(1)

Dalitz Plot Parameters for $K \to 3\pi$ Decays

Revised 1999 by T.G. Trippe (LBNL).

The Dalitz plot distribution for $K^\pm \to \pi^\pm \pi^\pm \pi^\mp$, $K^\pm \to \pi^0 \pi^0 \pi^\pm$, and $K_L^0 \to \pi^+ \pi^- \pi^0$

se the form
$$\left|M\right|^2 \propto 1+grac{(s_3-s_0)}{m^2_\perp}+h\left[rac{s_3-s_0}{m^2_\perp}
ight]^2$$

$$+j \frac{(s_2-s_1)}{m_{\perp}^2} + k \left[\frac{s_2-s_1}{m_{\perp}^2} \right]^2$$

$$+j \frac{(s_2-s_1)}{m_{\pi^+}^2} + k \left[\frac{s_2-s_1}{m_{\pi^+}^2} \right]$$

$$(s_2-s_1)(s_3-s_0)$$

$$+f \frac{(s_2 - s_1)}{m_{\pi^+}^2} \frac{(s_3 - s_0)}{m_{\pi^+}^2} + \cdots ,$$

$$+f \frac{(s_2-s_1)}{m_{\pi^+}^2} \frac{(s_3-s_0)}{m_{\pi^+}^2} + \cdot$$

$$s_i = (P_K - P_i)^2 = (m_K - m_i)^2 - 2m_K T_i , i = 1, 2, 3,$$

$$s_0 = \frac{1}{3} \sum_i s_i = \frac{1}{3} (m_K^2 + m_1^2 + m_2^2 + m_3^2) .$$

Here the
$$P_i$$
 are four-vectors, m_i and T_i are the mass and kinetic energy of the i^{th} pion, and the index 3 is used for the odd pion.

The coefficient g is a measure of the slope in the variable s_3 (or T_3) of the Dalitz plot, while h and k measure the quadratic dependence on s_3 and $(s_2 - s_1)$, respectively. The

holds. Note also that if CP is good, g, h, and k must be the same for $K^+ \to \pi^+\pi^+\pi^-$ as for $K^- \to \pi^- \pi^- \pi^+$. Since different experiments use different forms for $|M|^2$, in order to compare the

coefficient j is related to the asymmetry of the plot and must be zero if CP invariance

where $m_{\pi^{+}}^{2}$ has been introduced to make the coefficients g, h, j, and k dimensionless, and

experiments we have converted to g, h, j, and k whatever coefficients have been measured. Where such conversions have been done, the measured coefficient a_y , a_t , a_u , or a_v is

given in the comment at the right. For definitions of these coefficients, details of this

conversion, and discussion of the data, see the April 1982 version of this note [2].

References:

- S. Weinberg, Phys. Rev. Lett. 4, 87 (1960).
- Particle Data Group, Phys. Lett. **111B**, 69 (1982).
- P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)