5. Electronic Structure of the Elements

Table 5.1. Reviewed 2011 by J.E. Sansonetti (NIST). The electronic configurations and the ionization energies are from the NIST database, “Ground Levels and Ionization Energies for the Neutral Atoms,” W.C. Martin, A. Musgrove, S. Kotochigova, and J.E. Sansonetti, http://www.nist.gov/pml/data/ion_energy.cfm. The electron configuration for, say, iron indicates an argon electronic core (see argon) plus six 3d electrons and two 4s electrons.

<table>
<thead>
<tr>
<th>Element</th>
<th>Electron configuration (3d<sup>6</sup> five 3d electrons, etc.)</th>
<th>Ground state</th>
<th>Ionization energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 H Hydrogen</td>
<td>1s</td>
<td>2S<sub>1/2</sub></td>
<td>13.5984</td>
</tr>
<tr>
<td>2 He Helium</td>
<td>1s<sup>2</sup></td>
<td>1S<sub>0</sub></td>
<td>24.5874</td>
</tr>
<tr>
<td>3 Li Lithium</td>
<td>(He)2s</td>
<td>2S<sub>1/2</sub></td>
<td>5.3917</td>
</tr>
<tr>
<td>4 Be Beryllium</td>
<td>(He)2s<sup>2</sup></td>
<td>1S<sub>0</sub></td>
<td>9.3227</td>
</tr>
<tr>
<td>5 B Boron</td>
<td>(He)2s<sup>2</sup> 2p<sup>1</sup></td>
<td>2P<sub>1/2</sub></td>
<td>8.2980</td>
</tr>
<tr>
<td>6 C Carbon</td>
<td>(He)2s<sup>2</sup> 2p<sup>2</sup></td>
<td>2P<sub>1</sub></td>
<td>11.2603</td>
</tr>
<tr>
<td>7 N Nitrogen</td>
<td>(He)2s<sup>2</sup> 2p<sup>3</sup></td>
<td>3S<sub>1/2</sub></td>
<td>14.5341</td>
</tr>
<tr>
<td>8 O Oxygen</td>
<td>(He)2s<sup>2</sup> 2p<sup>4</sup></td>
<td>3P<sub>2</sub></td>
<td>13.6181</td>
</tr>
<tr>
<td>9 F Fluorine</td>
<td>(He)2s<sup>2</sup> 2p<sup>5</sup></td>
<td>2P<sub>3/2</sub></td>
<td>17.4228</td>
</tr>
<tr>
<td>10 Ne Neon</td>
<td>(He)2s<sup>2</sup> 2p<sup>6</sup></td>
<td>1S<sub>0</sub></td>
<td>21.5645</td>
</tr>
<tr>
<td>11 Na Sodium</td>
<td>(Ne)3s</td>
<td>2S<sub>1/2</sub></td>
<td>5.1391</td>
</tr>
<tr>
<td>12 Mg Magnesium</td>
<td>(Ne)3s<sup>2</sup></td>
<td>1S<sub>0</sub></td>
<td>7.6462</td>
</tr>
<tr>
<td>13 Al Aluminum</td>
<td>(Ne)3s<sup>3</sup> 3p<sup>1</sup></td>
<td>2P<sub>1/2</sub></td>
<td>5.9858</td>
</tr>
<tr>
<td>14 Si Silicon</td>
<td>(Ne)3s<sup>2</sup> 3p<sup>2</sup></td>
<td>3P<sub>2</sub></td>
<td>8.1517</td>
</tr>
<tr>
<td>15 P Phosphorus</td>
<td>(Ne)3s<sup>2</sup> 3p<sup>3</sup></td>
<td>3S<sub>1/2</sub></td>
<td>10.4867</td>
</tr>
<tr>
<td>16 S Sulfur</td>
<td>(Ne)3s<sup>2</sup> 3p<sup>4</sup></td>
<td>3P<sub>2</sub></td>
<td>10.3600</td>
</tr>
<tr>
<td>17 Cl Chlorine</td>
<td>(Ne)3s<sup>2</sup> 3p<sup>5</sup></td>
<td>2P<sub>3/2</sub></td>
<td>12.9676</td>
</tr>
<tr>
<td>18 Ar Argon</td>
<td>(Ne)3s<sup>2</sup> 3p<sup>6</sup></td>
<td>1S<sub>0</sub></td>
<td>15.7596</td>
</tr>
<tr>
<td>19 K Potassium</td>
<td>(Ar) 4s</td>
<td>2S<sub>1/2</sub></td>
<td>4.3407</td>
</tr>
<tr>
<td>20 Ca Calcium</td>
<td>(Ar) 4s<sup>2</sup></td>
<td>1S<sub>0</sub></td>
<td>6.1132</td>
</tr>
<tr>
<td>21 Sc Scandium</td>
<td>(Ar)3d 4s<sup>2</sup></td>
<td>T</td>
<td>2D<sub>3/2</sub></td>
</tr>
<tr>
<td>22 Ti Titanium</td>
<td>(Ar)3d<sup>2</sup> 4s<sup>2</sup></td>
<td>3F<sub>2</sub></td>
<td>6.8281</td>
</tr>
<tr>
<td>23 V Vanadium</td>
<td>(Ar)3d<sup>3</sup> 4s<sup>2</sup></td>
<td>4F<sub>3/2</sub></td>
<td>6.7462</td>
</tr>
<tr>
<td>24 Cr Chromium</td>
<td>(Ar)3d<sup>6</sup> 4s<sup>2</sup></td>
<td>5S<sub>3/2</sub></td>
<td>6.7665</td>
</tr>
<tr>
<td>25 Mn Manganese</td>
<td>(Ar)3d<sup>6</sup> 4s<sup>2</sup></td>
<td>5S<sub>1/2</sub></td>
<td>7.4340</td>
</tr>
<tr>
<td>26 Fe Iron</td>
<td>(Ar)3d<sup>6</sup> 4s<sup>2</sup></td>
<td>5D<sub>3</sub></td>
<td>7.9024</td>
</tr>
<tr>
<td>27 Co Cobalt</td>
<td>(Ar)3d<sup>6</sup> 4s<sup>2</sup></td>
<td>5D<sub>3/2</sub></td>
<td>7.8810</td>
</tr>
<tr>
<td>28 Ni Nickel</td>
<td>(Ar)3d<sup>8</sup> 4s<sup>2</sup></td>
<td>5F<sub>2</sub></td>
<td>7.6399</td>
</tr>
<tr>
<td>29 Cu Copper</td>
<td>(Ar)3d<sup>9</sup> 4s<sup>2</sup></td>
<td>5F<sub>2</sub></td>
<td>7.7264</td>
</tr>
<tr>
<td>30 Zn Zinc</td>
<td>(Ar)3d<sup>10</sup> 4s<sup>2</sup></td>
<td>1S<sub>0</sub></td>
<td>9.3942</td>
</tr>
<tr>
<td>31 Ga Gallium</td>
<td>(Ar)3d<sup>10</sup> 4s<sup>2</sup> 4p</td>
<td>2P<sub>1/2</sub></td>
<td>5.9993</td>
</tr>
<tr>
<td>32 Ge Germanium</td>
<td>(Ar)3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>2</sup></td>
<td>3P<sub>0</sub></td>
<td>7.6544</td>
</tr>
<tr>
<td>33 As Arsenic</td>
<td>(Ar)3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>3</sup></td>
<td>4S<sub>1/2</sub></td>
<td>8.3964</td>
</tr>
<tr>
<td>34 Se Selenium</td>
<td>(Ar)3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>4</sup></td>
<td>3P<sub>3/2</sub></td>
<td>9.7524</td>
</tr>
<tr>
<td>35 Br Bromine</td>
<td>(Ar)3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>5</sup></td>
<td>2P<sub>3/2</sub></td>
<td>11.8138</td>
</tr>
<tr>
<td>36 Kr Krypton</td>
<td>(Ar)3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup></td>
<td>1S<sub>0</sub></td>
<td>13.9969</td>
</tr>
<tr>
<td>37 Rb Rubidium</td>
<td>(Kr) 5s<sup>2</sup></td>
<td>2S<sub>1/2</sub></td>
<td>4.1771</td>
</tr>
<tr>
<td>38 Sr Strontium</td>
<td>(Kr) 5s<sup>2</sup></td>
<td>1S<sub>0</sub></td>
<td>5.6949</td>
</tr>
<tr>
<td>39 Y Yttrium</td>
<td>(Kr)4d 5s<sup>2</sup></td>
<td>T</td>
<td>2D<sub>3/2</sub></td>
</tr>
<tr>
<td>40 Zr Zirconium</td>
<td>(Kr)4d<sup>2</sup> 5s<sup>2</sup></td>
<td>3F<sub>2</sub></td>
<td>6.6339</td>
</tr>
<tr>
<td>41 Nb Niobium</td>
<td>(Kr)4d<sup>2</sup> 5s<sup>2</sup></td>
<td>6D<sub>3/2</sub></td>
<td>6.7589</td>
</tr>
<tr>
<td>42 Mo Molybdenum</td>
<td>(Kr)4d<sup>6</sup> 5s<sup>2</sup></td>
<td>7S<sub>3/2</sub></td>
<td>7.0924</td>
</tr>
<tr>
<td>43 Tc Technetium</td>
<td>(Kr)4d<sup>6</sup> 5s<sup>2</sup></td>
<td>6S<sub>3/2</sub></td>
<td>7.28</td>
</tr>
<tr>
<td>44 Ru Ruthenium</td>
<td>(Kr)4d<sup>7</sup> 5s<sup>2</sup></td>
<td>7F<sub>2</sub></td>
<td>7.3605</td>
</tr>
<tr>
<td>45 Rh Rhodium</td>
<td>(Kr)4d<sup>7</sup> 5s<sup>2</sup></td>
<td>4F<sub>2</sub></td>
<td>7.4589</td>
</tr>
<tr>
<td>46 Pd Palladium</td>
<td>(Kr)4d<sup>10</sup> 5s<sup>2</sup></td>
<td>1S<sub>0</sub></td>
<td>8.3369</td>
</tr>
<tr>
<td>47 Ag Silver</td>
<td>(Kr)4d<sup>10</sup> 5s<sup>2</sup></td>
<td>2S<sub>1/2</sub></td>
<td>7.5762</td>
</tr>
<tr>
<td>48 Cd Cadmium</td>
<td>(Kr)4d<sup>10</sup> 5s<sup>2</sup></td>
<td>1S<sub>0</sub></td>
<td>8.9938</td>
</tr>
<tr>
<td>Z</td>
<td>Element</td>
<td>Electron Configuration</td>
<td>Spin</td>
</tr>
<tr>
<td>----</td>
<td>--------------</td>
<td>------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>19</td>
<td>Krypton</td>
<td>5s^2 5p^6</td>
<td>s</td>
</tr>
<tr>
<td>35</td>
<td>Iodine</td>
<td>5s^2 5p^6</td>
<td>p</td>
</tr>
<tr>
<td>53</td>
<td>Iodine</td>
<td>5s^2 5p^6</td>
<td>p</td>
</tr>
<tr>
<td>89</td>
<td>Actinium</td>
<td>5s^2 5p^6</td>
<td>p</td>
</tr>
</tbody>
</table>

* The usual LS coupling scheme does not apply for these three elements. See the introductory note to the NIST table from which this table is taken.