(1)

(2)

(3)

Radiative Hyperon Decays

matrix elements (form factors) similar to that gained from weak hadronic decays. For a

frame is

 α_{γ} is

electromagnetic vertex,

by $P_f = +\alpha_{\pi}$ [2,3].

are different.

polarized spin-1/2 hyperon decaying radiatively via a $\Delta Q = 0$, $\Delta S = 1$ transition, the

The weak radiative decays of spin-1/2 hyperons, $B_i \to B_f \gamma$, yield information about

$$\frac{1}{2}$$
 pin-1/2 hyperons, nilar to that gaine

decay baryon has a longitudinal polarization given by $P_f = -\alpha_{\gamma}$ [1].

Then the hadronic version of Eq. (1) applied to the $\Lambda \to p\pi^-$ decay gives

CERN NA48/1 experiment [4], is $\alpha_{\Xi\Lambda\gamma} = -0.704 \pm 0.019 \pm 0.064$.

angular distribution of the direction $\hat{\mathbf{p}}$ of the final spin-1/2 baryon in the hyperon rest

 $\frac{dN}{d\Omega} = \frac{N}{4\pi} \left(1 + \alpha_{\gamma} \mathbf{P}_{i} \cdot \hat{\mathbf{p}} \right) .$

Here \mathbf{P}_i is the polarization of the decaying hyperon, and α_{γ} is the asymmetry parameter. In terms of the form factors $F_1(q^2)$, $F_2(q^2)$, and $G(q^2)$ of the effective hadronic weak

 $F_1(q^2)\gamma_{\lambda} + iF_2(q^2)\sigma_{\lambda\mu}q^{\mu} + G(q^2)\gamma_{\lambda}\gamma_5$,

 $\alpha_{\gamma} = \frac{2 \operatorname{Re}[G(0) F_M^*(0)]}{|G(0)|^2 + |F_M(0)|^2} ,$

where $F_M = (m_i - m_f)[F_2 - F_1/(m_i + m_f)]$. If the decaying hyperon is unpolarized, the

The angular distribution for the weak hadronic decay, $B_i \to B_f \pi$, has the same form as Eq. (1), but of course with a different asymmetry parameter, α_{π} . Now, however, if the decaying hyperon is unpolarized, the decay baryon has a longitudinal polarization given

 $\Xi^0 \to \Lambda \gamma \ decay$ — The radiative decay $\Xi^0 \to \Lambda \gamma$ of an unpolarized Ξ^0 uses the hadronic decay $\Lambda \to p\pi^-$ as the analyzer. As noted above, the longitudinal polarization of the Λ will be $P_{\Lambda} = -\alpha_{\Xi\Lambda\gamma}$. Let α_- be the $\Lambda \to p\pi^-$ asymmetry parameter and $\theta_{\Lambda p}$ be the angle, as seen in the Λ rest frame, between the Λ line of flight and the proton momentum.

 $\frac{dN}{d\cos\theta_{\Lambda p}} = \frac{N}{2} \left(1 - \alpha_{\Xi\Lambda\gamma} \alpha_{-} \cos\theta_{\Lambda p} \right)$

for the angular distribution of the proton in the Λ frame. Our current value, from the

 $\Xi^0 \to \Sigma^0 \gamma$ decay— The asymmetry parameter here, $\alpha_{\Xi\Sigma\gamma}$, is measured by following the decay chain $\Xi^0 \to \Sigma^0 \gamma$, $\Sigma^0 \to \Lambda \gamma$, $\Lambda \to p\pi^-$. Again, for an unpolarized Ξ^0 , the longitudinal polarization of the Σ^0 will be $P_{\Sigma} = -\alpha_{\Xi\Sigma\gamma}$. In the $\Sigma^0 \to \Lambda\gamma$ decay, a parity-conserving magnetic-dipole transition, the polarization of the Σ^0 is transferred to the Λ , as may be seen as follows. Let $\theta_{\Sigma\Lambda}$ be the angle seen in the Σ^0 rest frame between the Σ^0 line of flight and the Λ momentum. For $\Sigma^{\bar{0}}$ helicity +1/2, the probability amplitudes for positive and negative spin states of the Σ^0 along the Λ momentum are $\cos(\theta_{\Sigma\Lambda}/2)$ and $\sin(\theta_{\Sigma\Lambda}/2)$. Then the amplitude for a negative helicity photon and a negative helicity Λ is $\cos(\theta_{\Sigma\Lambda}/2)$, while the amplitude for positive helicities for the photon

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

The difference of sign is because the spins of the pion and photon

2 Radiative hyperon decays

and Λ is $\sin(\theta_{\Sigma\Lambda}/2)$. For Σ^0 helicity -1/2, the amplitudes are interchanged. If the Σ^0 has longitudinal polarization P_{Σ} , the probabilities for Λ helicities $\pm 1/2$ are therefore

$$p(\pm 1/2) = \frac{1}{2} (1 \mp P_{\Sigma}) \cos^2(\theta_{\Sigma\Lambda}/2) + \frac{1}{2} (1 \pm P_{\Sigma}) \sin^2(\theta_{\Sigma\Lambda}/2) , \qquad (4)$$

and the longitudinal polarization of the Λ is

$$P_{\Lambda} = -P_{\Sigma} \cos \theta_{\Sigma \Lambda} = +\alpha_{\Xi \Sigma \gamma} \cos \theta_{\Sigma \Lambda} . \tag{5}$$

Using Eq. (1) for the $\Lambda \to p\pi^-$ decay again, we get for the joint angular distribution of the $\Sigma^0 \to \Lambda \gamma$, $\Lambda \to p\pi^-$ chain,

$$\frac{d^2N}{d\cos\theta_{\Sigma\Lambda}\,d\cos\theta_{\Lambda p}} = \frac{N}{4}\left(1 + \alpha_{\Xi\Sigma\gamma}\cos\theta_{\Sigma\Lambda}\,\alpha_{-}\cos\theta_{\Lambda p}\right). \tag{6}$$

Our current average for $\alpha_{\Xi\Sigma\gamma}$ is -0.69 ± 0.06 [4,5].

References:

- 1. R.E. Behrends, Phys. Rev. **111**, 1691 (1958); see Eq. (7) or (8).
- 2. In ancient times, the signs of the asymmetry term in the angular distributions of
- roughly 50 years, however, the overwhelming convention has been to make them the same. The aim, not always achieved, is to remove ambiguities.

 3. For the definition of α_{π} , see the note on "Baryon Decay Parameters" in the Neutron

radiative and hadronic decays of polarized hyperons were sometimes opposite. For

- Listings.
 4. J.R. Batley *et al.*, Phys. Lett. **B693**, 241 (2010).
- 5. A. Alavi-Harati *et al.*, Phys. Rev. Lett. **86**, 3239 (2001).