Width Determinations of the \u00e4 States

As is the case for the $J/\psi(1S)$ and $\psi(2S)$, the full widths of the $b\bar{b}$ states $\Upsilon(1S)$,

 $\Upsilon(2S)$, and $\Upsilon(3S)$ are not directly measurable, since they are much narrower than the energy resolution of the e^+e^- storage rings where these states are produced. The common indirect method to determine Γ starts from (1)

$$\Gamma = \Gamma_{\ell\ell}/B_{\ell\ell} \ , \tag{}$$

where $\Gamma_{\ell\ell}$ is one leptonic partial width and $B_{\ell\ell}$ is the corresponding branching fraction $(\ell = e, \mu, \text{ or } \tau)$. One then assumes e- μ - τ universality and uses

$$\Gamma_{\ell\ell} = \Gamma_{ee}$$

section

resonance

$$B_{\ell\ell} = \text{average of } B_{ee}, \ B_{\mu\mu}, \ \text{and } B_{\tau\tau} \ .$$

(2)The electronic partial width Γ_{ee} is also not directly measurable at e^+e^- storage rings, only in the combination $\Gamma_{ee}\Gamma_{had}/\Gamma$, where Γ_{had} is the hadronic partial width and

$$\Gamma_{\rm had} + 3\Gamma_{ee} = \Gamma$$
 . (3)
This combination is obtained experimentally from the energy-integrated hadronic cross

 $\int \sigma(e^+e^- \to \Upsilon \to \text{hadrons})dE$

$$= \frac{6\pi^2}{M^2} \frac{\Gamma_{ee} \Gamma_{had}}{\Gamma} C_r = \frac{6\pi^2}{M^2} \frac{\Gamma_{ee}^{(0)} \Gamma_{had}}{\Gamma} C_r^{(0)} ,$$
where M is the Υ mass, and C_r and $C_r^{(0)}$ are radiative correction factors. C_r is used

with potential-model calculations, is defined by the lowest order QED graph (Born term) alone, and is about 7% lower than Γ_{ee} . The Listings give experimental results on B_{ee} , $B_{\mu\mu}$, $B_{\tau\tau}$, and $\Gamma_{ee}\Gamma_{had}/\Gamma$. The entries of the last quantity have been re-evaluated consistently using the correction procedure

for obtaining Γ_{ee} as defined in Eq. (1), and contains corrections from all orders of QED for describing $(b\overline{b}) \to e^+e^-$. The lowest order QED value $\Gamma_{ee}^{(0)}$, relevant for comparison

of KURAEV 85 [1]. The partial width Γ_{ee} is obtained from the average values for $\Gamma_{ee}\Gamma_{had}/\Gamma$ and $B_{\ell\ell}$ using

$$\Gamma_{ee} = \frac{\Gamma_{ee} \Gamma_{\text{had}}}{\Gamma(1 - 3B_{\ell\ell})} \ . \tag{5}$$

The total width Γ is then obtained from Eq. (1). We do not list Γ_{ee} and Γ values of individual experiments. The Γ_{ee} values in the Meson Summary Table are also those

defined in Eq. (1). References:

E.A. Kuraev, V.S. Fadin, Sov. J. Nucl. Phys. 41, 466 (1985).

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)