\(\Sigma(1580) \ 3/2^- \)

\[I(J^P) = 1(3^-) \]

Status: *

Omitted from Summary Table

Seen in the isospin-1 \(\bar{K}N \) cross section at BNL (LI 73, CARROLL 76) and in a partial-wave analysis of \(K^- p \rightarrow \Lambda \pi^0 \) for c.m. energies 1560–1600 MeV by LITCHFIELD 74. LITCHFIELD 74 finds \(J^P = 3/2^- \). Not seen by ENGLER 78, CAMERON 78C, OLMSTED 04, nor by PRAKHOV 04.

Neither ZHANG 13A nor SARANTSEV 19 see any evidence for this state.

\(\Sigma(1580) \) Pole Position

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1607^{+13}_{-11}</td>
<td>1 KAMANO 15 DPWA Multichannel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) From the preferred solution A in KAMANO 15. Solution B reports \(M = 1492^{+4}_{-7} \) MeV.

\[-2 \times \text{Imaginary Part} \]

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>253^{+30}_{-18}</td>
<td>2 KAMANO 15 DPWA Multichannel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^2\) From the preferred solution A in KAMANO 15. Solution B reports \(M = 138^{+8}_{-14} \) MeV.

\(\Sigma(1580) \) Pole Residues

The “normalized residue” is the residue divided by \(\Gamma_{\text{pole}}/2 \).

Normalized Residue in \(N\bar{K} \rightarrow \Sigma(1580) \rightarrow N\bar{K} \)

<table>
<thead>
<tr>
<th>MODULUS</th>
<th>PHASE ((^\circ))</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00778</td>
<td>51 (^3) KAMANO 15 DPWA Multichannel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^3\) From the preferred solution A in KAMANO 15.

Normalized Residue in \(N\bar{K} \rightarrow \Sigma(1580) \rightarrow \Sigma\pi \)

<table>
<thead>
<tr>
<th>MODULUS</th>
<th>PHASE ((^\circ))</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0625</td>
<td>-6 (^4) KAMANO 15 DPWA Multichannel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^4\) From the preferred solution A in KAMANO 15.
Normalized residue in $N\bar{K} \rightarrow \Sigma(1580) \rightarrow \Lambda \pi$

<table>
<thead>
<tr>
<th>MODULUS</th>
<th>PHASE (°)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.059</td>
<td>156</td>
<td>5 KAMANO</td>
<td>15</td>
<td>DPWA Multichannel</td>
</tr>
</tbody>
</table>

5 From the preferred solution A in KAMANO 15.

Normalized residue in $N\bar{K} \rightarrow \Sigma(1580) \rightarrow \Sigma(1385) \pi$, S-wave

<table>
<thead>
<tr>
<th>MODULUS</th>
<th>PHASE (°)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0368</td>
<td>−18</td>
<td>6 KAMANO</td>
<td>15</td>
<td>DPWA Multichannel</td>
</tr>
</tbody>
</table>

6 From the preferred solution A in KAMANO 15.

Normalized residue in $N\bar{K} \rightarrow \Sigma(1580) \rightarrow \Sigma(1385) \pi$, D-wave

<table>
<thead>
<tr>
<th>MODULUS</th>
<th>PHASE (°)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0103</td>
<td>123</td>
<td>7 KAMANO</td>
<td>15</td>
<td>DPWA Multichannel</td>
</tr>
</tbody>
</table>

7 From the preferred solution A in KAMANO 15.

$\Sigma(1580)$ Mass

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>≈ 1580 OUR ESTIMATE</td>
<td>8 CARROLL 76</td>
<td>DPWA</td>
<td>Isospin-1 total σ</td>
</tr>
<tr>
<td>1583 ± 4</td>
<td>9 LITCHFIELD 74</td>
<td>DPWA</td>
<td>$K^- p \rightarrow \Lambda \pi^0$</td>
</tr>
</tbody>
</table>

8 CARROLL 76 sees a total-cross-section bump with $(J+1/2) \Gamma_{el} / \Gamma_{total} = 0.06$.

9 The main effect observed by LITCHFIELD 74 is in the $\Lambda \pi$ final state; the $\bar{K}N$ and $\Sigma \pi$ couplings are estimated from a multichannel fit including total-cross-section data of LI 73.

$\Sigma(1580)$ Width

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>10 CARROLL 76</td>
<td>DPWA</td>
<td>Isospin-1 total σ</td>
</tr>
<tr>
<td>11 ± 4</td>
<td>11 LITCHFIELD 74</td>
<td>DPWA</td>
<td>$K^- p \rightarrow \Lambda \pi^0$</td>
</tr>
</tbody>
</table>

10 CARROLL 76 sees a total-cross-section bump with $(J+1/2) \Gamma_{el} / \Gamma_{total} = 0.06$.

11 The main effect observed by LITCHFIELD 74 is in the $\Lambda \pi$ final state; the $\bar{K}N$ and $\Sigma \pi$ couplings are estimated from a multichannel fit including total-cross-section data of LI 73.
Σ(1580) DECAY MODES

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma_1)</td>
<td>(N \bar{K})</td>
</tr>
<tr>
<td>(\Gamma_2)</td>
<td>(\Lambda \pi)</td>
</tr>
<tr>
<td>(\Gamma_3)</td>
<td>(\Sigma \pi)</td>
</tr>
<tr>
<td>(\Gamma_4)</td>
<td>(\Sigma(1385)\pi, S\text{-wave})</td>
</tr>
<tr>
<td>(\Gamma_5)</td>
<td>(\Sigma(1385)\pi, D\text{-wave})</td>
</tr>
<tr>
<td>(\Gamma_6)</td>
<td>(N \bar{K}^*(892), S=1/2, D\text{-wave})</td>
</tr>
<tr>
<td>(\Gamma_7)</td>
<td>(N \bar{K}^*(892), S=3/2, S\text{-wave})</td>
</tr>
<tr>
<td>(\Gamma_8)</td>
<td>(N \bar{K}^*(892), S=3/2, D\text{-wave})</td>
</tr>
</tbody>
</table>

Σ(1580) BRANCHING RATIOS

See “Sign conventions for resonance couplings” in the Note on \(\Lambda \) and \(\Sigma \) Resonances.

<table>
<thead>
<tr>
<th>(\Gamma(N \bar{K})/\Gamma_{\text{total}})</th>
<th>(\Gamma_1/\Gamma)</th>
<th>(\Gamma_2/\Gamma)</th>
<th>(\Gamma_3/\Gamma)</th>
<th>(\Gamma_4/\Gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma(N \bar{K})/\Gamma_{\text{total}})</td>
<td>(+0.03 \pm 0.01)</td>
<td>(0.490)</td>
<td>(0.387)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>VALUE</td>
<td>DOCUMENT ID</td>
<td>TECN</td>
<td>COMMENT</td>
<td>COMMENT</td>
</tr>
<tr>
<td>(\Gamma(N \bar{K})/\Gamma_{\text{total}})</td>
<td>(+0.03 \pm 0.01)</td>
<td>12 LITCHFIELD 74</td>
<td>DPWA (\bar{K}N) multichannel</td>
<td>(0.490)</td>
</tr>
<tr>
<td>(\Gamma(N \bar{K})/\Gamma_{\text{total}})</td>
<td>(0.387)</td>
<td>15 KAMANO 15</td>
<td>DPWA Multichannel</td>
<td>(0.12)</td>
</tr>
<tr>
<td>(\Gamma(N \bar{K})/\Gamma_{\text{total}})</td>
<td>(0.12)</td>
<td>16 KAMANO 15</td>
<td>DPWA Multichannel</td>
<td>(0.12)</td>
</tr>
<tr>
<td>(\Gamma(N \bar{K})/\Gamma_{\text{total}})</td>
<td>(0.12)</td>
<td>16 KAMANO 15</td>
<td>DPWA Multichannel</td>
<td>(0.12)</td>
</tr>
</tbody>
</table>

\(\Gamma_1/\Gamma \): We do not use the following data for averages, fits, limits, etc. \(\left. \right| \) \(\left. \right| \) \(\left. \right| \)

\(\Gamma_2/\Gamma \): We do not use the following data for averages, fits, limits, etc. \(\left. \right| \) \(\left. \right| \) \(\left. \right| \)

\(\Gamma_3/\Gamma \): We do not use the following data for averages, fits, limits, etc. \(\left. \right| \) \(\left. \right| \) \(\left. \right| \)

\(\Gamma_4/\Gamma \): We do not use the following data for averages, fits, limits, etc. \(\left. \right| \) \(\left. \right| \) \(\left. \right| \)
<table>
<thead>
<tr>
<th>(\Gamma(\Sigma(1385)^0)), D-wave (/ \Gamma_{\text{total}})</th>
<th>(\Gamma_5/\Gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>DOCUMENT ID</td>
</tr>
<tr>
<td>(\bullet \cdot \bullet) We do not use the following data for averages, fits, limits, etc.</td>
<td>17 KAMANO 15</td>
</tr>
</tbody>
</table>
| 0.001 | 17 KAMANO 15 | DPWA Multichannel | From the preferred solution A in KAMANO 15.

<table>
<thead>
<tr>
<th>(\Gamma(N^{\ast}(892), S=1/2)), D-wave (/ \Gamma_{\text{total}})</th>
<th>(\Gamma_6/\Gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>DOCUMENT ID</td>
</tr>
</tbody>
</table>
| \(\bullet \cdot \bullet \) We do not use the following data for averages, fits, limits, etc. | 18 KAMANO 15 | DPWA Multichannel | From the preferred solution A in KAMANO 15.
| not seen | 18 KAMANO 15 | DPWA Multichannel | |

<table>
<thead>
<tr>
<th>(\Gamma(N^{\ast}(892), S=3/2)), S-wave (/ \Gamma_{\text{total}})</th>
<th>(\Gamma_7/\Gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>DOCUMENT ID</td>
</tr>
</tbody>
</table>
| \(\bullet \cdot \bullet \) We do not use the following data for averages, fits, limits, etc. | 19 KAMANO 15 | DPWA Multichannel | From the preferred solution A in KAMANO 15.
| not seen | 19 KAMANO 15 | DPWA Multichannel | |

<table>
<thead>
<tr>
<th>(\Gamma(N^{\ast}(892), S=3/2)), D-wave (/ \Gamma_{\text{total}})</th>
<th>(\Gamma_8/\Gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>DOCUMENT ID</td>
</tr>
</tbody>
</table>
| \(\bullet \cdot \bullet \) We do not use the following data for averages, fits, limits, etc. | 20 KAMANO 15 | DPWA Multichannel | From the preferred solution A in KAMANO 15.
| not seen | 20 KAMANO 15 | DPWA Multichannel | |

<table>
<thead>
<tr>
<th>((\Gamma_1 \Gamma_2)^{1/2}/\Gamma_{\text{total}}) in (N^\ast \rightarrow \Sigma(1580) \rightarrow \Lambda \pi)</th>
<th>((\Gamma_1 \Gamma_2)^{1/2}/\Gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>DOCUMENT ID</td>
</tr>
<tr>
<td>not seen</td>
<td>CAMERON 78C</td>
</tr>
<tr>
<td>not seen</td>
<td>ENGLER 78</td>
</tr>
<tr>
<td>(+0.10 \pm 0.02)</td>
<td>21 LITCHFIELD 74</td>
</tr>
<tr>
<td>(+0.10 \pm 0.02)</td>
<td>21 LITCHFIELD 74</td>
</tr>
</tbody>
</table>

21 The main effect observed by LITCHFIELD 74 is in the \(\Lambda \pi \) final state; the \(\overline{K} N \) and \(\Sigma \pi \) couplings are estimated from a multichannel fit including total-cross-section data of \(\Lambda \pi \) at 73.

<table>
<thead>
<tr>
<th>((\Gamma_1 \Gamma_3)^{1/2}/\Gamma_{\text{total}}) in (N^\ast \rightarrow \Sigma(1580) \rightarrow \Sigma \pi)</th>
<th>((\Gamma_1 \Gamma_3)^{1/2}/\Gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>DOCUMENT ID</td>
</tr>
<tr>
<td>not seen</td>
<td>CAMERON 78C</td>
</tr>
<tr>
<td>not seen</td>
<td>ENGLER 78</td>
</tr>
<tr>
<td>(+0.03 \pm 0.04)</td>
<td>22 LITCHFIELD 74</td>
</tr>
<tr>
<td>(+0.03 \pm 0.04)</td>
<td>22 LITCHFIELD 74</td>
</tr>
</tbody>
</table>

22 The main effect observed by LITCHFIELD 74 is in the \(\Lambda \pi \) final state; the \(\overline{K} N \) and \(\Sigma \pi \) couplings are estimated from a multichannel fit including total-cross-section data of \(\Lambda \pi \) at 73.
\(\Sigma(1580) \) REFERENCES

<table>
<thead>
<tr>
<th>Name</th>
<th>Volume</th>
<th>Journal</th>
<th>Pages</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarantsev</td>
<td>19</td>
<td>EPJ A55</td>
<td>180</td>
<td>A.V. Sarantsev et al. (BONN, PNPI)</td>
</tr>
<tr>
<td>Kamano</td>
<td>15</td>
<td>PR C92</td>
<td>025205</td>
<td>H. Kamano et al. (ANL, OSAK)</td>
</tr>
<tr>
<td>Zhang</td>
<td>13A</td>
<td>PR C88</td>
<td>035205</td>
<td>H. Zhang et al. (KSU)</td>
</tr>
<tr>
<td>Olmsted</td>
<td>04</td>
<td>PL B588</td>
<td>29</td>
<td>J. Olmsted et al. (BNL Crystal Ball Collab.)</td>
</tr>
<tr>
<td>Prakhov</td>
<td>04</td>
<td>PR C69</td>
<td>042202</td>
<td>S. Prakhov et al. (BNL Crystal Ball Collab.)</td>
</tr>
<tr>
<td>Cameron</td>
<td>78C</td>
<td>NP B132</td>
<td>189</td>
<td>W. Cameron et al. (BGNA, EDIN, GLAS+)</td>
</tr>
<tr>
<td>Engler</td>
<td>78</td>
<td>PR D18</td>
<td>3061</td>
<td>A. Engler et al. (CMU, ANL)</td>
</tr>
<tr>
<td>Carroll</td>
<td>76</td>
<td>PRL 37</td>
<td>806</td>
<td>A.S. Carroll et al. (BNL)</td>
</tr>
<tr>
<td>Litchfield</td>
<td>74</td>
<td>PL 51B</td>
<td>509</td>
<td>P.J. Litchfield (CERN)</td>
</tr>
<tr>
<td>Li</td>
<td>73</td>
<td>Purdue Conf. 283</td>
<td>K.K. Li</td>
<td>(BNL)</td>
</tr>
</tbody>
</table>

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)