84. Charmed Baryons

Revised August 2019 by C.G. Wohl (LBNL).

Figure 84.1(a) shows the spectrum of the charmed baryons- there are now 24 of them. The $\Lambda_{c}(2860)$ and the top five Ω_{c}^{0} 's are new with this 2018 edition. Figure 84.1(b) shows the spectrum of the eleven known bottom baryons. Since the latter set differs only by the replacement of a charm quark with a bottom quark, the spectra ought to be very similar-and they are. We discuss the charmed baryons here; nearly all we say would apply to the bottom baryons with the replacement of a c with a b.

Figure 84.1: (a) The 24 known charmed baryons, and (b) the eleven know bottom baryons. We discuss the charmed baryons; similar remarks would apply to the bottom baryons. The five $J^{P}=1 / 2^{+}$states, all tabbed with a circle, belong to the $u d s c-\operatorname{SU}(4)$ multiplet that includes the nucleon. States with a circle with the same fill belong to the same $\mathrm{SU}(3)$ multiplet within that $\mathrm{SU}(4)$ multiplet (see below). The three $J^{P}=3 / 2^{+}$states tabbed with a square belong to the $\mathrm{SU}(4)$ multiplet that includes the $\Delta(1232)$. The $J^{P}=1 / 2^{-}$and $3 / 2^{-}$states tabbed with triangles complete two $\operatorname{SU}(4) \overline{4}$ multiplets.
P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

2 84. Charmed baryons

We review briefly the theory of $\operatorname{SU}(4)$ multiplets, which tells what charmed baryons to expect.

84.1. $\mathrm{SU}(4)$ multiplets

Baryons made from u, d, s, and c quarks belong to $\mathrm{SU}(4)$ multiplets. The multiplet numerology, analogous to $3 \times 3 \times 3=10+81+82+1$ for the subset of baryons made from just u, d, and s quarks, is $4 \times 4 \times 4=20+20_{1}^{\prime}+20_{2}^{\prime}+\overline{4}$. Figure 84.2 (a) shows the 20 -plet whose bottom level is an $\operatorname{SU}(3)$ decuplet, such as the decuplet that includes the $\Delta(1232)$; each of its three sloping faces are also decuplets. Figure 84.2 (b) shows the 20^{\prime}-plet whose bottom level is an $\mathrm{SU}(3)$ octet, such as the octet that includes the nucleon; each of its three sloping faces are also octets. Figure 84.2(c) shows the $\overline{4}$ multiplet, an inverted tetrahedron; each of its sloping faces are also triangles. The tetrahedral symmetry of the diagrams is of course what the $\operatorname{SU}(4)$ symmetry is about. As the masses in a multiplet are widely different, the symmetry is badly broken, but that does not spoil it as a classification scheme.

Figure 84.2: $\operatorname{SU}(4)$ multiplets of baryons made of u, d, s, and c quarks. (a) The 20 -plet with an $\operatorname{SU}(3)$ decuplet on the lowest level. (b) The 20^{\prime}-plet with an $\operatorname{SU}(3)$ octet on the lowest level. (c) The $\overline{4}$-plet. Note that here and in Fig. 84.3, but not in Fig. 84.1, each charge state is shown separately.

The baryons with one c quark are one level up from the bottom of each multiplet. The baryons in a given multiplet all have the same spin and parity. Each N or Δ or $\mathrm{SU}(3)$-singlet- Λ resonance calls for another 20^{\prime} - or 20 - or $\overline{4}$-plet, respectively. We expect
to find (and do!) in the same $J^{P}=1 / 2^{+} 20^{\prime}$-plet as the nucleon a Λ_{c}, a Σ_{c}, two Ξ_{c} 's, and an Ω_{c}. Note that this Ω_{c} has $J^{P}=1 / 2^{+}$and is not in the same $\mathrm{SU}(4)$ multiplet as the famous $J^{P}=3 / 2^{+} \Omega^{-}$.

Figure 84.3 shows in more detail the middle level of the 20 '-plet of Fig. 84.2, which splits apart into two $\mathrm{SU}(3)$ multiplets, a $\overline{3}$ and a 6 . The states of the $\overline{3}$ are antisymmetric under the interchange of the two light quarks (the u, d, and s quarks), whereas the states of the 6 are symmetric under this interchange. We use a prime to distinguish the Ξ_{c} in the 6 from the one in the $\overline{3}$.

Figure 84.3: The $\operatorname{SU}(3)$ multiplets on the second level of the $\mathrm{SU}(4)$ multiplet of Fig. 84.2(b). The Λ_{c} and Ξ_{c} tabbed with closed circles in Fig. 84.1(a) complete a $J^{P}=1 / 2^{+} \operatorname{SU}(3) \overline{3}$-plet, as in (a) here. The Σ_{c}, Ξ_{c}, and Ω_{c} tabbed with open circles in Fig. 84.1(a) complete a $J^{P}=1 / 2^{+} \mathrm{SU}(3) 6$-plet, as in (b) here. Together the nine particles complete the charm $=+1$ level of a $J^{P}=1 / 2^{+} \operatorname{SU}(4) 20^{\prime}$-plet, as in Fig. 84.2(b).

The spacing in mass of the particles with open circles in Figs. 84.1(a) and (b) and with squares in Fig. 84.1(a) brings to mind an old, approximate U-spin rule for the mass differences, one to the next, between the $\Delta(1232)^{-}, \Sigma(1385)^{-}, \Xi(1530)^{-}$, and Ω^{-}, which lie along the bottom left edge of the multiplet in Fig. 84.2(a): the differences should be and are about equal.* The same rule also predicts that the mass differences along the left edges of the 6 -plets on the second level of Fig. 84.2(a) and in Figure 84.3(b) should

[^0]
4 84. Charmed baryons

be the same. It does not work well here:

$$
\begin{array}{lcccc}
& \frac{\text { Particle } 1}{} & \frac{\text { Particle } 2}{} & & \text { Mass difference (MeV) } \\
J=3 / 2: & \Xi_{c}(2645)^{0} & \Sigma_{c}(2520)^{0} & 127.90 \pm 0.29 \\
& \Omega_{c}(2770)^{0} & \Xi_{c}(2645)^{0} & 119.5 \pm 2.0 \\
J=1 / 2: & \Xi_{c}^{\prime 0} & \Sigma_{c}(2455)^{0} & 125.5 \pm 0.5 \\
& \Omega_{c}^{0} & \Xi_{c}^{\prime 0} & 116.4 \pm 1.8 \\
J=1 / 2: & \Xi_{b}^{\prime}(5935)^{-} & \Sigma_{b}^{-} & 119.38 \pm 0.27 \\
& \Omega_{b}^{-} & \Xi_{b}^{\prime}(5935)^{-} & 111.1 \pm 1.7
\end{array}
$$

For what it is worth, the rule fails by the same amount in the three cases: 8.4 ± 2.0, 9.5 ± 1.9, and $8.3 \pm 1.7 \mathrm{MeV}$. This is not the place for further explorations of the mass spectra.

[^0]: * Reminder: the mass is part of a particle's name if it decays strongly.

