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49.1 General Considerations
Perturbative methods can be applied to systems of quarks and gluons only for large momen-

tum transfers (see review on ‘Quantum Chromodynamics’) and, under certain conditions, to some
properties of systems that contain heavy quarks or very large momentum scales (see review on
“Heavy-Quark and Soft-Collinear Effective Theory”). Dealing with Quantum Chromodynamics
(QCD) in the low momentum transfer region is a very complicated, non-perturbative problem.
The physical states appear as poles of the S–matrix either on physical sheet (bound states) or on
the unphysical sheets (resonances) and manifest themselves as structures in experimental observ-
ables.

Resonances can show up either in so-called formation experiments, typically of the kind

A+B → R → C1 + ...+ Cn ,

where they become visible in an energy scan (a perfect example of this being the R–function
measured in e+e− annihilations — cf. the corresponding plots in the review on “Plots of Cross
Sections and Related Quantities”), or together with a spectator particle S in production experiments
of the kind

A+B → R + S → [C1 + ...+ Cn] + S ,

Z → R + S → [C1 + ...+ Cn] + S .

where the first reaction corresponds to an associated production, the second is a decay (see “Review
of Multibody Charm Analyses”). In the latter case the resonance properties are commonly extracted
from a Dalitz plot analysis (see review on “Kinematics”) or projections thereof.

Resonance phenomena are very rich: while typical hadronic widths are of the order of 100MeV
(e.g., for the meson resonances ρ(770) or ψ(4040) or the baryon resonance ∆(1232)) corresponding
to a lifetime of 10−23 s, the widths can also be as small as a few MeV (e.g. of φ(1020) or J/ψ) or
as large as several hundred MeV (e.g. of the meson resonances f0(500) or D1(2430) or the baryon
resonance N(2190)).

Typically, a resonance appears as a peak in the total cross section. If the structure is narrow
and if there are no relevant thresholds or other resonances nearby, the resonance properties may
be extracted employing a standard Breit-Wigner parameterization, if necessary improved by using
an energy-dependent width (cf. Sec. 49.3.1 of this review). However, in general, unitarity and
analyticity call for the use of more refined tools. When there are overlapping resonances with
the same quantum numbers, the resonance terms should not simply be added but combined in a
non–trivial way either in a K–matrix approximation (cf. Sec. 49.3.2 of this review) or using other
advanced methods (cf. Sec. 49.3.6 of this review). Additional constraints from the S-matrix allow
one to build more reliable amplitudes and in turn to reduce the systematic uncertainties of the
resonance parameters: pole locations and residues. In addition, for broad resonances there is no
direct relation anymore between pole location and the total width/lifetime — then the pole residues
need to be used in order to quantify the decay properties.

For simplicity, throughout this review the formulas are given for distinguishable, scalar particles.
The additional complications that appear in the presence of spins can be controlled in the helicity
framework developed by Jacob and Wick [1], or in a non-covariant [2] or covariant [3] tensor
operator formalism. Within these approaches, sequential (cascade) decays are commonly treated
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2 49. Resonances

as a coherent sum of two-body interactions. Most of the expressions below are given for two–body
kinematics.

physical sheet

unphysical sheet

Figure 49.1: Imaginary part of a typical single–channel scattering amplitude with an isolated
resonance. The solid red line shows the physical range of the Mandelstam variable s: It is real
valued and starts from threshold shown by the red dot. The left plot shows the imaginary part of the
amplitude in the complex S–plane that corresponds to the first physical sheet (green surface). The
right plot shows analytic continuation of the same amplitude to the lower plane of the unphysical
sheet (yellow surface). The latter contains the resonance pole. The two sheets are connected
smoothly along the real axis above the threshold.

49.1.1 Properties of the S-matrix
The unitary operator that connects asymptotic in and out states is called the S–matrix. The

scattering amplitude is defined as the interacting part of the S matrix. For the case of two interact-
ing particles, it reads: (cf. Eq. (8) of the review on “Kinematics” but note: we here use a different
sign convention as well as a different normalisation of the fields to be consistent with most books
on field theory)

i(2π)4δ4(p1 + p2 − p′1 − p′2)M(p1, p2; p1, p
′
2)ba = out

〈
p′1p
′
2, b
∣∣S − 1 |p1p2, a〉in (49.1)

where |p1p2, a〉 and |p′1p′2, b〉 are asymptotic states of two non-interacting particles with momentum
p1, p2 and p′1, p′2. The channel labels a and b are multi–indices specifying all additional properties
of the channel. In general, M is a matrix in channel space. For single particle states we employ
the common relativistic normalization,〈

p′|p
〉

= (2π)32Ep δ3(~p ′ − ~p ), (49.2)

with Ep =
√
~p 2 +m2. The scattering amplitude an analytic function of the Mandelstam variables

s, t and u up to poles and kinematic singularities. Branch points appear whenever there is a
channel opening — at each two-particle threshold the number of Riemann sheets doubles. Triangle
topologies can induce logarithmic singularities on the unphysical sheets often called triangle sin-
gularities (TS) [4–6]. Analyticity and unitarity principles of the S-matrix put strong constraints
to the functionM(s, t). Poles refer either to bound states or to resonances. The former poles are
located on the physical sheet, the latter are located on unphysical sheets. Naturally those located
on the unphysical sheet closest to the physical one, often called the second sheet, have usually the
largest impact on observables. Moreover, as follows from analyticity, if there is a pole at some
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3 49. Resonances

complex value of s, there must be another pole at its complex conjugate value, s∗. The pole with
a negative imaginary part is closer to the physical axis and thus influences the observables in the
vicinity of the resonance region more strongly (see Fig. 49.1). However, at the threshold both poles
are always equally important. If there are resonances in subsystems of multi–particle states, branch
points appear in the complex plane of the unphysical sheet(s) [6]. Any of these singularities can
lead to some structure in the observables (see also Ref. [7]). If certain kinematical constraints are
met, especially the TS can mimic resonance signals, as claimed in Refs. [8–13] or could in certain
channels lead to significant shifts of resonance signals [14]. For a partial-wave-projected amplitude
(see Sec. 49.1.3) additional singularities not related to resonance physics may emerge as a result of
the partial-wave projection [15].

Further constraints come, e.g., from crossing symmetry and duality [16]. Approaches based on
analyticity and crossing symmetry, implemented via dispersion theory, like the Roy equations [17]
or variants thereof, were developed and applied to ππ → ππ scattering [18–20], πK scattering [21],
γγ → ππ [22] as well as pion-nucleon scattering [23].

49.1.2 Consequences from unitarity
In what follows, scattering amplitudesM and production amplitudes A will be distinguished,

since unitarity puts different constraints on these. For the production amplitudes we require that
the initial state is weakly coupled and, hence, the probability of the time-reversed reaction is
negligibly small compared to the other coupled channels.

The discontinuity of the scattering amplitude over the unitarity cut is constrained by unitar-
ity [24] to

DiscMba = [Mba −M∗ab] = i (2π)4∑
c

∫
dΦcM∗cbMca , (49.3)

with Φc being the invariant phase space for channel c. The sum includes only open channels, i.e.
those for which the production threshold is below the energy of the scattered system. Using time-
reversal symmetry, and DiscM(s, t) = 2i Im(M(s + iε, t)) for the s-channel, the optical theorem
follows

ImMaa(s, 0) = 2qa
√
s σtot(a→ anything), (49.4)

where qa denotes the relative momentum of the particles of channel a (see Eq. (17) of the review
on “Kinematics”). The value t = 0 in Eq. (49.4) corresponds to forward scattering.

The unitarity relation for a production amplitude for a channel a is given by

[Aa −A∗a] = i (2π)4∑
c

∫
dΦcM∗caAc . (49.5)

One application of the two-body-unitarity constraint from Eq. (49.5) is studies of the three-
body decays in the Khuri-Treiman framework [25]. The standard procedure here is to derive the
equations for the production amplitude for small values of the mass of the decaying particle in
the scattering domain and relate it to the decay kinematics by an analytic continuation in the
decay mass. Note that in this kinematics the connection between imaginary part and discontinuity
employed to derive Eq. (49.4) no longer holds. The method was successfully applied to various
decays of light mesons, η → 3π in Refs. [26–28], φ/ω → 3π in Ref. [29, 30], η′ → ηππ in Ref. [31],
as well as to the charm-mesons decays D+ → K0/−π0/+π+ [32, 33].

49.1.3 Partial-wave decomposition
It is often convenient to expand the scattering amplitude in partial waves. Since resonances

have a well-defined spin, in the s-channel they appear only in the corresponding partial waves. For
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Figure 49.2: Argand plot showing a diagonal element of a partial-wave amplitude, abb, as a function
of energy. The amplitude leaves the unitary circle (solid line) as soon as inelasticity sets in, η < 1
(dashed line).

scalar particles only one may write

Mba(s, t) =
∞∑
j=0

(2j + 1)Mj
ba(s)Pj(cos(θ)) , (49.6)

where j denotes the total angular momentum. For scalar particles it coincides with the orbital
angular momentum of the particle pairs in the initial and the final state. To simplify notations we
will drop the label j for the single-argument functionMba(s). The unitarity constraint forMba(s)
reads,

ImMba =
∑
c

M∗cb ρcMca (49.7)

with ρc being a factor that is related to the two-body phase space in Eq. (12) of the review on
“Kinematics”,

ρc(s) = (2π)4

2

∫
dΦ2 = 1

16π
2|~qc|√
s
. (49.8)

The partial-wave amplitudes fba(s) are connected toMba(s) via

fba(s) = √ρbMba(s)
√
ρa . (49.9)

From this definition it follows for the unitarity condition that Im f−1
ba = −δba. Moreover, I + 2if is

a unitary matrix. Hence, it can be parameterized as,

fbb = (ηb exp(2iδb)− 1)/2i , (49.10)

where δb denotes the phase shift for the scattering from channel b to channel b, ηb is elasticity
parameter — also called inelasticity. One has 0 ≤ ηb ≤ 1, where ηb = 1 refers to purely elastic scat-
tering. The evolution with energy of a partial-wave amplitude fbb can be displayed as a trajectory
in an Argand plot, as shown in Fig. 49.2. In case of a two–channel problem, ηb = ηa = η, and the
off–diagonal element is fba =

√
1− η2/2 exp(i(δb + δa)).
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5 49. Resonances

The partial-wave-projected production amplitude A(s) (the label j is dropped for consistency)
is also constrained by unitarity. From Eq. (49.5) follows,

ImAa =
∑
b

M∗ab ρbAb , (49.11)

where the sum runs over all open channels. For purely elastic scattering, where the sum collapses
to just the channel a, the Watson theorem, stating that the phase of Aa agrees with that ofMaa,
follows straightforwardly, since the left-hand side of Eq. (49.11) is a real number.

49.2 Properties of resonances
The main characteristics of a resonance is its pole position, sR, in the complex s–plane that is

independent of the reaction studied. The more traditional parameters mass MR and total width
ΓR may be introduced via the pole parameters

√
sR = MR − iΓR/2 . (49.12)

Note that the standard Breit-Wigner parameters MBW and ΓBW, also introduced below, in general
deviate from the pole parameters, e.g., due to finite width effects and the influence of thresholds.

In addition to the pole location a resonance is characterized also by its residues that quantify its
couplings to the various channels and allow one to define branching ratios. In the Meson Particle
Listings the two-photon width of f0(500) is defined in terms of the corresponding residue. The
Baryon Particle Listings give the elastic pole residues and normalized transition residues. However,
different conventions are used in the two sectors, which are shortly outlined here.

In the close vicinity of the resonance pole the scattering matrixM can be written as

lim
s→sR

(s− sR)Mba = −Rba . (49.13)

The residues may be calculated via an integration along a closed contour around the pole using

Rba = − 1
2πi

∮
dsMba . (49.14)

The factorization of the residue (Rba)2 = Raa×Rbb allows one to introduce pole couplings according
to

g̃a = Rba/
√
Rbb . (49.15)

The pole couplings are the only quantities that characterize the transition strength of a given
resonance to some channel a independently of how the particular resonance was produced. One
may define a partial width and a branching fraction even for a broad resonance via

ΓR→a = |g̃a|
2

MR
ρa(M2

R) and Bra = ΓR→a/ΓR , (49.16)

where MR and ΓR were introduced in Eq. (49.12). This expression was used to define a two–
photon width for the broad f0(500) (also called σ) [34, 35]. Eq. (49.16) defines a partial-decay
width independent of the reaction used to extract the parameters. For a narrow resonance it maps
smoothly onto the other common definition of the branching fraction, discussed in Eq. (49.22).

In the baryon sector it is common to define the residue with respect to the partial-wave ampli-
tudes fba(s) defined in Eq. (49.9) and with respect to

√
s instead of s. Accordingly in the baryon

listings the elastic pole residue, which refers to πN → πN scattering, is related to the residues
introduced above via

rπN,πN = ρπN (sR)√
4sR

RπN,πN , (49.17)

where the phase-space factor is to be evaluated at the pole.
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6 49. Resonances

49.3 Common parameterizations
Up to a few exceptions where sophisticated dispersive methods can be used or one restricts

oneself to a very small energy range, there is in general no universal model-independent recipe to
build the scattering amplitude. The resonance parameters extracted should not depend on the
approach used, however, assuming that the amplitude fits relevant data of sufficient quality well.
Deviations of resonance parameters obtained in different models which equally-well describe the
data must be attributed to the systematic theory uncertainties.

49.3.1 The Breit–Wigner paramerization
First we focus on the most common case of resonances that appear in production reactions and

consider the simplest approximation that is only appropriate for a narrow resonance located far from
all relevant thresholds. In this case, one may use the constant-width Breit-Wigner parameterization,

A(s) = α̃

M2
BW − s− i

√
sΓBW

≈ α̃

M2
BW − s− iMBWΓBW

, (49.18)

where α̃ contains the resonance coupling to the source as well as to the final state. It is common
to replace

√
s by MBW as done in the right expression.

To use a constant partial width for a resonance coupling to some channel a in an analysis is
justified only, if 2(MR −

√
sthra)/ΓR � 1, where √sthra denotes the location of the threshold for

channel a. Otherwise, it is important to build in the appropriate threshold behavior and use the
energy-dependent expression for the denominator.

Aa(s) = α ga na(s)
M2

BW − s− i
∑
b g

2
bρb(s)n2

b(s)
, (49.19)

where the sum in the denominator is taken over all open channels, na combines the threshold
and barrier factors, na = (qa/qo)laFla(qa, qo), with la being the orbital angular momentum in
channel a, qa is given by Eq. (17) of the review on “Kinematics”, and qo denotes a mometum scale.
The factor (qa)l guarantees the correct threshold behavior. The rapid growth of this factor for
angular momenta l > 0 is commonly compensated at higher energies by a phenomenological form
factor, here denoted by Fla(qa, qo). Often the Blatt-Weisskopf form factors are used [36–38], where
Fj(q, q0) = Fj(q/q0) and, e.g. F 2

0 (z) = 1, F 2
1 (z) = 1/(1 + z) and F 2

2 (z) = 1/(9 + 3z + z2). The
denominator can be written as M2

BW − s− iMBWΓtot(s), with

Γtot(s) =
∑
b

Γb(s) (49.20)

for the energy-dependent total width. An often used parameterization for the partial width Γa(s)
trades the coupling for the resonance width:

Γa(s) = ΓBW a
ρa(s)

ρa(M2
BW)

(
qa
qaR

)2la F 2
la

(qa, qo)
F 2
la

(qaR, qo)
. (49.21)

Here qaR are the values of the break-up momentum evaluated at s = M2
BW. The Breit-Wigner

parameters MBW and ΓBW in Eq. (49.18) as well as the coupling ga in Eq. (49.19) allow for an
effective description of resonance phenomena but in general do not have strict physical meaning.
The mass and width agree with the pole parameters only if the resonance is narrow in the sense
defined above. Otherwise, the Breit-Wigner parameters deviate from the pole parameters and are
in general reaction dependent.
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7 49. Resonances

Branching fractions for individual, isolated resonances may be introduced based on the param-
eters introduced above:

Br′a = ΓBW a

ΓBW,tot
(49.22)

where ΓBW,tot =
∑
a ΓBW a denotes the total width evaluated at the Breit-Wigner mass.

The branching fraction definition based on a probability of the decay to a certain channel,

Br′′a =
∞∫

sthr,a

ds |ga|2 n2
a ρa(s)

|M2
BW − s− iMBWΓtot(s)|2

/∑
c

∞∫
sthr,c

ds |gc|2 n2
c ρc(s)

|M2
BW − s− iMBWΓtot(s)|2

, (49.23)

is also often used.
If there is more than one resonance in one partial wave that significantly couples to the same

channel, it is in general incorrect to use a sum of Breit-Wigner functions, for this usually leads to
violation of unitarity constraints. Then, more refined methods should be used, like the K–matrix
approximation described in the next section.
49.3.2 K–matrix approximation and Flatté parameterizations

The K–matrix method is a general construction for coupled-channel scattering amplitudesMba

that guarantees two–particle unitarity, but does not allow for the inclusion of left-hand cuts [39].
The amplitude reads,

nbM−1
ba na = K−1

ba − iδbaρan
2
a, (49.24)

where Kba is an arbitrary real function. The factor na becomes important for the waves with
non-zero angular momentum. As mentioned before na = qlaa or na = (qa/qo)laFla(qa, qo).

As there is no unique rigorous recipe to build K, various parameterizations thereof have to be
studied, in order to get access to the theoretical systematic uncertainty. One possible choice for
the K–matrix is

Kba(s) =
∑
R

gRb g
R
a

M2
R − s

+
Nb.g.∑
i=0

b
(i)
ba s

i, (49.25)

whereMR is referred to as the bare mass of the resonance R, gRa is the bare coupling of the resonance
R to the channel a and the b(i)

ba are matrices parameterizing the non-pole parts of the K-matrix. As
long as all parameters appearing in Eq. (49.25) are real the amplitude is unitary. From the ansatz
given above the scattering amplitudeM can be calculated directly using the matrix form,

M = n[1−K iρ n2]−1K n . (49.26)

This solution also applies in those cases in which the inverse of K does not exist.
As an alternative to Eq. (49.25), the same functional form as on the right side of Eq. (49.25)

can be used to parameterize the inverse K–matrix, called by authors of Ref. [40] the M–matrix.
The K–matrix framework is extensively used to parameterize the scattering amplitudes needed to
analyse the data from lattice QCD calculations [41–43]

One notices that the evaluation of the K–matrix amplitude for the multichannel problem re-
quires an analytic continuation already on the real axis. For a given closed channel c (the channel
c is called closed, if s < sthr,c), the factor qc(s) that enters ρc and nc has to be calculated below
the corresponding threshold, i.e. in the unphysical region of the particular channel c. This is done
using analytic continuation as described e.g. in Refs. [44, 45]:

qc = i
√
−q2

c for q2
c < 0. (49.27)
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8 49. Resonances

The resulting line shape above and below the threshold of channel c is called the Flatté parameteri-
zation [44]. The contiuation given above stays on the physical sheet. To reach the unphysical sheet
the negative square root needs to be chosen. If the coupling of a resonance to the channel opening
nearby is very strong, the Flatté parameterization shows a scaling invariance and does not allow
for an extraction of individual partial decay widths, but only of ratios [46]. The position of the
resonance poles can be determined by a study of the zeros of the analytic function det[1−K iρ n2].
Due to the ρ factor, this determinant has a complicated multisheet structure, however, the closest
unphysical sheet is always the one which is determined by the heaviest threshold below the studied
point s.

49.3.3 Scattering-length approximation
A scattering length, a, is introduced as the first term in an expansion of the scattering phase

shift introduced in Eq. (49.10). For S-waves one finds

q cot δ = 1/a+O(q2) , (49.28)

where q is a break-up momentum of the scattering system. In this approximation, the scattering
amplitude reads

M(s) = 8π
√
s

1/a− iq(s) . (49.29)

The scattering length is proportional to the value of the amplitude at threshold. The sign of the
scattering length is a matter of convention — notably in nuclear physics a sign convention different
from Eq. (49.28) is common. A scattering length approximation is applicable only in a very limited
energy range, however, might well be appropriate to analyse the recently discovered narrow near-
threshold states [47, 48] from this point of view, e.g., in Refs. [49–51]. Moreover, it is possible to
introduce the effect of a weakly coupled lower channel. To see this one might start from

K =
(
γ β
β 0

)
, (49.30)

with β, γ being real numbers. It leads to

Mel.(s) = 1
1/(γ + iβ2ρinel.(s))− iρ(s) , (49.31)

with ρinel.(s) being the phase-space factor of the inelastic channel. The scattering length for the
amplitude in Eq. (49.31) obtains an imaginary part due to the coupling to the lower channel,

a = 1
8π√sthr

(
γ + iβ2ρinel.(sthr)

)
. (49.32)

If the function β2ρinel.(s) does not vary significantly in the energy range studied, the scattering
length approximation with a complex value is justified. For large values of a the amplitude of
Eq. (49.31) develops a near threshold pole located on the physical or unphysical sheet for negative
or positive values of γ, respectively. While easy to use, it is important to stress, however, that the
approximation in Eq. (49.30) is a specific choice of the dynamic function that produces a single
pole near the physical region pointing at a hadronic molecule nature of the state studied [51–53].
For practical analyses, various modifications of the parameterization have to be tested.
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49.3.4 Two methods to build the production amplitude
When the unitary scattering amplitude is fixed, it can be used to build the production amplitude

in a way that it is consistent with unitarity [38,54].
1. The Q–vector approach is discussed in Ref. [38, 40,55]. It reads,

Aa(s) =
∑
c

Mac(s)Qc(s)/nc, Qc(s) =
∑

Q(i)
c s

i. (49.33)

The unitarity condition of Eq. (49.11) is satisfied when Qc(s) is a real function and in partic-
ular does not have singularities above the lowest threshold for all channels c. Besides these
conditions Qc(s) is arbitrary. Note that in the Q–vector approach the left hand cuts of the
scattering matrixMac(s) get imported to the production amplitude which might generate a
wrong analytic structure. If this problem is relevant needs to be investigated on a case-by-
case basis. In a study of γγ → ππ, cf. Ref. [34, 35] a low-order polynomial is claimed to be
sufficient to parametrize the energy dependence of the function Qc(s). The Q–vector method
is convenient, if the full matrixM is known, cf. Ref. [40].

2. The P–vector is a parameterization that exploits the K–matrix of the scattering ampli-
tude [39, 54]. It contains two components: the background term Bc that is coupled to the
K–matrix via an intermediate loop represented by the iρ factor, and the “direct” resonance
production term with couplings αRc :

Aa(s) = na
∑
c

[
1−K iρn2

]−1

ac
Pc, Pc =

∑
R

αRgRc
M2
R − s

+Bc. (49.34)

Again, unitarity requires the parameters Bc and αR to be real. Importantly, the masses MR

need to agree with those in K in Eq. (49.25).
An important difference between the methods is to be noticed [54]: When the two-particle

scattering amplitude goes to zero, the production amplitude in the Q–vector method vanishes for
finite values of Qc, while it stays finite in the P–vector approach. An advanced version of the
P–vector approach that exploits analytic properties of production amplitude [54, 56, 57] is widely
used, e.g. in the dispersive Khuri-Treiman framework [25,58] for construction of three-body-decay
amplitude.
49.3.5 Further improvements: Chew-Mandelstam function

The K–matrix described above usually allows one to get a proper fit of physical amplitudes
and it is easy to deal with, however, it also has an important deficit: it violates constraints from
analyticity — e.g., ρa, given by Eq. (49.8), is ill-defined at s = 0, and for unequal masses it develops
an unphysical cut (see Fig. 49.3). A method to improve the analytic properties was suggested in
Refs. [59–63]. It replaces the phase-space factor iρa(s) in Eq. (49.24) by the analytic function
Σa(s) that produces the identical imaginary part on the right-hand cut. This function is called the
Chew-Mandelstam function and for S-waves it reads [56,61]:

Σa(s) = 1
16π2

[2qa√
s

log m
2
1 +m2

2 − s+ 2
√
sqa

2m1m2
− (m2

1 −m2
2)
(1
s
− 1

(m1 +m2)2

)
log m1

m2

]
, (49.35)

where m1 and m2 are masses of the final-state particles in channel a, sthra = (m1 + m2)2. The
function along the real axis is plotted on the right pane of Fig. 49.1. For channels with j > 0,
the threshold behavior has to be incorporated properly. This can be done, e.g., by computing the
dispersion integral

Σa(s+ i0) = s− sthra

π

∫ ∞
sthra

ρa(s′)n2
a(s′)

(s′ − sthra)(s′ − s− i0) ds′. (49.36)
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A further discussion of the calculation of the Chew-Mandelstam function can be found in Ref. [64].
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Figure 49.3: Comparison of the iρ function (left plot) to the Chew-Mandelstam function from
Eq. (49.35) (right plot), evaluated for the case of S-wave ηπ scattering. The values of s are
taken slightly above the real axis, s + i0. The solid red line shows the imaginary part that is the
same for both functions above threshold. The dashed black line presents the real part. One finds
indications of the unphysical left-hand singularities of the function iρ on the left plot, while the
Chew-Mandelstam function in analytic below the two-particle threshold.

If there is only a single resonance in a given channel, it is possible to feed the imaginary part of
the Breit-Wigner function, Eq. (49.19) with an energy-dependent width, directly into a dispersion
integral to get a resonance propagator with the correct analytic structure [65,66].
49.3.6 Two-potential decomposition

The other advanced technique to construct the scattering amplitude which is widely used in the
literature [67–71] is based on the two-potential formalism [72]. The method is usually formulated
for the full unprojected amplitudeMba(s, t), however, in order to simplify the discussion we present
the equations in the partial-wave-projected form.

The scattering amplitudeM is decomposed into a pole part and a non–pole part, often called
background (b.g.)

M(s) =Mb.g.(s) +Mpole(s) . (49.37)
The splitting given in Eq. (49.37) is not unique and model-dependent (see, e.g., the discussions in
Refs. [73, 74]). The background scattering matrix is assumed to be unitary by itself. One option
is to parameterize it, e.g. at low energies directly in terms of phase shifts and inelasticities —
see, e.g., Refs. [71, 75]. In this case the vertex functions Ω(s)ab introduced below can be written
in terms of an Omnes matrix [75], which reduces to the well known Omnes function in the single
channel case [57]. Alternatively, it can be computed based on some potential, V b.g., fed into a
proper scattering equation.

The complete amplitudeM of Eq. (49.37) is unitary if the pole part is chosen as

Mpole(s) = Ω(s) [1− V R(s)Σu(s)]−1V R(s) ΩT (s) . (49.38)

where the resonance potential reads in channel space

V R
ab(s) =

∑
R

gRa gRb
M2
R − s

, (49.39)

1st June, 2020 8:30am



11 49. Resonances

Σu
ab denotes the self-energy matrix, and gRa and MR denote the bare coupling of the resonance

R to channel a and its bare mass, respectively. A relation analogous to Eq. (49.5) holds for the
normalized vertex functions, however, with the final state interaction provided byMb.g.

DiscΩab(s) = 2i
∑
c

Mb.g. ∗
ca (s) ρc(s)Ωcb(s) . (49.40)

The discontinuity of the self-energy matrix Σu(s) is

DiscΣu
ab(s) = 2i

∑
c

Ω∗ca(s) ρc(s)Ωcb(s) . (49.41)

The real part of Σu can be calculated from Eq. (49.41) via a properly subtracted dispersion integral.
IfMb.g. is unitary, the use of Eq. (49.38) leads to a unitary full amplitude, cf . Eq. (49.37). However,
the pole term alone is unitary only for a vanishing background amplitude. In this situation the
amplitude just described reduces to the analytically improved K-matrix of Sec. 49.3.5. While the
omission of non-pole terms is a bad approximation for, e.g., scalar–isoscalar ππ interactions at low
energies [76], it typically works well for higher partial waves.

The algebra of the two potential splitting presented in Eq. (49.37) is found to be very practical
in various other cases, beyond the pole–background separation. It was employed in Refs. [71, 75]
to treat the pion vector and scalar form factor, respectively, over a sizable energy range includ-
ing inelasticities. A similar decomposition applied to the 3 → 3 scattering problem provided a
way to isolate the non-separable one-particle exchange singularity from the short-range resonance
interaction [77].
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