39. Probability

Revised August 2019 by G. Cowan (RHUL).

39.1 General

[1–8] An abstract definition of probability can be given by considering a set S, called the sample space, and possible subsets A, B, \ldots, the interpretation of which is left open. The probability P is a real-valued function defined by the following axioms due to Kolmogorov [9]:

1. For every subset A in S, $P(A) \geq 0$;
2. For disjoint subsets (i.e., $A \cap B = \emptyset$), $P(A \cup B) = P(A) + P(B)$;
3. $P(S) = 1$.

In addition, one defines the conditional probability $P(A|B)$ (read as P of A given B) as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$ \hspace{1cm} (39.1)

From this definition and using the fact that $A \cap B$ and $B \cap A$ are the same, one obtains Bayes’ theorem,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}. \hspace{1cm} (39.2)$$

From the three axioms of probability and the definition of conditional probability, one obtains the law of total probability,

$$P(B) = \sum_i P(B|A_i)P(A_i), \hspace{1cm} (39.3)$$

for any subset B and for disjoint A_i with $\cup_i A_i = S$. This can be combined with Bayes’ theorem (Eq. (39.2)) to give

$$P(A|B) = \frac{P(B|A)P(A)}{\sum_i P(B|A_i)P(A_i)}, \hspace{1cm} (39.4)$$

where the subset A could, for example, be one of the A_i.

The most commonly used interpretation of the elements of the sample space are outcomes of a repeatable experiment. The probability $P(A)$ is assigned a value equal to the limiting frequency of occurrence of A. This interpretation forms the basis of frequentist statistics.

The elements of the sample space might also be interpreted as hypotheses, i.e., statements that are either true or false, such as ‘The mass of the W boson lies between 80.3 and 80.5 GeV.’ Upon repetition of a measurement, however, such statements are either always true or always false, i.e., the corresponding probabilities in the frequentist interpretation are either 0 or 1. Using subjective probability, however, $P(A)$ is interpreted as the degree of belief that the hypothesis A is true. Subjective probability is used in Bayesian (as opposed to frequentist) statistics. Bayes’ theorem can be written

$$P(\text{theory}|\text{data}) \propto P(\text{data}|\text{theory})P(\text{theory}), \hspace{1cm} (39.5)$$

where ‘theory’ represents some hypothesis and ‘data’ is the outcome of the experiment. Here $P(\text{theory})$ is the prior probability for the theory, which reflects the experimenter’s degree of belief before carrying out the measurement, and $P(\text{data}|\text{theory})$ is the probability to have gotten the data actually obtained, given the theory, which is also called the likelihood.

Bayesian statistics provides no fundamental rule for obtaining the prior probability, which may depend on previous measurements, theoretical prejudices, etc. Once this has been specified,
however, Eq. (39.5) tells how the probability for the theory must be modified in the light of the new
data to give the posterior probability, \(P(\text{theory}|\text{data}) \). As Eq. (39.5) is stated as a proportionality,
the probability must be normalized by summing (or integrating) over all possible hypotheses.

39.2 Random variables

A random variable is a numerical characteristic assigned to an element of the sample space. In
the frequency interpretation of probability, it corresponds to an outcome of a repeatable experiment.

Let \(x \) be a possible outcome of an observation. If \(x \) can take on any value from a continuous range,
we write \(f(x; \theta)\,dx \) as the probability that the measurement’s outcome lies between \(x \) and \(x + dx \).
The function \(f(x; \theta) \) is called the probability density function (p.d.f.), which may depend on one or
more parameters \(\theta \). If \(x \) can take on only discrete values (e.g., the non-negative integers), then we
use \(f(x; \theta) \) to denote the probability to find the value \(x \). In the following the term p.d.f. is often
taken to cover both the continuous and discrete cases, although technically the term density should
only be used in the continuous case.

The p.d.f. is always normalized to unity. Both \(x \) and \(\theta \) may have multiple components and are
then often written as vectors. If \(\theta \) is unknown, we may wish to estimate its value from a given set
of measurements of \(x \); this is a central topic of statistics (see Sec. 40).

The cumulative distribution function \(F(a) \) is the probability that \(x \leq a \):

\[
F(a) = \int_{-\infty}^{a} f(x)\,dx. \tag{39.6}
\]

Here and below, if \(x \) is discrete-valued, the integral is replaced by a sum. The endpoint \(a \) is
expressly included in the integral or sum. Then \(0 \leq F(x) \leq 1 \), \(F(x) \) is nondecreasing, and
\(P(a < x \leq b) = F(b) - F(a) \). If \(x \) is discrete, \(F(x) \) is flat except at allowed values of \(x \), where it
has discontinuous jumps equal to \(f(x) \).

Any function of random variables is itself a random variable, with (in general) a different p.d.f.
The expectation value of any function \(u(x) \) is

\[
E[u(x)] = \int_{-\infty}^{\infty} u(x)\,f(x)\,dx, \tag{39.7}
\]

assuming the integral is finite. The expectation value is linear, i.e., for any two functions \(u \) and \(v \)
of \(x \) and constants \(c_1 \) and \(c_2 \), \(E[c_1u + c_2v] = c_1E[u] + c_2E[v] \).

The \(n^{th} \) moment of a random variable \(x \) is

\[
\alpha_n \equiv E[x^n] = \int_{-\infty}^{\infty} x^n\,f(x)\,dx, \tag{39.8a}
\]

and the \(n^{th} \) central moment of \(x \) (or moment about the mean, \(\alpha_1 \)) is

\[
m_n \equiv E[(x - \alpha_1)^n] = \int_{-\infty}^{\infty} (x - \alpha_1)^n\,f(x)\,dx. \tag{39.8b}
\]

The most commonly used moments are the mean \(\mu \) and variance \(\sigma^2 \):

\[
\mu \equiv \alpha_1, \tag{39.9a}
\]

\[
\sigma^2 \equiv V[x] \equiv m_2 = \alpha_2 - \mu^2. \tag{39.9b}
\]

The mean is the location of the “center of mass” of the p.d.f., and the variance is a measure of
the square of its width. Note that \(V[cx + k] = c^2V[x] \). It is often convenient to use the standard
deviation of \(x \), \(\sigma \), defined as the square root of the variance.
Any odd moment about the mean is a measure of the skewness of the p.d.f. The simplest of these is the dimensionless coefficient of skewness \(\gamma_1 = m_3/\sigma^3 \).

The fourth central moment \(m_4 \) provides a convenient measure of the tails of a distribution. For the Gaussian distribution (see Sec. 39.4), one has \(m_4 = 3\sigma^4 \). The kurtosis is defined as \(\gamma_2 = m_4/\sigma^4 - 3 \), i.e., it is zero for a Gaussian, positive for a leptokurtic distribution with longer tails, and negative for a platykurtic distribution with tails that die off more quickly than those of a Gaussian.

The quantile \(x_\alpha \) is the value of the random variable \(x \) at which the cumulative distribution is equal to \(\alpha \). That is, the quantile is the inverse of the cumulative distribution function, i.e., \(x_\alpha = F^{-1}(\alpha) \). An important special case is the median, \(x_{\text{med}} \), defined by \(F(x_{\text{med}}) = 1/2 \), i.e., half the probability lies above and half lies below \(x_{\text{med}} \). (More rigorously, \(x_{\text{med}} \) is a median if \(P(x \geq x_{\text{med}}) \geq 1/2 \) and \(P(x \leq x_{\text{med}}) \geq 1/2 \). If only one value exists, it is called ‘the median.’)

Under a monotonic change of variable \(x \rightarrow y(x) \), the quantiles of a distribution (and hence also the median) obey \(y_\alpha = y(x_\alpha) \). In general the expectation value and mode (most probable value) of a distribution do not, however, transform in this way.

Let \(x \) and \(y \) be two random variables with a joint p.d.f. \(f(x, y) \). The marginal p.d.f. of \(x \) (the distribution of \(x \) with \(y \) unobserved) is

\[
f_1(x) = \int_{-\infty}^{\infty} f(x, y) \, dy , \quad (39.10)
\]

and similarly for the marginal p.d.f. \(f_2(y) \). The conditional p.d.f. of \(y \) given fixed \(x \) (with \(f_1(x) \neq 0 \)) is defined by \(f_3(y|x) = f(x, y)/f_1(x) \), and similarly \(f_4(x|y) = f(x, y)/f_2(y) \). From these, we immediately obtain Bayes’ theorem (see Eqs. (39.2) and (39.4)),

\[
f_4(x|y) = \frac{f_3(y|x)f_1(x)}{f_2(y)} = \frac{f_3(y|x)f_1(x)}{\int f_3(y|x')f_1(x') \, dx'} . \quad (39.11)
\]

The mean of \(x \) is

\[
\mu_x = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) \, dx \, dy = \int_{-\infty}^{\infty} x f_1(x) \, dx , \quad (39.12)
\]

and similarly for \(y \). The covariance of \(x \) and \(y \) is

\[
\text{cov}[x, y] = E[(x - \mu_x)(y - \mu_y)] = E[xy] - \mu_x\mu_y . \quad (39.13)
\]

A dimensionless measure of the covariance of \(x \) and \(y \) is given by the correlation coefficient,

\[
\rho_{xy} = \text{cov}[x, y]/\sigma_x \sigma_y , \quad (39.14)
\]

where \(\sigma_x \) and \(\sigma_y \) are the standard deviations of \(x \) and \(y \). It can be shown that \(-1 \leq \rho_{xy} \leq 1\).

Two random variables \(x \) and \(y \) are independent if and only if

\[
f(x, y) = f_1(x)f_2(y) . \quad (39.15)
\]

If \(x \) and \(y \) are independent, then \(\rho_{xy} = 0 \); the converse is not necessarily true. If \(x \) and \(y \) are independent, \(E[u(x)v(y)] = E[u(x)]E[v(y)] \), and \(V[x + y] = V[x] + V[y] \); otherwise, \(V[x + y] = V[x] + V[y] + 2\text{cov}[x, y] \), and \(E[uv] \) does not necessarily factorize.

Consider a set of \(n \) continuous random variables \(\mathbf{x} = (x_1, \ldots, x_n) \) with joint p.d.f. \(f(\mathbf{x}) \), and a set of \(n \) new variables \(\mathbf{y} = (y_1, \ldots, y_n) \), related to \(\mathbf{x} \) by means of a function \(\mathbf{y}(\mathbf{x}) \) that is one-to-one, i.e., the inverse \(\mathbf{x}(\mathbf{y}) \) exists. The joint p.d.f. for \(\mathbf{y} \) is given by

\[
g(\mathbf{y}) = f(\mathbf{x}(\mathbf{y}))[J] , \quad (39.16)
\]
where $|J|$ is the absolute value of the determinant of the square matrix $J_{ij} = \partial x_i / \partial y_j$ (the Jacobian determinant). If the transformation from x to y is not one-to-one, the x-space must be broken into regions where the function $y(x)$ can be inverted, and the contributions to $g(y)$ from each region summed.

Given a set of functions $y = (y_1, \ldots, y_m)$ with $m < n$, one can construct $n - m$ additional independent functions, apply the procedure above, then integrate the resulting $g(y)$ over the unwanted y_i to find the marginal distribution of those of interest.

For a one-to-one transformation of discrete random variables, the probability is obtained by simple substitution; no Jacobian is necessary because in this case f is a probability rather than a probability density. If the transformation is not one-to-one, then one must sum the probabilities for all values of the original variable that contribute to a given value of the transformed variable. If f depends on a set of parameters θ, a change to a different parameter set $\eta(\theta)$ is made by simple substitution; no Jacobian is used.

39.3 Characteristic functions

The characteristic function $\phi(u)$ associated with the p.d.f. $f(x)$ is essentially its Fourier transform, or the expectation value of e^{iux}:

$$\phi(u) = E[e^{iux}] = \int_{-\infty}^{\infty} e^{iux} f(x) \, dx . \quad (39.17)$$

Once $\phi(u)$ is specified, the p.d.f. $f(x)$ is uniquely determined and vice versa; knowing one is equivalent to the other. Characteristic functions are useful in deriving a number of important results about moments and sums of random variables.

It follows from Eqs. (39.8) and (39.17) that the n^{th} moment of a random variable x that follows $f(x)$ is given by

$$i^{-n} \left. \frac{d^n \phi}{du^n} \right|_{u=0} = \int_{-\infty}^{\infty} x^n f(x) \, dx = \alpha_n . \quad (39.18)$$

Thus it is often easy to calculate all the moments of a distribution defined by $\phi(u)$, even when $f(x)$ cannot be written down explicitly.

If the p.d.f.s $f_1(x)$ and $f_2(y)$ for independent random variables x and y have characteristic functions $\phi_1(u)$ and $\phi_2(u)$, then the characteristic function of the weighted sum $ax + by$ is $\phi_1(au) \phi_2(bu)$. The rules of addition for several important distributions (e.g., that the sum of two Gaussian distributed variables also follows a Gaussian distribution) easily follow from this observation.

Let the (partial) characteristic function corresponding to the conditional p.d.f. $f_2(x|z)$ be $\phi_2(u|z)$, and the p.d.f. of z be $f_1(z)$. The characteristic function after integration over the conditional value is

$$\phi(u) = \int \phi_2(u|z) f_1(z) \, dz . \quad (39.19)$$

Suppose we can write ϕ_2 in the form

$$\phi_2(u|z) = A(u) e^{ig(u)z} . \quad (39.20)$$

Then

$$\phi(u) = A(u) \phi_1(g(u)) . \quad (39.21)$$

The cumulants (semi-invariants) κ_n of a distribution with characteristic function $\phi(u)$ are defined by the relation

$$\phi(u) = \exp \left[\sum_{n=1}^{\infty} \frac{\kappa_n(iu)^n}{n!} \right] = \exp \left(i\kappa_1 u - \frac{1}{2} \kappa_2 u^2 + \ldots \right) . \quad (39.22)$$
The values κ_n are related to the moments α_n and m_n. The first few relations are

\begin{align*}
\kappa_1 &= \alpha_1 \quad (= \mu, \text{the mean}) \\
\kappa_2 &= m_2 = \alpha_2 - \alpha_1^2 \quad (= \sigma^2, \text{the variance}) \\
\kappa_3 &= m_3 = \alpha_3 - 3\alpha_1\alpha_2 + 2\alpha_1^3.
\end{align*}

(39.23)

39.4 Commonly used probability distributions

Table 39.1 gives a number of common probability density functions and corresponding characteristic functions, means, and variances. Further information may be found in Refs. [1–8] [10], and [11], which has particularly detailed tables. Monte Carlo techniques for generating each of them may be found in our Sec. 41.4 and in Ref. [10]. We comment below on all except the trivial uniform distribution.

39.4.1 Binomial and multinomial distributions

A random process with exactly two possible outcomes which occur with fixed probabilities is called a Bernoulli process. If the probability of obtaining a certain outcome (a “success”) in an individual trial is p, then the probability of obtaining exactly r successes ($r = 0, 1, 2, \ldots, N$) in N independent trials, without regard to the order of the successes and failures, is given by the binomial distribution $f(r; N, p)$ in Table 39.1. If r and s are binomially distributed with parameters (N_r, p) and (N_s, p), then $t = r + s$ follows a binomial distribution with parameters $(N_r + N_s, p)$. If there are are m possible outcomes for each trial having probabilities p_1, p_2, \ldots, p_m, then the joint probability to find r_1, r_2, \ldots, r_m of each outcome after a total of N independent trials is given by the multinomial distribution as shown in Table 39.1. We can regard outcome i as “success” and all the rest as “failure”, so individually, any of the r_i follow a binomial distribution for N trials and a success probability p_i.

39.4.2 Poisson distribution

The Poisson distribution $f(n; \nu)$ gives the probability of finding exactly n events in a given interval of x (e.g., space or time) when the events occur independently of one another and of x at an average rate of ν per the given interval. The variance σ^2 equals ν. It is the limiting case $p \to 0, N \to \infty, Np = \nu$ of the binomial distribution. The Poisson distribution approaches the Gaussian distribution for large ν.

For example, a large number of radioactive nuclei of a given type will result in a certain number of decays in a fixed time interval. If this interval is small compared to the mean lifetime, then the probability for a given nucleus to decay is small, and thus the number of decays in the time interval is well modeled as a Poisson variable.

39.4.3 Normal or Gaussian distribution

The normal (or Gaussian) probability density function $f(x; \mu, \sigma^2)$ given in Table 39.1 has mean $E[x] = \mu$ and variance $V[x] = \sigma^2$. Comparison of the characteristic function $\phi(u)$ given in Table 39.1 with Eq. (39.22) shows that all cumulants κ_n beyond κ_2 vanish; this is a unique property of the Gaussian distribution. Some other properties are:

\begin{align*}
P(x \text{ in range } \mu \pm \sigma) &= 0.6827, \\
P(x \text{ in range } \mu \pm 0.6745\sigma) &= 0.5, \\
E[|x - \mu|] &= \sqrt{2/\pi}\sigma = 0.7979\sigma, \\
\text{half-width at half maximum} &= \sqrt{2\ln 2}\sigma = 1.177\sigma.
\end{align*}

For a Gaussian with $\mu = 0$ and $\sigma^2 = 1$ (the standard normal) the cumulative distribution, often
written \(\Phi(x) \), is related to the error function \(\text{erf} \) by

\[
F(x; 0, 1) \equiv \Phi(x) = \frac{1}{2} \left[1 + \text{erf}(x/\sqrt{2}) \right].
\]

(39.24)

The error function and standard Gaussian are tabulated in many references (e.g., Ref. [11,12]) and are available in software packages such as ROOT [13]. For a mean \(\mu \) and variance \(\sigma^2 \), replace \(x \) by \((x - \mu)/\sigma \). The probability of \(x \) in a given range can be calculated with Eq. (40.70).

For \(x \) and \(y \) independent and normally distributed, \(z = ax + by \) follows a normal p.d.f. \(f(z; a\mu_x + b\mu_y, a^2\sigma_x^2 + b^2\sigma_y^2) \); that is, the weighted means and variances add.

The Gaussian derives its importance in large part from the central limit theorem:

If independent random variables \(x_1, \ldots, x_n \) are distributed according to any p.d.f. with finite mean and variance, then the sum \(y = \sum_{i=1}^n x_i \) will have a p.d.f. that approaches a Gaussian for large \(n \). If the p.d.f.s of the \(x_i \) are not identical, the theorem still holds under somewhat more restrictive conditions. The mean and variance are given by the sums of corresponding terms from the individual \(x_i \). Therefore, the sum of a large number of fluctuations \(x_i \) will be distributed as a Gaussian, even if the \(x_i \) themselves are not.

For a set of \(n \) Gaussian random variables \(\mathbf{x} \) with means \(\mu \) and covariances \(V_{ij} = \text{cov}[x_i, x_j] \), the p.d.f. for the one-dimensional Gaussian is generalized to

\[
f(x; \mu, V) = \frac{1}{(2\pi)^{n/2}\sqrt{|V|}} \exp \left\{ -\frac{1}{2} (x - \mu)^T V^{-1} (x - \mu) \right\},
\]

(39.25)

where the determinant \(|V| \) must be greater than 0. For diagonal \(V \) (independent variables), \(f(x; \mu, V) \) is the product of the p.d.f.s of \(n \) Gaussian distributions.

For \(n = 2 \), \(f(x_1, x_2; \mu_1, \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1 - \rho^2}} \times \exp \left\{ \frac{-1}{2(1 - \rho^2)} \left[\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - \frac{2\rho(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} \right] \right\}. \]

(39.26)

The characteristic function for the multivariate Gaussian is

\[
\phi(u; \mu, V) = \exp \left[i\mu \cdot u - \frac{1}{2} u^T V u \right].
\]

(39.27)

If the components of \(\mathbf{x} \) are independent, then Eq. (39.27) is the product of the characteristic functions of \(n \) Gaussians.

For an \(n \)-dimensional Gaussian distribution for \(\mathbf{x} \) with mean \(\mu \) and covariance matrix \(V \), the marginal distribution for any single \(x_i \) is a one-dimensional Gaussian with mean \(\mu_i \) and variance \(V_{ii} \). The equation \((\mathbf{x} - \mathbf{a})^T V^{-1} (\mathbf{x} - \mathbf{a}) = C \), where \(C \) is any positive number, defines an \(n \)-dimensional ellipse centered about \(\mathbf{a} \). If \(\mathbf{a} \) is equal to the mean \(\mu \), then \(C \) is a random variable obeying the \(\chi^2 \) distribution for \(n \) degrees of freedom, which is discussed in the following section. The probability that \(\mathbf{x} \) lies outside the ellipsoid for a given value of \(C \) is given by \(1 - F_{\chi^2}(C; n) \), where \(F_{\chi^2} \) is the cumulative \(\chi^2 \) distribution. This may be read from Fig. 40.1. For example, the “\(s \)-standard-deviation ellipsoid” occurs at \(C = s^2 \). For the two-variable case \((n = 2) \), the point \(\mathbf{x} \) lies outside the one-standard-deviation ellipsoid with 61% probability. The use of these ellipsoids as indicators of probable error is described in Sec. 40.4.2.2; the validity of those indicators assumes that \(\mu \) and \(V \) are correct.
39.4.4 Log-normal distribution

If a random variable y follows a Gaussian distribution with mean μ and variance σ^2, then $x = e^y$ follows a log-normal distribution, as given in Table 39.1. As a consequence of the central limit theorem described in Sec. 39.4.3, the distribution of the product of a large number of positive random variables approaches a log-normal. It is bounded below by zero and is thus well suited for modeling quantities that are intrinsically non-negative such as an efficiency. One can implement a log-normal model for a random variable x by defining $y = \ln x$ so that y follows a Gaussian distribution.

39.4.5 χ^2 distribution

If x_1, \ldots, x_n are independent Gaussian random variables, the sum $z = \sum_{i=1}^n (x_i - \mu_i)^2 / \sigma_i^2$ follows the χ^2 p.d.f. with n degrees of freedom, which we denote by $\chi^2(n)$. More generally, for n correlated Gaussian variables as components of a vector X with covariance matrix V, $z = X^T V^{-1} X$ follows $\chi^2(n)$ as in the previous section. For a set of z_i, each of which follows $\chi^2(n_i)$, $\sum z_i$ follows $\chi^2(\sum n_i)$. For large n, the χ^2 p.d.f. approaches a Gaussian with a mean and variance given by $\mu = n$ and $\sigma^2 = 2n$, respectively (here the formulae for μ and σ^2 are valid for all n).

The χ^2 p.d.f. is often used in evaluating the level of compatibility between observed data and a hypothesis for the p.d.f. that the data might follow. This is discussed further in Sec. 40.3.2 on significance tests.

39.4.6 Student’s t distribution

Suppose that y and x_1, \ldots, x_n are independent and Gaussian distributed with mean 0 and variance 1. We then define

$$z = \sum_{i=1}^n x_i^2 \quad \text{and} \quad t = \frac{y}{\sqrt{z/n}}.$$

(39.28)

The variable z thus follows a $\chi^2(n)$ distribution. Then t is distributed according to Student’s t distribution with n degrees of freedom, $f(t; n)$, given in Table 39.1.

If defined through gamma functions as in Table 39.1, the parameter n is not required to be an integer. As $n \to \infty$, the distribution approaches a Gaussian, and for $n = 1$ it is a Cauchy or Breit–Wigner distribution.

As an example, consider the sample mean $\overline{x} = \sum x_i/n$ and the sample variance $s^2 = \sum (x_i - \overline{x})^2/(n - 1)$ for normally distributed x_i with unknown mean μ and variance σ^2. The sample mean has a Gaussian distribution with a variance σ^2/n, so the variable $(\overline{x} - \mu) / \sqrt{\sigma^2/n}$ is normal with mean 0 and variance 1. The quantity $(n - 1)s^2/\sigma^2$ is independent of this and follows $\chi^2(n - 1)$. The ratio

$$t = \frac{(\overline{x} - \mu) / \sqrt{\sigma^2/n}}{\sqrt{(n - 1)s^2/\sigma^2(n - 1)}} = \frac{\overline{x} - \mu}{\sqrt{s^2/n}}$$

(39.29)

is distributed as $f(t; n - 1)$. The unknown variance σ^2 cancels, and t can be used to test the hypothesis that the true mean is some particular value μ.

39.4.7 Gamma distribution

For a process that generates events as a function of x (e.g., space or time) according to a Poisson distribution, the distance in x from an arbitrary starting point (which may be some particular event) to the k^{th} event follows a gamma distribution, $f(x; \lambda, k)$. The Poisson parameter μ is λ per unit x. The special case $k = 1$ (i.e., $f(x; \lambda, 1) = \lambda e^{-\lambda x}$) is called the exponential distribution. A sum of k' exponential random variables x_i is distributed as $f(\sum x_i; \lambda, k')$.

The parameter k is not required to be an integer. For $\lambda = 1/2$ and $k = n/2$, the gamma distribution reduces to the $\chi^2(n)$ distribution.

1st June, 2020 8:30am
Table 39.1: Some common probability density functions, with corresponding characteristic functions and means and variances. In the Table, \(F(k) \) is the gamma function, equal to \((k-1)!\) when \(k \) is an integer; \(_1F_1 \) is the confluent hypergeometric function of the 1st kind \[11\].

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Probability density function (f) (variable; parameters)</th>
<th>Characteristic function (\phi(u))</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>(f(x; a, b) = \begin{cases} \frac{1}{b-a} & a \leq x \leq b \ 0 & \text{otherwise} \end{cases})</td>
<td>(e^{iu(a-b)}) ((b-a)u)</td>
<td>(\frac{a+b}{2})</td>
<td>(\frac{(b-a)^2}{12})</td>
</tr>
<tr>
<td>Binomial</td>
<td>(f(r; N, p) = \frac{N!}{r!(N-r)!} p^r (1-p)^{N-r}) (r = 0, 1, 2, \ldots, N; \quad 0 \leq p \leq 1; \quad q = 1 - p)</td>
<td>((q + pe^{iu})^N)</td>
<td>(Np)</td>
<td>(Npq)</td>
</tr>
<tr>
<td>Multinomial</td>
<td>(f(r_1, \ldots, r_m; N, p_1, \ldots, p_m) = \frac{N!}{r_1! \cdots r_m!} p_1^{r_1} \cdots p_m^{r_m})</td>
<td>(\sum_{k=1}^{m} p_k e^{iu}) (N)</td>
<td>(EP_1 = \frac{Np_i}{Np_i})</td>
<td>(\text{cov}(r_i, r_j) = Np_i(\delta_{ij} - p_i))</td>
</tr>
<tr>
<td>Poisson</td>
<td>(f(n; \nu) = \frac{\nu^n e^{-\nu}}{n!}) (n = 0, 1, 2, \ldots; \quad \nu > 0)</td>
<td>(\exp(\nu e^{iu} - 1))</td>
<td>(\nu)</td>
<td>(\nu)</td>
</tr>
<tr>
<td>Normal (Gaussian)</td>
<td>(f(x; \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right))</td>
<td>(\exp(i\mu u - \frac{1}{2}u^2\sigma^2))</td>
<td>(\mu)</td>
<td>(\sigma^2)</td>
</tr>
<tr>
<td>Multivariate Gaussian</td>
<td>(f(x; \mu, V) = \frac{1}{(2\pi)^{n/2}</td>
<td>V</td>
<td>^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^TV^{-1}(x-\mu)\right))</td>
<td>(\exp\left[i\mu \cdot u - \frac{1}{2}u^TVu\right])</td>
</tr>
<tr>
<td>Log-normal</td>
<td>(f(x; \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)) (0 < x < \infty; \quad -\infty < \mu < \infty; \quad -\infty < \sigma < 0)</td>
<td>(-\exp(\mu + \sigma^2/2))</td>
<td>(\exp(2\mu + \sigma^2))</td>
<td>(\times [\exp(\sigma^2) - 1])</td>
</tr>
<tr>
<td>(\chi^2)</td>
<td>(f(z; n) = \frac{1}{2^{n/2}\Gamma(n/2)} z^{(n/2)-1} \exp\left(-\frac{z}{2}\right)) (z \geq 0)</td>
<td>(0)</td>
<td>(n/(n-2))</td>
<td>(2n)</td>
</tr>
<tr>
<td>Student’s t</td>
<td>(f(t; n) = \frac{1}{\sqrt{n\pi}} \frac{1}{\Gamma(n/2)} \left(1 + \frac{t^2}{n}\right)^{-n/2}) (-\infty < t < \infty; \quad n) not required to be integer</td>
<td>(0)</td>
<td>(n/(n-2))</td>
<td>(n/(n-2))</td>
</tr>
<tr>
<td>Gamma</td>
<td>(f(x; \lambda, k) = \frac{\lambda^k x^{k-1} e^{-\lambda}}{\Gamma(k)}) (0 \leq x < \infty; \quad k) not required to be integer</td>
<td>((1 - iu/\lambda)^{-k})</td>
<td>(k/\lambda)</td>
<td>(k/\lambda^2)</td>
</tr>
<tr>
<td>Beta</td>
<td>(f(x; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1})</td>
<td>(_1F_1(\alpha; \alpha + \beta; iu))</td>
<td>(\frac{\alpha}{\alpha + \beta})</td>
<td>(\frac{\alpha \beta}{(\alpha + \beta)^2(\alpha + \beta + 1)})</td>
</tr>
</tbody>
</table>

39.4.8 Beta distribution

The beta distribution describes a continuous random variable \(x \) in the interval \([0, 1]\). By scaling and translation one can easily generalize it to have arbitrary endpoints. In Bayesian inference about the parameter \(p \) of a binomial process, if the prior p.d.f. is a beta distribution \(f(p; \alpha, \beta) \) then the observation of \(r \) successes out of \(N \) trials gives a posterior beta distribution \(f(p; r + \alpha, N - r + \beta) \) (Bayesian methods are discussed further in Sec. 40). The uniform distribution is a beta distribution with \(\alpha = \beta = 1 \).

References

39. Probability

