83. D_s^+ Branching Fractions

Updated September 2019 by J.L. Rosner (University of Chicago) and C.G. Wohl (LBNL).

Figure 83.1 shows a partial breakdown of the D_s^+ branching fractions. The rest of this note is about how the figure was constructed. The values shown make heavy use of CLEO measurements of inclusive branching fractions [1]. For references to other data cited in the following, see the Listings.

83.1. Modes with leptons

The bottom $(18.0 \pm 1.0)\%$ of Fig. 83.1 shows the fractions for the modes that include leptons. The measured $K^0 e^+\nu_e$ and $K^*0 e^+\nu_e$ fractions have been doubled to take account of the corresponding $\mu^+\nu_\mu$ fractions. The sum of the exclusive $X e^+\nu_e$ fractions is $(6.0 \pm 0.3)\%$, consistent with an inclusive semileptonic measurement of $(6.5 \pm 0.4)\%$. There seems to be little missing here.

83.2. Inclusive hadronic $K\bar{K}$ fractions

The Cabibbo-favored $c \to s$ decay in D_s^+ decay produces a final state with both an s and an \bar{s}; and thus modes with a $K\bar{K}$ pair or with an η, ω, η', or ϕ predominate (as may already be seen in Fig. 83.1 in the semileptonic fractions). We consider the $K\bar{K}$ modes first. A complete picture of the exclusive $K\bar{K}$ charge modes is not yet possible, because branching fractions for many of those modes have not yet been measured. However, CLEO has measured the inclusive K^+, K^-, K_S^0, $K^+ K^-$, $K^+ K^0_S$, $K^- K^0_S$, and $2K^0_S$ fractions (these include modes with leptons) [1]. And each of these inclusive fractions with a K_S^0 is equal to the corresponding fraction with a K_L^0: $f(K^K_0) = f(K^0_0)$, $f(2K^0_0) = f(2K^0_0)$, etc. Therefore, of all inclusive fractions pairing a K^+, K^0_0, or K^0_0 with a K^-, K^0_0, or K^0_0, we know all but $f(K^0_0 K^0_0)$.

We can get that fraction. The total K_S^0 fraction is

$$f(K^0_0) = f(K^+ K^0_0) + f(K^- K^0_0) + 2 f(2K^0_0) + f(K^0_0 K^0_0)$$

where $f($single $K^0_0)$ is the sum of the branching fractions for modes such as $K^0_0\pi^+2\pi^0$ with a K^0_S and no second K. The $K^0_0\pi^+2\pi^0$ mode is in fact the only unmeasured single-K^0_S mode (throughout, we shall assume that fractions for modes with a K or $K\bar{K}$ and more than three pions are negligible), and we shall take its fraction to be the same as for the $K^0_0\pi^+\pi^-$ mode, $(0.30 \pm 0.11)\%$. Any reasonable deviation from this value would be too small to matter much in the following. Adding the several small single-K^0_S branching fractions, including those from semileptonic modes, we get $f($single $K^0_0) = (1.7 \pm 0.2)\%$.

Using this, we have:

$$f(K^0_0 K^0_0) = f(K^0_0) - f(K^+ K^0_0) - f(K^- K^0_0)$$

$$- 2 f(2K^0_0) - f($$single $K^0_0)$$

$$= (19.0 \pm 1.1) - (5.8 \pm 0.5) - (1.9 \pm 0.4) - 2 \times (1.7 \pm 0.3) - (1.7 \pm 0.2)$$

$$= (6.2 \pm 1.4)\% .$$

M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update

December 6, 2019 12:03
Figure 83.1: A partial breakdown of D_s branching fractions. The hadronic bins in the left column show inclusive fractions. The inclusive fraction is spread over three bins, in proportion to its decay fractions into $K+K^-$, $K\bar{K}$, and no-K modes. Shading within a bin shows how much of the inclusive fraction is not yet accounted for by adding up all the relevant exclusive fractions. The inclusive hadronic ϕ fraction is spread over three bins, in proportion to its decay fractions into K^+K^-, $K\bar{K}$, and no-K modes.
Here and below we treat the errors as uncorrelated, although often they are not. However, our main aim is to get numbers for Fig. 83.1; errors are secondary.

There is a check on our result: The \(\phi \) inclusive branching fraction is \((15.7 \pm 1.0)\%\), of which 34\%, or \((5.34 \pm 0.34)\%\) of \(D_s^+ \) decays, produces a \(K_S^0 K_L^0 \). Our \(f(K_S^0 K_L^0) = (6.2 \pm 1.4)\% \) has to be at least this large—and it is, within the sizable error.

We now have all the inclusive \(K\overline{K} \) fractions. We use \(f(K^+\overline{K}^0) = 2 f(K^+ K_S^0) \), and likewise for \(f(K^- K^0) \). For \(K^+ K^- \) and \(K_S^0 K_L^0 \), we subtract off the contributions from \(\phi\ell^+\nu \) decay to get the purely hadronic \(K\overline{K} \) inclusive fractions:

\[
\begin{align*}
f(K^+ K^-, \text{hadronic}) &= (15.8 \pm 0.7) - (2.1 \pm 0.3) \\
&= (13.7 \pm 0.8)\%
\end{align*}
\]

\[
\begin{align*}
f(K^+\overline{K}^0, \text{hadronic}) &= (11.6 \pm 1.0)\% \\
f(K^- K^0, \text{hadronic}) &= (3.8 \pm 0.8)\% \\
f(2K_S^0 + 2K_L^0, \text{hadronic}) &= (3.4 \pm 0.6)\% \\
f(K_S^0 K_L^0, \text{hadronic}) &= (6.2 \pm 1.4) - (1.5 \pm 0.2) \\
&= (4.7 \pm 1.4)\% .
\end{align*}
\]

The fractions are shown in Fig. 83.1. They total \((37.2 \pm 2.2)\%\) of \(D_s^+ \) decays.

We can add more information to the figure by summing up measured branching fractions for exclusive modes within each bin:

\(K^+ K^- \) modes—The sum of measured \(K^+ K^- \pi^+ \), \(K^+ K^- \pi^+ \pi^0 \), and \(K^+ K^- 2\pi^+ \pi^- \) branching fractions is \((12.6 \pm 0.6)\%\). That leaves \((1.1 \pm 1.0)\% \) for the \(K^+ K^- \pi^+ 2\pi^0 \) mode, which is the only other \(K^+ K^- \) mode with three or fewer pions. In Fig. 83.1, this unmeasured part of the \(K^+ K^- \) bin is shaded.

\(K^+\overline{K}^0 \) modes—Two times the sum of the measured \(K^+ K_S^0 \), \(K^+ K_S^0 \pi^0 \), and \(K^+ K_S^0 \pi^+ \pi^- \) branching fractions is \((8.0 \pm 0.5)\%\). This leaves \((3.6 \pm 1.1)\% \) for the unmeasured \(K^+\overline{K}^0 \) modes (there are three such modes with three or fewer pions). This is shaded in the figure.

\(K^- K^0 \) modes—Twice the \(K^- K_S^0 \pi^+ \) fraction is \((3.4 \pm 0.2)\%\), which leaves about \((0.4 \pm 0.8)\% \) for \(K^- K_S^0 \pi^+ \pi^0 \), the only other \(K^- K^0 \) mode with three or fewer pions.

\(2K_S^0 + 2K_L^0 \) modes—The \(2K_S^0 \pi^+ \) and \(2K_S^0 \pi^+ \pi^- \) fractions sum to \((0.86 \pm 0.07)\%\); this times two (for the corresponding \(2K_L^0 \) modes) is \((1.72 \pm 0.14)\%\). This leaves about \((1.7 \pm 0.7)\% \) for other \(2K_S^0 + 2K_L^0 \) modes.

\(K_S^0 K_L^0 \) modes—Most of the \(K_S^0 K_L^0 \) fraction is accounted for by \(\phi \) decays (see below).
4 83. D_s^+ branching fractions

83.3. Inclusive hadronic η, ω, η', and ϕ fractions

These are easier. We start with the inclusive branching fractions, and then, to avoid double counting, subtract: (1) fractions for modes with leptons; (2) η mesons that are included in the inclusive η' fraction; and (3) K^+K^- and $K_S^0K_L^0$ from ϕ decays:

$$f(\eta \text{ hadronic}) = f(\eta \text{ inclusive}) - 0.65 f(\eta' \text{ inclusive})$$
$$- f(\eta\ell^+\nu) = (18.5 \pm 3.0)\%$$
$$f(\omega \text{ hadronic}) = f(\omega \text{ inclusive}) - 0.026 f(\eta' \text{ inclusive})$$
$$= (5.8 \pm 1.4)\%$$
$$f(\eta' \text{ hadronic}) = f(\eta' \text{ inclusive}) - f(\eta'\ell^+\nu)$$
$$= (8.5 \pm 1.5)\%$$
$$f(\phi \text{ hadronic, } \not\to K\bar{K}) = 0.17 \left[f(\phi \text{ inclusive}) - f(\phi\ell^+\nu)\right]$$
$$= (1.9 \pm 0.2)\%.$$

The factors 0.65, 0.026, and 0.17 are the $\eta' \to \eta$, $\eta' \to \omega$, and $\phi \not\to K\bar{K}$ branching fractions. Figure 83.1 shows the results; the sum is $(34.7 \pm 3.6)\%$, which is about equal to the hadronic $K\bar{K}$ total.

Note that the bin marked ϕ near the top of Fig. 83.1 includes neither the $\phi\ell^+\nu$ decays nor the 83% of other ϕ decays that produce a $K\bar{K}$ pair. There is twice as much ϕ in the $K_S^0K_L^0$ bin, and nearly three times as much in the K^+K^- bin. These contributions are indicated in those bins.

Again, we can show how much of each bin is accounted for by measured exclusive branching fractions:

η modes—The sum of $\eta\pi^+$, $\eta\pi^+\pi^0$ (nearly all $\eta\rho^+$), and ηK^+ branching fractions is $(11.1 \pm 1.2)\%$, which leaves a good part of the inclusive hadronic η fraction, $(18.5 \pm 3.0)\%$, to be accounted for. This is shaded in the figure.

ω modes—The sum of $\omega\pi^+$, $\omega\pi^+\pi^0$, and $\omega 2\pi^+\pi^-$ fractions is $(4.6 \pm 0.9)\%$, which is nearly as large as the inclusive hadronic ω fraction, $(5.8 \pm 1.4)\%$.

η' modes—The sum of $\eta'\pi^+$, $\eta'\rho^+$, and $\eta' K^+$ fractions is $(9.9 \pm 1.5)\%$, which is larger than but not in serious disagreement with the inclusive hadronic η' fraction, $(8.5 \pm 1.5)\%$.

83.4. Cabibbo-suppressed modes

The sum of the fractions for modes with a $K\bar{K}$, η, ω, η', or leptons is $(89.9 \pm 4.4)\%$. The remaining $(10.1 \pm 4.4)\%$ is to Cabibbo-suppressed modes, mainly single-K^+ pions and multiple-pion modes (see below). However, it should be noted that some small parts of the modes already discussed are Cabibbo-suppressed. For example, the $(1.1 \pm 0.2)\%$ of D_s^+ decays to $K^0\ell\nu$ or $K^{*0}\ell\nu$ is already in the $X\ell\nu$ bin in Fig. 83.1. And the inclusive measurements of η, ω, and η' fractions do not distinguish between (and therefore include
both) Cabibbo-allowed and -suppressed modes. We shall not try to make a separation here.

\[K^0 + \text{pions} \]—Above, we found that \(f(\text{single } K^0_S) = (1.7 \pm 0.2)\% \). Subtracting semileptonic fractions with a \(K^0_S \) leaves \((1.3 \pm 0.2)\% \). The hadronic single-\(K^0 \) fraction is twice this, about \((2.6 \pm 0.4)\% \). The sum of measured \(K^0 \pi^+ \), \(K^0 \pi^+ \pi^0 \), and \(K^0 2\pi^+ \pi^- \) fractions is \((1.8 \pm 0.3)\% \), about two-thirds as much.

\[K^+ + \text{pions} \]—The \(K^+ \pi^0 \) and \(K^+ \pi^+ \pi^- \) fractions sum to \((0.72 \pm 0.05)\% \). The total \(K^+ \) fraction wanted here is probably in the 1-to-2\% range.

\[\text{Multi-pions} \]—The \(2\pi^+ \pi^- \), \(\pi^+ 2\pi^0 \), and \(3\pi^+ 2\pi^- \) fractions total \((2.5 \pm 0.2)\% \). Modes not measured might double this.

The sum of the actually measured fractions is, including the semileptons, \((4.9 \pm 0.3)\% \). The error on our Cabibbo-suppressed total, \((10.1 \pm 4.4)\% \) is too large to know how much we might be missing.

References: