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66.1. Introduction

This note discusses some of the theoretical issues relevant for the determination of
quark masses, which are fundamental parameters of the Standard Model of particle
physics. Unlike the leptons, quarks are confined inside hadrons and are not observed
as physical particles. Quark masses therefore cannot be measured directly, but must be
determined indirectly through their influence on hadronic properties. Although one often
speaks loosely of quark masses as one would of the mass of the electron or muon, any
quantitative statement about the value of a quark mass must make careful reference to
the particular theoretical framework that is used to define it. It is important to keep
this scheme dependence in mind when using the quark mass values tabulated in the data
listings.

Historically, the first determinations of quark masses were performed using quark
models. These are usually called constituent quark masses and are of order 350MeV
for the u and d quarks. Constituent quark masses model the effects of dynamical chiral
symmetry breaking discussed below, and are not directly related to the quark mass
parameters mq of the QCD Lagrangian of Eq. (66.1). The resulting masses only make
sense in the limited context of a particular quark model, and cannot be related to the
quark mass parameters, mq, of the Standard Model. In order to discuss quark masses
at a fundamental level, definitions based on quantum field theory must be used, and the
purpose of this note is to discuss these definitions and the corresponding determinations
of the values of the masses.

66.2. Mass parameters and the QCD Lagrangian

The QCD [1] Lagrangian is

L =
∑

q=u,d,s,...,t

q
(

i /D −mq

)

q − 1

2
trGµνG

µν , (66.1)

where the sum runs over the quark flavors u, d, s, c, b and t. /D =
(

∂µ − igAµ

)

γµ is

the gauge covariant derivative, Aµ is the su(3)-valued gluon field, Gµν =
i

g
[Dµ, Dν ] is

the gluon field strength, mq is the mass parameter of quark flavor q, and q is the quark
Dirac field. After renormalization, the QCD Lagrangian Eq. (66.1) gives finite values
for physical quantities, such as scattering amplitudes. Renormalization is a procedure
that invokes a subtraction scheme to render the amplitudes finite, and requires the
introduction of a dimensionful scale parameter µ. The mass parameters in the QCD
Lagrangian Eq. (66.1) depend on the renormalization scheme used to define the theory,
and also on the scale parameter µ. The most commonly used renormalization scheme for
QCD perturbation theory is the MS scheme.

The QCD Lagrangian has a chiral symmetry in the limit that the quark masses vanish.
This symmetry is spontaneously broken by dynamical chiral symmetry breaking, and
explicitly broken by the quark masses. The non-perturbative scale of dynamical chiral
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2 66. Quark masses

symmetry breaking, Λχ, is around 1GeV [2]. It is conventional to call quarks heavy if
mq > Λχ, so that explicit chiral symmetry breaking dominates (c, b, and t quarks are
heavy), and light if mq < Λχ, so that spontaneous chiral symmetry breaking dominates
(the u and d are light and the s is considered to be light when using SU(3)L×SU(3)R
chiral perturbation theory). The determination of light- and heavy-quark masses is
considered separately in Sec. 66.4 and Sec. 66.5 below.

At high energies or short distances, non-perturbative effects, such as chiral symmetry
breaking, become small and one can, in principle, determine quark masses by
analyzing mass-dependent effects using QCD perturbation theory. Such computations
are conventionally performed using the MS scheme at a scale µ ≫ Λχ, and give the MS
“running” mass m(µ). We use the MS scheme when reporting quark masses; one can
readily convert these values into other schemes using perturbation theory.

The µ dependence of m(µ) at short distances can be calculated using the
renormalization group (RG) equation,

µ2
dm (µ)

dµ2
= −γ(αs (µ)) m (µ) , (66.2)

where γ is the anomalous dimension which is now known to four-loop order in perturbation
theory [3,4]. αs is the coupling constant [1] in the MS scheme. Defining the expansion
coefficients γr by

γ (αs) ≡
∞
∑

r=1

γr

(

αs

4π

)r

,

the first four coefficients are given by

γ1 = 4,

γ2 =
202

3
−

20NL

9
,

γ3 = 1249 +

(

−
2216

27
−

160

3
ζ (3)

)

NL −
140

81
N2

L,

γ4 =
4603055

162
+

135680

27
ζ (3)− 8800ζ (5)

+

(

−
91723

27
−

34192

9
ζ (3) + 880ζ (4) +

18400

9
ζ (5)

)

NL

+

(

5242

243
+

800

9
ζ (3)−

160

3
ζ (4)

)

N2
L

+

(

−
332

243
+

64

27
ζ (3)

)

N3
L,
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66. Quark masses 3

where NL is the number of active light quark flavors at the scale µ, i.e. flavors with
masses < µ, and ζ is the Riemann zeta function (ζ(3) ≃ 1.2020569, ζ(4) ≃ 1.0823232,
and ζ(5) ≃ 1.0369278). Eq. (66.2) must be solved in conjunction with the RG equation
for αs (µ) given in [1]. In addition, as the renormalization scale crosses quark mass
thresholds one needs to match the scale dependence of m below and above the threshold.
There are finite threshold corrections; the necessary formulae can be found in Ref. [5].

66.3. Lattice QCD

The use of lattice QCD calculations for ab initio determinations of the fundamental
parameters of QCD, including the coupling constant and quark masses (except for the
top-quark mass) is a very active area of research (see the review on Lattice Quantum
Chromodynamics in this Review). Here we only briefly recall those features which are
required for the determination of quark masses. In order to determine the lattice spacing
(a, i.e. the distance between neighboring points of the lattice) and quark masses, one
computes a convenient and appropriate set of physical quantities (frequently chosen to be
a set of hadronic masses) for a variety of input values of the quark masses in units of the
lattice spacing. These input quark masses are then tuned to their true (physical) values
by requiring that the calculation correctly reproduces the set of physical quantities being
used for the calibration.

The resulting values of the quark masses are bare quark masses, corresponding to a
particular discretization of QCD and with the lattice spacing as the ultraviolet cut-off.
In order for these results to be useful in phenomenological applications, it is necessary
to relate them to renormalized masses defined in some standard renormalization scheme
such as MS. Provided that both the ultraviolet cut-off a−1 and the renormalization
scale µ are much greater than ΛQCD, the bare and renormalized masses can be
related in perturbation theory. However, in order to avoid uncertainties due to the
unknown higher-order coefficients in lattice perturbation theory, most results obtained
recently use non-perturbative renormalization to relate the bare masses to those defined in
renormalization schemes which can be realized directly in lattice QCD (e.g. those obtained
from quark and gluon Green functions at specified momenta in the Landau gauge [6]
or those defined using finite-volume techniques and the Schrödinger functional [7], but
not MS that is only defined for dimensional regularization). These methods require
µ ≫ ΛQCD so that unwanted (non-perturbative) corrections proportional to inverse
powers of µ, which appear in some approaches, remain small corrections that can be
identified and removed. This condition is also necessary so that matching to other
schemes can be performed reliably in perturbation theory. Moreover, these methods
require a−1 ≫ µ so that cutoff effects are small enough to be extrapolated away. Thus,
the calculations are repeated for finer and finer lattices spacings and the continuum
limit, a → 0, of these non-perturbatively renormalized masses is taken to eliminate all
cutoff effects. The conversion to the MS scheme is then performed using continuum
perturbation theory, which is more readily obtained to higher orders and is usually better
behaved than its lattice counterpart.

It is important to note that the issues surrounding the renormalization of quark masses
disappear when considering pairwise ratios of these masses (up to electromagnetic effects
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4 66. Quark masses

for quarks of different charge, which are negligible compared to other uncertainties at
present). Indeed, if the same scheme and scale are implemented, QCD renormalization
factors are identical for all quark flavors, and these factors therefore cancel exactly
in quark-mass ratios. In particular, this means that these ratios are scheme and
scale independent. Moreover, these ratios suffer little from the uncertainties in the
determination of the lattice scale because they are dimensionless. Thus, quark-mass
ratios are typically determined with significantly higher precision using lattice QCD than
are the individual masses.

The determination of quark masses using lattice simulations is well established and the
current emphasis is on the reduction and control of the systematic uncertainties. With
improved algorithms and access to more powerful computing resources, the precision
of the results has improved immensely in recent years. Vacuum polarization effects are
included with Nf = 2, 2 + 1 or Nf = 2 + 1 + 1 flavors of sea quarks. The number 2
here indicates that the up and down quarks are degenerate. Simulations with 2 + 1 and
2 + 1+ 1 flavors represent controlled approximations to physical QCD at the low energies
considered for quark mass determinations, up to corrections of O((ΛQCD/mc)

2/Nc) and

O((ΛQCD/mb)
2/Nc), respectively. This is not the case for simulations with Nf = 2 or in

which vacuum polarization effects are completely neglected (this is the so-called quenched

approximation) and results obtained in such frameworks will not enter the discussion
here.

Particularly pleasing is the observation that different formulations of lattice QCD, with
different systematic uncertainties, yield results which are largely consistent with each
other. This gives us broad confidence in the estimates of the systematic errors. As the
precision of the results approaches (or even exceeds in some cases) 1%, isospin breaking
effects, including electromagnetic corrections need to be included and this is beginning to
be done as will be discussed below. In particular, a reliable estimate of these effects is
required for determining the individual u and d quark masses.

Members of the lattice QCD community have organized a Flavour Lattice Averaging
Group (FLAG) which critically reviews quantities computed in lattice QCD relevant to
flavor physics, including the determination of quark masses, against stated quality criteria
and presents its view of the current status of the results. The latest edition reviews lattice
results published before September 30th 2018 [8]. Since that deadline, only a single
lattice determination of quark masses has appeared [9]. It is a computation of mc and
mb in Nf = 2+1 QCD, based on the method of Euclidean-time moments of pseudoscalar,
two-point functions of cc quark-bilinear operators described below. Its results are fully
consistent with the lattice averages quoted later.
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66. Quark masses 5

66.4. Light quarks

In this section we review the determination of the masses of the light quarks u, d and
s from lattice simulations and then discuss the consequences of the approximate chiral
symmetry.

66.4.1. Lattice QCD results :

The most reliable determinations of the strange quark mass ms and of the average of
the up and down quark masses mud = (mu+md)/2 are obtained from lattice simulations.
As explained in Sec. 66.3 above, the simulations are generally performed with degenerate
up and down quarks (mu = md) and so it is the average which is obtained directly from
the computations. Below we discuss the derivation of mu and md separately, but we
start by briefly presenting our estimate of the current status of the latest lattice results
in the isospin symmetric limit. The FLAG Review [8] bases its summary numbers for
these quark masses largely on references [10–15] for Nf = 2 + 1 and references [16–19]
for Nf = 2 + 1 + 1 flavors of sea quarks, which its authors consider to have the most
reliable estimates of the systematic uncertainties. For Nf = 2 + 1 flavors, they quote
mud = (3.364 ± 0.041)MeV, ms = (92.03 ± 0.88)MeV and (ms/mud) = 27.42 ± 0.12.
These numbers are mud = (3.410 ± 0.043)MeV, ms = (93.44 ± 0.68)MeV and
(ms/mud) = 27.23± 0.10 for Nf = 2 + 1 + 1 simulations. The masses are given in the

MS scheme at a renormalization scale of 2GeV. Because of the systematic errors, these
results are not simply the combinations of all the results in quadrature, but include a
judgement of the remaining uncertainties. Since the different collaborations use different
formulations of lattice QCD, the (relatively small) variations of the results between the
groups provides important information about the reliability of the estimates.

Despite being reported in the MS scheme at a renormalization scale of 2GeV, the
results for mud and ms in the two frameworks differ in their renormalization schemes,
since Nf = 2 + 1 results are renormalized with NL = 3 and Nf = 2 + 1 + 1 ones with
NL = 4. Thus, for a comparison, in principle one should convert the results to the
same scheme. This is not the case for (ms/mud), where renormalization factors cancel.
The conversion of the Nf = 2 + 1 results to the NL = 4 scheme can be performed, for
instance, by running them down to the charm threshold in the NL = 3 theory, matching
the results to the NL = 4 theory and running them back up to 2 GeV in that theory.
Such a conversion, however, leads to shifts in the values of the quark masses that are well
within the quoted errors. Thus, we choose simply to average the results from the two
frameworks, yielding as a final lattice QCD estimate in the MS scheme at µ = 2GeV in
the NL = 4 theory:

mud = (3.39± 0.04)MeV (66.3)

ms = (92.9± 0.7)MeV, (66.4)

and
ms

mud
= 27.37± 0.10. (66.5)

where the error bars encompass statistical and systematic errors combined in quadrature.
In performing these averages, the only slight tension found is in ms where the weighted
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6 66. Quark masses

average carries a χ2/dof = 1.6, used to increase the error by the usual
√

χ2/dof scale
factor. Note also that we do not allow the errors to become smaller than those on the
individual averages because of possible common systematics.

To obtain the individual values of mu and md requires the introduction of isospin
breaking effects, including electromagnetism. This is now being done completely using
lattice field theory, albeit neglecting electromagnetic effects in the sea in most cases (see
the computation of the neutron-proton mass splitting [20] for an exception). The effect
of this neglect on the u and d quark masses has been estimated in [21], to induce a
contribution to the uncertainty that ranges from about 3% in mu/md to less than 1% in
md. FLAG has reviewed these quantities in [8]. Again, they separate results obtained
from Nf = 2 + 1 and Nf = 2 + 1 + 1 simulations. For the former, their final averages are
the results of [21], and for the latter, those of [22]. Thus, for Nf = 2 + 1 they quote
mu = 2.27(9)MeV, md = 4.67(9)MeV, (mu/md) = 0.485(19) and, for Nf = 2 + 1 + 1,
mu = 2.50(17)MeV, md = 4.88(20)MeV, (mu/md) = 0.513(31). As for the light quark
masses in the isospin limit, we average the results obtained with different numbers of
sea-quark flavors. Here, only the mu average has a χ2/dof = 1.4 > 1, and its error is thus
appropriately scaled. Again, we do not allow the errors to become smaller than those on
the individual averages because of possible common systematics. Thus, we give as a final
lattice QCD estimate in the MS scheme at µ = 2GeV in the NL = 4 theory:

mu = 2.32(10)MeV, md = 4.71(9)MeV,
mu

md
= 0.493(19). (66.6)

Of particular importance is the fact that mu 6= 0 to more than 20 standard deviations,
since there would have been no strong CP problem had mu been equal to zero.

The results for the light quark masses given in the listings are dominated by the lattice
values, since most continuum extractions have larger uncertainties.

66.4.2. Chiral Perturbation Theory :

For light quarks, one can use the techniques of chiral perturbation theory [23–25] to
extract quark mass ratios. The mass term for light quarks in the QCD Lagrangian is

ΨMΨ = ΨLMΨR +ΨRM
†ΨL, (66.7)

where M is the light quark mass matrix,

M =





mu 0 0
0 md 0
0 0 ms



 , (66.8)

Ψ = (u, d, s), and L and R are the left- and right-chiral components of Ψ given by
ΨL,R = PL,RΨ, PL = (1 − γ5)/2, PR = (1 + γ5)/2. The mass term is the only term
in the QCD Lagrangian that mixes left- and right-handed quarks. In the limit M → 0,
there is an independent SU(3)×U(1) flavor symmetry for the left- and right-handed
quarks. The vector U(1) symmetry is baryon number; the axial U(1) symmetry of the
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66. Quark masses 7

classical theory is broken in the quantum theory due to the anomaly. The remaining
Gχ = SU(3)L × SU(3)R chiral symmetry of the QCD Lagrangian is spontaneously broken
to SU(3)V , which, in the limit M → 0, leads to eight massless Goldstone bosons, the π’s,
K’s, and η.

The symmetry Gχ is only an approximate symmetry, since it is explicitly broken by
the quark mass matrix M . The Goldstone bosons acquire masses which can be computed
in a systematic expansion in M , in terms of low-energy constants, which are unknown
non-perturbative parameters of the effective theory, and are not fixed by the symmetries.
One treats the quark mass matrix M as an external field that transforms under Gχ

as M → LMR†, where ΨL → LΨL and ΨR → RΨR are the SU(3)L and SU(3)R
transformations, and writes down the most general Lagrangian invariant under Gχ. Then
one sets M to its given constant value Eq. (66.8), which implements the symmetry
breaking. To first order in M one finds that [26]

m2
π0

=B (mu +md) ,

m2
π±

=B (mu +md) + ∆em,

m2
K0 =m2

K
0 = B (md +ms) , (66.9)

m2
K± =B (mu +ms) + ∆em,

m2
η =

1

3
B (mu +md + 4ms) ,

with two unknown constants B and ∆em, the electromagnetic mass difference. From
Eq. (66.9), one can determine the quark mass ratios [26]

mu

md
=
2m2

π0
−m2

π+
+m2

K+ −m2
K0

m2
K0 −m2

K+ +m2
π+

= 0.56,

ms

md
=
m2

K0 +m2
K+ −m2

π+

m2
K0 +m2

π+
−m2

K+

= 20.2, (66.10)

to lowest order in chiral perturbation theory, with an error which will be estimated
below. Since the mass ratios extracted using chiral perturbation theory use the symmetry
transformation property of M under the chiral symmetry Gχ, it is important to use a
renormalization scheme for QCD that does not change this transformation law. Any mass
independent subtraction scheme such as MS is suitable. The ratios of quark masses are
scale independent in such a scheme (up to electromagnetic corrections), and Eq. (66.10)
can be taken to be the ratio of MS masses. Chiral perturbation theory cannot determine
the overall scale of the quark masses, since it uses only the symmetry properties of M ,
and any multiple of M has the same Gχ transformation law as M .

Chiral perturbation theory is a systematic expansion in powers of the light quark
masses. The typical expansion parameter is m2

K/Λ2
χ ∼ 0.25 if one uses SU(3) chiral
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8 66. Quark masses

symmetry, and m2
π/Λ

2
χ ∼ 0.02 if instead one uses SU(2) chiral symmetry. Electromagnetic

effects at the few percent level also break SU(2) and SU(3) symmetry. The mass
formulæ Eq. (66.9) were derived using SU(3) chiral symmetry, and are expected to have
approximately a 25% uncertainty due to second order corrections. This estimate of the
uncertainty is consistent with the lattice results summarized in Eq. (66.4) –Eq. (66.5).

There is a subtlety which arises when one tries to determine quark mass ratios at
second order in chiral perturbation theory. The second order quark mass term [27]

(

M †
)−1

detM † (66.11)

(which can be generated by instantons) transforms in the same way under Gχ as M .

Chiral perturbation theory cannot distinguish between M and (M †)−1 detM †; one can
make the replacement M → M(λ) = M + λM(M †M)−1 detM † in the chiral Lagrangian,

M(λ) = diag (mu(λ), md(λ), ms(λ))

= diag (mu + λmdms, md + λmums, ms + λmumd) , (66.12)

and leave all observables unchanged.

The combination

(

mu

md

)2

+
1

Q2

(

ms

md

)2

= 1 (66.13)

where

Q2 =
m2

s −m2
ud

m2
d
−m2

u

, mud =
1

2
(mu +md) ,

is insensitive to the transformation in Eq. (66.12). Eq. (66.13) gives an ellipse in the
mu/md − ms/md plane. The ellipse is well-determined by chiral perturbation theory,
but the exact location on the ellipse, and the absolute normalization of the quark
masses, has larger uncertainties. Q is determined to be 22.1(7) from η → 3π decay
and the electromagnetic contribution to the K+–K0 and π+– π0 mass differences [28].
Lattice QCD collaborations have also reported determinations of Q. Using Nf = 2 + 1
simulations, [21] obtains Q = 23.4(6) and [22] determines Q = 23.8(1.1) with Nf = 2+1+1
simulations, which are fully compatible. The Nf = 2 + 1 result is about 2 standard
deviations larger than the one from phenomenology given above [28]. These values can
also be compared to the leading-order result for Q in SU(3) chiral perturbation theory,
that can be derived using Eq. (66.9) and the values for the relevant meson masses given

in this review. This result also holds to next-to-leading order, thus: Q
NLO
= 24.3.

The absolute normalization of the quark masses cannot be determined using chiral
perturbation theory. Other methods, such as lattice simulations discussed above, or
spectral function sum rules [29,30] for hadronic correlation functions reviewed next, are
necessary.
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66. Quark masses 9

66.4.3. Sum rules :

Sum rule methods have been used extensively to determine quark masses and for
illustration we briefly discuss here their application to hadronic τ decays [31]. Other
applications involve very similar techniques.

R� s

I� s

m
2
! 4m

2
!

m
2
"

C2

C1

Figure 66.1: The analytic structure of Π(s) in the complex s-plane. The contours
C1 and C2 are the integration contours discussed in the text, and the integral
over the closed contour C1 + C2 vanishes. m2

τ has not been drawn to scale;
m2

τ ∼ 40(4m2
π).

The experimentally measured quantity is Rτ ,

dRτ

ds
=
dΓ/ds

(

τ− → hadrons + ντ (γ)
)

Γ (τ− → e−νeντ (γ))
(66.14)

the hadronic invariant mass spectrum in semihadronic τ decay, normalized to the leptonic
τ decay rate. It is useful to define q as the total momentum of the hadronic final state, so
s = q2 is the hadronic invariant mass. The total hadronic τ decay rate Rτ is then given
by integrating dRτ/ds over the kinematically allowed range 0 ≤ s ≤ M2

τ .

Rτ can be written as

Rτ =12π

∫ M2
τ

0

ds

M2
τ

(

1−
s

M2
τ

)2

×

[(

1 + 2
s

M2
τ

)

ImΠT (s) + ImΠL(s)

]

(66.15)

December 6, 2019 12:04



10 66. Quark masses

where the hadronic spectral functions ΠL,T are defined from the time-ordered correlation
function of two weak currents (jµ(x) and jν(0)) by

Πµν(q) =i

∫

d4x eiq·x 〈0|T
(

jµ(x)jν(0)†
)

|0〉 , (66.16)

Πµν(q) = (−gµν + qµqν)ΠT (s) + qµqνΠL(s), (66.17)

and the decomposition Eq. (66.17) is the most general possible structure consistent with
Lorentz invariance.

By the optical theorem, the imaginary part of Πµν is proportional to the total cross-
section for the current to produce all possible states. A detailed analysis including the
phase space factors leads to Eq. (66.15). The spectral functions ΠL,T (s) are analytic in the
complex s plane, with singularities along the real axis. There is an isolated pole at s = m2

π ,
and single- and multi-particle singularities for s ≥ 4m2

π, the two-particle threshold. The
discontinuity along the real axis is ΠL,T (s+ i0+)− ΠL,T (s− i0+) = 2iIm ΠL,T (s). As a
result, Eq. (66.15) can be rewritten with the replacement Im ΠL,T (s) → −iΠL,T (s)/2,
and the integration being over the contour C1. Finally, the contour C1 can be deformed
to −C2 without crossing any singularities, and so leaving the integral unchanged, i.e. the
integral over the closed contour C1 + C2 vanishes. One can derive a series of sum rules
analogous to Eq. (66.15) by weighting the differential τ hadronic decay rate by different
powers of the hadronic invariant mass [32],

Rkl
τ =

∫ M2
τ

0

ds

(

1−
s

M2
τ

)k ( s

M2
τ

)l dRτ

ds
(66.18)

where dRτ/ds is the hadronic invariant mass distribution in τ decay normalized to the
leptonic decay rate. This leads to the final form of the sum rule(s),

Rkl
τ =− 6πi

∫

C2

ds

M2
τ

(

1−
s

M2
τ

)2+k ( s

M2
τ

)l

×

[(

1 + 2
s

M2
τ

)

ΠT (s) + ΠL(s)

]

. (66.19)

The manipulations so far are completely rigorous and exact, relying only on the general
analytic structure of quantum field theory. The left-hand side of the sum rule Eq. (66.19)
is obtained from experiment. The right hand-side can be computed for s far away from
any physical cuts using the operator product expansion (OPE) for the time-ordered
product of currents in Eq. (66.16), and QCD perturbation theory. The OPE is an
expansion for the time-ordered product Eq. (66.16) in a series of local operators, and is
an expansion about the q → ∞ limit. It gives ΠL,T (s) as an expansion in powers of αs(s)
and Λ2

QCD/s, and is valid when s is far (in units of Λ2
QCD) from any singularities in the

complex s-plane.
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66. Quark masses 11

The OPE gives ΠL,T (s) as a series in αs, quark masses, and various non-perturbative
vacuum matrix elements. By computing ΠL,T (s) theoretically, and comparing with the
experimental values of Rkl

τ , one determines various parameters such as αs and the
quark masses. The theoretical uncertainties in using Eq. (66.19) arise from neglected
higher order corrections (both perturbative and non-perturbative), and because the OPE
is no longer valid near the real axis, where ΠL,T have singularities. The contribution
of neglected higher order corrections can be estimated as for any other perturbative
computation. The error due to the failure of the OPE is more difficult to estimate. In
Eq. (66.19), the OPE fails on the endpoints of C2 that touch the real axis at s = M2

τ .
The weight factor (1− s/M2

τ ) in Eq. (66.19) vanishes at this point, so the importance of
the endpoint can be reduced by choosing larger values of k.

Light quark masses are often determined using QCD sum rules [30], which are similar
to the τ sum rules. One takes the correlator of two light-quark-bilinear operators (e.g.
an axial vector current), as in Eq. (66.16), and computes their Laplace transforms or
moments

Ln(τ) =

∫ ∞

0

ds sn e−τs ImΠ(s), Mn(Q
2) =

∫ ∞

0

ds

(s+Q2)n
ImΠ(s)

to get Laplace or moment sum rules, respectively. The quark masses are extracted by
comparing the theoretical and experimental values of Ln(τ) and Mn(Q

2). Considerable
theoretical effort has gone into optimizing n and Q2 to improve the precision of the
resulting light quark masses.

66.5. Heavy quarks

66.5.1. Continuum approaches and results :

For heavy quark physics one can exploit the fact that mQ ≫ ΛQCD to construct
effective theories (mQ is the mass of the heavy quark Q). The masses and decay rates of
hadrons containing a single heavy quark, such as the B and D mesons can be determined
using the heavy quark effective theory (HQET) [33]. The theoretical calculations involve
radiative corrections computed in perturbation theory with an expansion in αs(mQ)
and non-perturbative corrections with an expansion in powers of ΛQCD/mQ. Due to
the asymptotic nature of the QCD perturbation series, the two kinds of corrections are
intimately related; an example of this are renormalon effects in the perturbative expansion
which are associated with non-perturbative corrections.

Systems containing two heavy quarks such as the Υ or J/Ψ are treated using
non-relativistic QCD (NRQCD) [34]. The typical momentum and energy transfers in
these systems are αsmQ, and α2

smQ, respectively, so these bound states are sensitive to
scales much smaller than mQ. However, smeared observables, such as the cross-section

for e+e− → bb averaged over some range of s that includes several bound state energy
levels, are better behaved and only sensitive to scales near mQ. For this reason, most
determinations of the c, b quark masses using perturbative calculations compare smeared
observables with experiment [35–37]. The method is similar to that outlined for τ decays.
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12 66. Quark masses

The current correlator in Eq. (66.16) is the electromagnetic current, and the experimental
data is the value of R(s) in the threshold region for e+e− → QQ. The theoretical values
for the moments are computed using renormalization group improved calculations in
non-relativistic QCD.

There are many continuum extractions of the c and b quark masses, some with
quoted errors of 10 MeV or smaller. There are systematic effects of comparable size,
which are typically not included in these error estimates. Reference [38], for example,
shows that even though the error estimate of mc using the rapid convergence of the αs

perturbation series is only a few MeV, the central value of mc can differ by a much larger
amount depending on which algorithm (all of which are formally equally good) is used to
determine mc from the data. This leads to a systematic error from perturbation theory
of around 20 MeV for the c quark and 25 MeV for the b quark. Electromagnetic effects,
which also are important at this precision, are often not included. For this reason, we
inflate the errors on the continuum extractions of mc and mb. The average values of mc

and mb from continuum determinations are (see Sec. G for the 1S scheme)

mc(mc) = (1.280± 0.025)GeV,

mb(mb) = (4.18± 0.03)GeV, m1S
b = (4.65± 0.03)GeV.

66.5.2. Lattice approaches and results :

Lattice simulations of QCD lead to discretization errors which are powers of amQ

(modulated by logarithms); the power depends on the formulation of lattice QCD being
used and in most cases is quadratic. Clearly these errors can be reduced by performing
simulations at smaller lattice spacings, but also by using improved discretizations of
the theory. Recently, with more powerful computing resources, better algorithms and
techniques, it has become possible to perform simulations in the charm quark region and
beyond, also decreasing the extrapolation which has to be performed to reach the b-quark.

Traditionally the charm quark mass is obtained by tuning its bare, simulation value to
reproduce the physical mass of charmonium mesons or of the D, Ds mesons (requiring a
more precise tuning of the light quark masses). This mass can then be renormalized to
the MS scheme using the methods discussed for the light quarks.

An alternative approach for obtaining the MS mass from the tuned bare quark mass
was proposed in [39]. Euclidean-time moments of pseudoscalar, two-point functions of
cc quark-bilinear operators can readily be computed on the lattice and extrapolated to
the continuum limit where they can be compared to perturbative calculations of the
same quantities at 4-loop order. In this way, both the strong coupling constant and the
charm quark mass can be determined with remarkably small errors. As this approach
uses the same perturbative expressions for two-point correlators as the continuum
determinations discussed above, it suffers from similar perturbation-theory, systematic
errors. FLAG [8] has reviewed lattice determinations of the charm quark mass obtained
using both approaches. The most advanced calculations are performed with Nf = 2+1+1
simulations. For these, the quoted average is

mc(mc) = 1.280(13)GeV,
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66. Quark masses 13

based on the calculations performed in [17,16,40,18,19], in good agreement with the
continuum result quoted above, but with a smaller error. It is worth noting that while
three [17,18,19] of the four calculations entering this average agree, the fourth [16,40]
is about two standard deviations larger, and this is taken into account in the error
bar. It should also be remembered that these results were obtained in QCD with exact
isospin symmetry, though isospin breaking corrections to the physical inputs, including
electromagnetism, are accounted for using phenomenology.

Historically, the main approach to controlling the discretization errors in lattice studies
of b quark physics was to perform simulations of effective theories such as HQET and
NRQCD. This remains an important technique, both in its own right and in providing
additional information for extrapolations from lower masses to the bottom region. Using
effective theories, mb is obtained from what is essentially a computation of the difference
of MHb

−mb, where MHb
is the mass of a hadron Hb containing a b-quark. The relative

error on mb is therefore much smaller than that for MHb
−mb. The principal systematic

errors are the matching of the effective theories to QCD and the presence of power
divergences in a−1 in the 1/mb corrections which have to be subtracted numerically. A
procedure for performing these subtractions fully non-perturbatively was proposed and
implemented for the first time in [41].

The most recent lattice QCD determinations of the b quark mass rely on a variety
of approaches, including Euclidean-time moments of correlation functions with [42] or
without NRQCD [17] and HQET based interpolations [43,44] or extrapolations [18] from
above the charm to the b region. The overall agreement of the results obtained using
these very different approaches, which have different systematic errors, is a confirmation
that the various groups control these uncertainties. As the range of heavy-quark masses
which can be used in numerical simulations increases, results obtained by extrapolating
the results to b-physics are becoming ever more reliable (see e.g. [18]) . FLAG’s
compilation [8] of the above Nf = 2 + 1 + 1 results yields

mb(mb) = 4.198(12)GeV.

Again, this result is compatible with the average value of continuum results, but with a
significantly smaller uncertainty.

As explained in Sec. 66.3, ratios of quark masses can have significantly smaller errors
than the individual masses if they are computed in the same lattice QCD framework
and in the same renormalization scheme at identical scales. This led HPQCD to leverage
their precise determination of mc [39] to determine ms and mud [57], through a precise
computation of mc/ms [57] and of ms/mud [58]. This Nf = 2 + 1 calculation was
updated using Nf = 2 + 1 + 1 simulations in [17]. The ratio ms/mc was also computed
in [15,59] with Nf = 2 + 1 simulations and in [16,18] with Nf = 2 + 1 + 1 ones. Based
on [57,59], FLAG quotes [8] mc/ms = 11.82(16) for Nf = 2+1, and mc/ms = 11.768(33)
for Nf = 2 + 1 + 1, based on [16,17,18], where a 50% stretch of the combined error was
applied due to a tension between the results of [16] and [17]. As a final lattice number
we give the Nf = 2 + 1 + 1 average

mc/ms = 11.768(33),
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14 66. Quark masses

which is renormalization scheme and scale independent.

The ratio mb/mc has also been computed on the lattice. The most advanced
calculations have been performed with Nf = 2 + 1 + 1 simulations [17,43,18]. Averaging
these results using the FLAG [8] procedure yields

mb/mc = 4.576(11),

where a scale factor of
√

χ2/dof = 1.45 has been applied to the error bar. Indeed, [43]
contributes 3.3 to the total χ2.

66.5.3. Warnings concerning the use of the pole mass :

For an observable particle such as the electron, the position of the pole in the
propagator is the definition of its mass. In QCD this definition of the quark mass is
known as the pole mass. It is known that the on-shell quark propagator has no infrared
divergences in perturbation theory [45,46], so this provides a perturbative definition of
the quark mass. However, the pole mass cannot be used to arbitrarily high accuracy
because of non-perturbative infrared effects in QCD. In fact the full quark propagator has
no pole because the quarks are confined, so that the pole mass cannot be defined outside
of perturbation theory. The relation between the pole mass mQ and the MS mass mQ,
used throughout this review, is known to three loops [47–50]

mQ = mQ(mQ)

{

1 +
4αs(mQ)

3π

+

[

−1.0414
∑

q

(

1−
4

3

mq

mQ

)

+ 13.4434

]

[

αs(mQ)

π

]2

+
[

0.6527N2
L − 26.655NL + 190.595

]

[

αs(mQ)

π

]3
}

, (66.20)

where αs(µ) is the strong interaction coupling constants in the MS scheme, and the sum
over q extends over the NL flavors lighter than Q. The complete mass dependence of the
α2
s term can be found in [47]; the mass dependence of the α3

s term is not known. For the
b-quark, Eq. (66.20) reads

mb = mb (mb) [1 + 0.10 + 0.05 + 0.03] , (66.21)

where the contributions from the different orders in αs are shown explicitly. The two and
three loop corrections are comparable in size and have the same sign as the one loop term.
This is a signal of the asymptotic nature of the perturbation series (there is a renormalon
in the pole mass [51]) . Such a badly behaved perturbation expansion can be avoided by
directly extracting, from data, the mass defined in the MS (used in this review) or other
short-distance schemes (see below), without invoking the pole mass as an intermediate
step.

December 6, 2019 12:04



66. Quark masses 15

66.6. Numerical values and caveats

The quark masses in the particle data listings have been obtained by using a wide
variety of methods. Each method involves its own set of approximations and uncertainties.
In most cases, the errors are an estimate of the size of neglected higher-order corrections
or other uncertainties. The expansion parameters for some of the approximations are not
very small (for example, they are m2

K/Λ2
χ ∼ 0.25 for the SU(3) chiral expansion and

ΛQCD/mb ∼ 0.1 for the heavy-quark expansion), so an unexpectedly large coefficient in
a neglected higher-order term could significantly alter the results. Thus, before using a
particular result, it is important to understand the possible limitations of the approach
used to obtain it. It is also important to note that the quark mass values can be
significantly different in the different schemes.

We have specified all masses in the MS scheme. For light quarks, the renormalization
scale has been chosen to be µ = 2GeV. Quoting these masses at smaller values of µ,
where perturbative corrections become significantly larger, would introduce unnecessary
uncertainties in the results. In fact, as lattice calculations, performed on finer and finer
lattices, allow to determine quark masses, fully non-perturbatively, at larger and larger
values of µ, it may become advantageous to quote quark mass results at renormalization
scales above 2 GeV, where perturbative uncertainties are smaller.

The heavy quark masses obtained using HQET, QCD sum rules, or lattice gauge
theory are consistent with each other if they are all converted into the same scheme and
scale. For these quarks it is conventional to choose the renormalization scale equal to the
quark mass, so we have quoted mQ(µ) at µ = mQ for the c and b quarks. Given the small
size of the charm quark mass, in the future it may become advantageous to quote its
value at larger values of µ so as not to introduce unnecessary perturbative uncertainties
(see discussion above). Analyses of inclusive B meson decays have shown that other mass
definitions lead to a better behaved perturbation series than for the MS mass, and hence
to more accurate mass values [52,53,54,56]. Thus, we have chosen to also give values for
one of these, the b quark mass in the 1S-scheme [52,53]. Other schemes that have been
proposed are the PS-scheme [54], the kinetic scheme [55] and, most recently, the minimal
renormalon-subtracted mass (MRS) [56] used in the lattice calculation [18].

If necessary, we have converted values in the original papers to our chosen scheme using
two-loop formulæ. It is important to realize that our conversions introduce significant
additional errors. In converting to the MS b-quark mass, for example, the three-loop
conversions from the 1S and pole masses give values about 35 MeV and 135 MeV lower
than the two-loop conversions. The uncertainty in αs(MZ) = 0.1179± 0.0010 [1] gives an
uncertainty of ±9 MeV and ±21 MeV respectively in the same conversions. We have not
added these additional errors when we do our conversions. The αs value in the conversion
is correlated with the αs value used in determining the quark mass, so the conversion
error is not a simple additional error on the quark mass.
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16 66. Quark masses

Figure 66.2: The allowed region (shown in white) for up quark and down quark
masses renormalized in the MS scheme at 2 GeV. This region was determined in
part from papers reporting values for mu and md (data points shown) and in part
from an analysis of the allowed ranges of other mass parameters (see Fig. 66.3). The
parameter (mu +md)/2 yields the two downward-sloping lines, while mu/md yields
the two rising lines originating at (0,0). There are two overlapping data points, so
one of them is shown as a white diamond (it has very small error bars).
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66. Quark masses 17

Figure 66.3: The values of each quark mass parameter taken from the Data
Listings. The points are in chronological order with the more recent measurements
at the top. The shaded regions indicate values excluded by our evaluations; some
regions were determined in part through examination of Fig. 66.2.
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