CP Violation in $K_S \rightarrow 3\pi$

Written 1996 by T. Nakada (Paul Scherrer Institute) and L. Wolfenstein (Carnegie-Mellon University).

The possible final states for the decay $K^0 \to \pi^+\pi^-\pi^0$ have isospin I = 0, 1, 2, and 3. The I = 0 and I = 2 states have CP = +1 and K_S can decay into them without violating CP symmetry, but they are expected to be strongly suppressed by centrifugal barrier effects. The I = 1 and I = 3 states, which have no centrifugal barrier, have CP = -1 so that the K_S decay to these requires CP violation.

In order to see CP violation in $K_S \to \pi^+ \pi^- \pi^0$, it is necessary to observe the interference between K_S and K_L decay, which determines the amplitude ratio

$$\eta_{+-0} = \frac{A(K_S \to \pi^+ \pi^- \pi^0)}{A(K_L \to \pi^+ \pi^- \pi^0)} \ . \tag{1}$$

If η_{+-0} is obtained from an integration over the whole Dalitz plot, there is no contribution from the I = 0 and I = 2 final states and a nonzero value of η_{+-0} is entirely due to CP violation.

Only I = 1 and I = 3 states, which are CP = -1, are allowed for $K^0 \to \pi^0 \pi^0 \pi^0$ decays and the decay of K_S into $3\pi^0$ is an unambiguous sign of CP violation. Similarly to η_{+-0} , η_{000} is defined as

$$\eta_{000} = \frac{A(K_S \to \pi^0 \pi^0 \pi^0)}{A(K_L \to \pi^0 \pi^0 \pi^0)} \ . \tag{2}$$

If one assumes that CPT invariance holds and that there are no transitions to I = 3 (or to nonsymmetric I = 1 states), it can be shown that

$$\eta_{+-0} = \eta_{000}$$
$$= \epsilon + i \frac{\text{Im } a_1}{\text{Re } a_1} . \tag{3}$$

With the Wu-Yang phase convention, a_1 is the weak decay amplitude for K^0 into I = 1 final states; ϵ is determined from CP violation in $K_L \to 2\pi$ decays. The real parts of η_{+-0} and η_{000} are equal to $\operatorname{Re}(\epsilon)$. Since currently-known upper limits on $|\eta_{+-0}|$ and $|\eta_{000}|$ are much larger than $|\epsilon|$, they can be interpreted as upper limits on $\operatorname{Im}(\eta_{+-0})$ and $\operatorname{Im}(\eta_{000})$ and so as limits on the CP-violating phase of the decay amplitude a_1 .

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)