
$\begin{array}{l} \text{Mass } m = 5725.9^{+2.5}_{-2.7} \text{ MeV} \\ m_{B_{1}^{+}} - m_{B^{*0}} = 401.2^{+2.4}_{-2.7} \text{ MeV} \\ \text{Full width } \Gamma = 31 \pm 6 \text{ MeV} (\text{S} = 1.1) \end{array}$ $\begin{array}{l} \textbf{B_{1}(5721)^{+} \text{ DECAY MODES}} & \text{Fraction } (\Gamma_{i}/\Gamma) & p \text{ (Methed Models)} \end{array}$			I, J, P need confirma	tion.
$m_{B_{1}^{+}} - m_{B^{*0}} = 401.2^{+2.4}_{-2.7} \text{ MeV}$ Full width $\Gamma = 31 \pm 6 \text{ MeV}$ (S = 1.1) B_{1}(5721)⁺ DECAY MODES Fraction (Γ_{i}/Γ) p (Me	Mass m =	= 5725.9 ^{+2.5}	eV	
$\begin{array}{c} B_{1} & D^{10} & -2.7 \\ Full width \ \Gamma = 31 \pm 6 \ \text{MeV} (S = 1.1) \end{array}$ $\begin{array}{c} \textbf{B_{1}(5721)^{+} DECAY \ MODES} & Fraction \ (\Gamma_{i}/\Gamma) & p \ (Me) \end{array}$	$m_{p^{+}} - m_{p^{+}}$	$n_{P*0} = 401.2^{+2}$.4 MeV	
$B_{1}(5721)^{+} \text{ DECAY MODES} \qquad Fraction (\Gamma_{i}/\Gamma) \qquad p (Me)$	_{В1} Full widtł	$\Gamma = 31 + 6 M_{\odot}$	V (S = 1.1)	
B₁(5721)⁺ DECAY MODES Fraction (Γ_i/Γ) p (Me			()	
	<i>В</i> 1(5721) ⁺ DECAY MO	DES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$B^{*0}\pi^+$ seen	$B^{*0}\pi^+$		seen	363

B*0π ⁺	7)0	seen $I(J^P) = rac{1}{2}(2^+)$	374
$B^{0}\pi^{+}$		seen	418
B [*] 2(5747) ⁺	DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
	Full width $\Gamma = 20$:	\pm 5 MeV (S = 2.2)	
	$m_{B_2^{*+}} - m_{B^0} = 45$	57.5 ± 0.7 MeV	
	Mass $m = 5737.2$:	\pm 0.7 MeV	
<i>B</i> [*] ₂ (574	7)+	$I(J^P) = rac{1}{2}(2^+)$ I, J, P need confirmation	on.
$B^{*+}\pi^-$		seen	363
B ₁ (5721) ⁰	DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
<i>B</i> ₁ (572	1) ⁰ $B_1(5721)^0$ MASS = $m_{B_1^0} - m_{B^+} = 444$ $m_{B_1^0} - m_{B^{*+}} = 40$ Full width $\Gamma = 27.5$	$I(J^P) = \frac{1}{2}(1^+)$ I, J, P need confirmation = 5726.1 ± 1.3 MeV (S = 1.2) 6.7 ± 1.3 MeV (S = 1.2) 01.4 ± 1.2 MeV (S = 1.2) 5 ± 3.4 MeV (S = 1.1)	on. 2)

 $\begin{array}{lll} B_2^*(5747)^0 \ {\sf MASS} = 5739.5 \pm 0.7 \ {\sf MeV} & ({\sf S}=1.4) \\ m_{B_2^{*0}} - m_{B_1^0} = 13.4 \pm 1.4 \ {\sf MeV} & ({\sf S}=1.3) \\ m_{B_2^{*0}} - m_{B^+} = 460.2 \pm 0.6 \ {\sf MeV} & ({\sf S}=1.4) \\ {\sf Full \ width} \ {\sf \Gamma} = 24.2 \pm 1.7 \ {\sf MeV} \end{array}$

Fraction (Γ_i/Γ)	p (MeV/c)
seen	421
seen	376
	Fraction (Γ_i/Γ) seen seen

.

+(5970) <i>J</i>

$$I(J^P) = \frac{1}{2}(?^{?})$$

I, J, P need confirmation.

 $\begin{array}{l} {\sf Mass} \,\, m = \, 5964 \, \pm \, 5 \,\, {\sf MeV} \\ {m_{B_{J}(5970)^{+}} \, - \, m_{B^{0}} \, = \, 685 \, \pm \, 5 \,\, {\sf MeV} \\ {\sf Full \ width} \,\, \Gamma = \, 62 \, \pm \, 20 \,\, {\sf MeV} \end{array}$

BJ(5970) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$B^{0}\pi^{+}$	possibly seen	632
$B^{*0}\pi^+$	seen	591
$B^{*0}\pi^+$	seen	59

5970)⁰(

 $I(J^P) = \frac{1}{2}(?^{?})$ I, J, P need confirmation.

Mass $m = 5971 \pm 5 \text{ MeV}$ $m_{B_{J}(5970)^{0}} - m_{B^{+}} = 691 \pm 5 \text{ MeV}$ Full width $\Gamma = 81 \pm 12 \text{ MeV}$

Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
possibly seen	638
seen	596
	Fraction (Γ_i/Γ) possibly seen seen

NOTES

- [a] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [b] An $CP(\pm 1)$ indicates the CP=+1 and CP=-1 eigenstates of the $D^0-\overline{D}^0$ system.
- [c] D denotes D^0 or \overline{D}^0 .
- [d] D_{CP+}^{*0} decays into $D^0 \pi^0$ with the D^0 reconstructed in *CP*-even eigenstates $K^+ K^-$ and $\pi^+ \pi^-$.
- [e] \overline{D}^{**} represents an excited state with mass 2.2 < M < 2.8 GeV/c².
- [f] $\chi_{c1}(3872)^+$ is a hypothetical charged partner of the $\chi_{c1}(3872)$.
- $[g] \Theta(1710)^{++}$ is a possible narrow pentaquark state and G(2220) is a possible glueball resonance.
- $[h] (\overline{\Lambda}_{c}^{-} p)_{s}$ denotes a low-mass enhancement near 3.35 GeV/c².
- [*i*] Stands for the possible candidates of $K^*(1410)$, $K_0^*(1430)$ and $K_2^*(1430)$.
- $[j] B^0$ and B^0_s contributions not separated. Limit is on weighted average of the two decay rates.
- [k] This decay refers to the coherent sum of resonant and nonresonant $J^P = 0^+ K \pi$ components with $1.60 < m_{K\pi} < 2.15 \text{ GeV/c}^2$.
- [/] X(214) is a hypothetical particle of mass 214 MeV/c² reported by the HyperCP experiment, Physical Review Letters **94** 021801 (2005)
- [n] The value is for the sum of the charge states or particle/antiparticle states indicated.
- $[o] \Theta(1540)^+$ denotes a possible narrow pentaquark state.
- [p] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of 2.5 GeV/ c^2 and 214.3 MeV/ c^2 , respectively.
- [q] These values are model dependent.
- [r] Here "anything" means at least one particle observed.
- [s] This is a B($B^0 \rightarrow D^{*-} \ell^+ \nu_{\ell}$) value.
- [t] D^{**} stands for the sum of the $D(1 \, {}^{1}P_{1})$, $D(1 \, {}^{3}P_{0})$, $D(1 \, {}^{3}P_{1})$, $D(1 \, {}^{3}P_{2})$, $D(2 \, {}^{1}S_{0})$, and $D(2 \, {}^{1}S_{1})$ resonances.
- $[u] D^{(*)}\overline{D}^{(*)}$ stands for the sum of $D^*\overline{D}^*$, $D^*\overline{D}$, $D\overline{D}^*$, and $D\overline{D}$.
- [v] X(3915) denotes a near-threshold enhancement in the $\omega J/\psi$ mass spectrum.
- [x] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.
- $[y] D_j$ represents an unresolved mixture of pseudoscalar and tensor D^{**} (*P*-wave) states.