QUARKS

The u-, d-, and s-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\text{MS}}$ at a scale $\mu \approx 2$ GeV. The c- and b-quark masses are the "running" masses in the $\overline{\text{MS}}$ scheme. This can be different from the heavy quark masses obtained in potential models.

$$I(J^{P}) = \frac{1}{2}(\frac{1}{2}^{+})$$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$m_d = 4.67^{+0.48}_{-0.17} \text{ MeV} \qquad \text{Charge} = -\frac{1}{3} \ e \quad I_z = -\frac{1}{2}$$

$$m_s/m_d = 17-22$$

$$\overline{m} = (m_u + m_d)/2 = 3.45^{+0.55}_{-0.15} \text{ MeV}$$

$$m_s=93^{+11}_{-5}$$
 MeV Charge $=-rac{1}{3}$ e Strangeness $=-1$ $m_s \ / \ ((m_u+m_d)/2)=27.3^{+0.7}_{-1.3}$

$$I(J^P) = 0(rac{1}{2}^+)$$
 $m_c = 1.27 \pm 0.02~{
m GeV}$ Charge $= rac{2}{3}~e$ Charm $= +1$ $m_c/m_s = 11.72 \pm 0.25$ $m_b/m_c = 4.577 \pm 0.008$ $m_b-m_c = 3.45 \pm 0.05~{
m GeV}$

b
$$I(J^P) = 0(\frac{1}{2}^+)$$

$$m_b=4.18^{+0.03}_{-0.02}~{
m GeV}$$
 Charge $=-rac{1}{3}~e$ Bottom $=-1$

Charge
$$=rac{2}{3}\;e$$
 Top $=+1$

 $I(J^P) = 0(\frac{1}{2}^+)$

$$p = +1$$

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Mass (direct measurements) $m=172.76\pm0.30$ GeV $^{[a,b]}$

Mass (from cross-section measurements) $m=162.5^{+2.1}_{-1.5}$ GeV [a

Mass (Pole from cross-section measurements) $m=172.4\pm0.7$

 $m_{t} - m_{\overline{t}} = -0.16 \pm 0.19 \text{ GeV}$ Full width $\Gamma=1.42^{+0.19}_{-0.15}~\text{GeV}~(\text{S}=1.4)$

 $\Gamma(Wb)/\Gamma(Wa(a=b, s, d)) = 0.957 \pm 0.034 \quad (S=1.5)$

Fraction (Γ_i/Γ)

 $(11.10\pm0.30)\%$

 $(11.40\pm0.20)\%$

 $(11.1 \pm 0.9)\%$

 $(66.5 \pm 1.4)\%$

[c] < 1.8

[d] < 5

< 1.2

< 1.1

1.6

t-quark EW Couplings

 $F_0 = 0.687 \pm 0.018$

 $F_{-} = 0.320 \pm 0.013$

T1

Т1

T1

T1

 $F_{\perp} = 0.002 \pm 0.011$

 $F_{V\perp A}$ < 0.29, CL = 95%

t DECAY MODES

W q(q = b, s, d)Wb

 $e\nu_e b$ $\mu \nu_{\mu} b$

 $\tau \nu_{\tau} b$ $a \overline{a} b$

 $\gamma q(q=u,c)$

 $\Delta T = 1$ weak neutral current (T1) modes Zq(q=u,c)Hи Hc

 $\ell^+ \overline{a} \overline{a}' (a=d,s,b; a'=u,c)$

b' (4th Generation) Quark, Searches for

Mass m > 46.0 GeV, CL = 95%

t' (4th Generation) Quark, Searches for m(t'(2/3)) > 1280 GeV, CL = 95%

m(t'(2/3)) > 1295 GeV, CL = 95%m(t'(2/3)) > 1310 GeV, CL = 95%

m(t'(5/3)) > 1350 GeV, CL = 95%

Mass m > 190 GeV, CL = 95% $(p\overline{p}, \text{ quasi-stable } b')$ $(B(b' \rightarrow Zb) = 1)$ Mass m > 1130 GeV, CL = 95%Mass m > 1350 GeV, CL = 95% $(B(b' \rightarrow Wt) = 1)$ $(e^+e^-, \text{ all decays})$

(singlet t')

 $\times 10^{-4}$

 $\times 10^{-4}$

 $\times 10^{-3}$

 $(B(t' \rightarrow Zt) = 1)$

 $(B(t' \rightarrow Wb) = 1)$

 $\times 10^{-3}$ 95% $\times 10^{-3}$ 95%

95%

95%

95%

Confidence level

(MeV/c)

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

- [a] A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."
- [b] Based on published top mass measurements using data from Tevatron Run-I and Run-II and LHC at $\sqrt{s}=7$ TeV. Including the most recent unpublished results from Tevatron Run-II, the Tevatron Electroweak Working Group reports a top mass of 173.2 ± 0.9 GeV. See the note "The Top Quark' in the Quark Particle Listings of this *Review*.
- [c] This limit is for $\Gamma(t \to \gamma q)/\Gamma(t \to W b)$.
- [d] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.