$I(J^{P}) = \frac{1}{2}(\frac{1}{2}^{+})$ Status: ***

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics C38 070001 (2014).

N(1710) POLE POSITION

REAL PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1680 to 1720 (≈ 1700) OUR ESTI	MATE			
1690 ± 15	ANISOVICH	17A	DPWA	Multichannel
1697 ± 23	¹ ANISOVICH	17A	L+P	$\gamma p, \pi^- p \rightarrow K \Lambda$
$1770\pm 5\pm 2$	² SVARC	14	L+P	$\pi N \rightarrow \pi N$
1690 ± 20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
\bullet \bullet \bullet We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●
1615	HUNT	19	DPWA	Multichannel
1651	ROENCHEN	15A	DPWA	Multichannel
1690 ± 15	SOKHOYAN	15A	DPWA	Multichannel
1690 ± 15	GUTZ	14	DPWA	Multichannel
1670	SHKLYAR	13	DPWA	Multichannel
1687 ± 17	ANISOVICH	12A	DPWA	Multichannel
1711 ± 15	³ BATINIC	10	DPWA	$\pi N ightarrow N \pi$, $N \eta$
1679	VRANA	00	DPWA	Multichannel
1690	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1698	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$

¹ Statistical error only.
² Fit to the amplitudes of HOEHLER 79.
³ BATINIC 10 finds evidence for a second P₁₁ state with all parameters except for the phase of the pole residue very similar to the parameters we give here.

-2×IMAGINARY PART

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
80 to 160 ($pprox$ 120) OUR ESTIMA				
155 ± 25	ANISOVICH	17A	DPWA	Multichannel
84±34	¹ ANISOVICH	17A	L+P	$\gamma p, \pi^- p \rightarrow K \Lambda$
$98\pm$ 8 ± 5	² SVARC	14	L+P	$\pi N \rightarrow \pi N$
80±20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●
169	HUNT	19	DPWA	Multichannel
121	ROENCHEN	15A	DPWA	Multichannel
170 ± 20	SOKHOYAN	15A	DPWA	Multichannel
170 ± 20	GUTZ	14	DPWA	Multichannel
159	SHKLYAR	13	DPWA	Multichannel
200 ± 25	ANISOVICH	12A	DPWA	Multichannel
174 ± 16	³ BATINIC	10	DPWA	$\pi N ightarrow N \pi$, $N \eta$
132	VRANA	00	DPWA	Multichannel
200	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
88	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$
¹ Statistical error only.				

https://pdg.lbl.gov

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

 2 Fit to the amplitudes of HOEHLER 79.

³BATINIC 10 finds evidence for a second P_{11} state with all parameters except for the phase of the pole residue very similar to the parameters we give here.

N(1710) ELASTIC POLE RESIDUE

MC	DDULUS r				
VAL	UE (MeV)	DOCUMENT ID		TECN	COMMENT
4	to 10 (\approx 7) OUR ESTIMATE				
6	± 3	SOKHOYAN	15A	DPWA	Multichannel
5	$\pm 1 \pm 1$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
8	± 2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• •	• We do not use the following	g data for averages	s, fits,	limits, e	tc. ● ● ●
3.2	2	ROENCHEN	15A	DPWA	Multichannel
6	± 3	GUTZ	14	DPWA	Multichannel
11		SHKLYAR	13	DPWA	Multichannel
6	± 4	ANISOVICH	12A	DPWA	Multichannel
24		² BATINIC	10	DPWA	$\pi N \rightarrow N \pi$, $N \eta$
15		HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
9		CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$
-					

¹ Fit to the amplitudes of HOEHLER 79.

² BATINIC 10 finds evidence for a second P_{11} state with all parameters except for the phase of the pole residue very similar to the parameters we give here.

PHASE θ

VALUE ($^{\circ}$)	DOCUMENT ID		TECN	COMMENT		
120 to 260 ($pprox$ 190) OUR ESTIM						
130 ± 35	SOKHOYAN	15A	DPWA	Multichannel		
$-104\pm$ 7 ± 3	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$		
175 ± 35	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$		
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. • • •		
55	ROENCHEN	15A	DPWA	Multichannel		
120 ± 45	GUTZ	14	DPWA	Multichannel		
9	SHKLYAR	13	DPWA	Multichannel		
120 ± 70	ANISOVICH	12A	DPWA	Multichannel		
20	² BATINIC	10	DPWA	π N $ ightarrow$ N π , N η		
- 167	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$		
$\frac{1}{2}$ Fit to the amplitudes of HOEHLER 79.						

 2 BATINIC 10 finds evidence for a second P_{11} state with all parameters except for the phase of the pole residue very similar to the parameters we give here.

N(1710) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized residue in $N\pi \rightarrow N(1710) \rightarrow N\eta$							
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT			
0.12 ± 0.04	0 ± 45	ANISOVICH 12A	DPWA	Multichannel			
• • • We do not	t use the following dat	a for averages, fits, li	mits, etc.	• • •			
0.16	-180	ROENCHEN 15A	DPWA	Multichannel			
https://pdg.lb	l.gov	Page 2	Created	d: 6/1/2021	08:29		

Normalized residue in $N\pi \rightarrow N(1710) \rightarrow \Lambda K$

MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT			
0.16 ± 0.05	-160 ± 25	ANISOVICH	17A	DPWA	Multichannel			
$0.12\substack{+0.24 \\ -0.12}$	-119 ± 83 1	ANISOVICH	17A	L+P	γp , $\pi^- p ightarrow$	KЛ		
• • • We do no	ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
0.12	-32	ROENCHEN	15A	DPWA	Multichannel			
$0.17 \!\pm\! 0.06$	-110 \pm 20	ANISOVICH	12A	DPWA	Multichannel			
¹ Statistical error only.								

Normalized residue in $N\pi \rightarrow N(1710) \rightarrow \Sigma K$

MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT		
• • • We do no	ot use the following dat	ta for averages, fit	ts, lim	its, etc.	• • •		
0.004	-43	ROENCHEN	15A	DPWA	Multichannel		
Normalized residue in $N\pi \rightarrow N(1710) \rightarrow N(1535)\pi$							
MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT		
0.10 ± 0.04	140 ± 40	GUTZ	14	DPWA	Multichannel		

N(1710) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1680 to 1740 (≈ 1710) OUR ESTI	MATE			
1648 ± 16	¹ HUNT	19	DPWA	Multichannel
1715 ± 20	SOKHOYAN	15A	DPWA	Multichannel
1737 ± 17	¹ SHKLYAR	13	DPWA	Multichannel
1700 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1723 ± 9	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
\bullet \bullet \bullet We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●
1715 ± 20	GUTZ	14	DPWA	Multichannel
1710 ± 20	ANISOVICH	12A	DPWA	Multichannel
$1662\pm$ 7	¹ SHRESTHA	12A	DPWA	Multichannel
1729 ± 16	² BATINIC	10	DPWA	$\pi N ightarrow N \pi$, $N \eta$
$1752\pm$ 3	PENNER	02C	DPWA	Multichannel
1699 ± 65	VRANA	00	DPWA	Multichannel
-				

 $\frac{1}{2}$ Statistical error only.

²BATINIC 10 finds evidence for a second P_{11} state with all parameters except for the phase of the pole residue very similar to the parameters we give here.

N(1710) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
80 to 200 ($pprox$ 140) OUR ESTIMA	TE			
$195\pm$ 46	1 HUNT	19	DPWA	Multichannel
$175\pm~15$	SOKHOYAN	15A	DPWA	Multichannel
368 ± 120	¹ SHKLYAR	13	DPWA	Multichannel
93± 30	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$
$90\pm$ 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
$120\pm$ 15	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
https://pdg.lbl.gov	Page 3		Crea	ted: 6/1/2021 08:29

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

$175\pm$	15	GUTZ	14	DPWA	Multichannel
$200\pm$ 3	18	ANISOVICH	12A	DPWA	Multichannel
$116\pm$ 3	17	¹ SHRESTHA	12A	DPWA	Multichannel
$180\pm$	17	² BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
386± !	59	PENNER	02C	DPWA	Multichannel
143 ± 10	00	VRANA	00	DPWA	Multichannel
-					

 1 Statistical error only. 2 BATINIC 10 finds evidence for a second P_{11} state with all parameters except for the phase of the pole residue very similar to the parameters we give here.

N(1710) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

_	Mode	Fraction (Γ_i/Γ)
Г1	$N\pi$	5–20 %
Г2	$N\eta$	10–50 %
Г ₃	$N\omega$	1–5 %
Г ₄	ΛΚ	5–25 %
Γ ₅	ΣΚ	seen
Г ₆	$N\pi\pi$	seen
Γ ₇	$\Delta(1232)\pi$	
Г ₈	$arDelta(1232)\pi$, $\mathit{P} ext{-wave}$	3–9 %
Гg	$N(1535)\pi$	9–21 %
Γ ₁₀	N ho	
Γ_{11}	N $ ho$, S=1/2, P-wave	11–23 %
Γ ₁₂	$N\sigma$	
Г ₁₃	$p\gamma$, helicity ${=}1/2$	0.002–0.08 %
Γ_{14}	$n\gamma$, helicity ${=}1/2$	0.0-0.02%

N(1710) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Г1	/Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
5 to 20 (\approx 10) OUR ESTIMATE					
$12\pm~6$	¹ HUNT	19	DPWA	Multichannel	
$5\pm$ 3	SOKHOYAN	15A	DPWA	Multichannel	
$2\pm~2$	¹ SHKLYAR	13	PWA	Multichannel	
20± 4	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
12± 4	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
\bullet \bullet \bullet We do not use the following	data for averages	s, fits,	limits, e	etc. ● ● ●	
5± 3	GUTZ	14	DPWA	Multichannel	
5± 4	ANISOVICH	12A	DPWA	Multichannel	
$15\pm$ 4	¹ SHRESTHA	12A	DPWA	Multichannel	
22±24	² BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$	
14± 8	PENNER	02C	DPWA	Multichannel	
27±13	VRANA	00	DPWA	Multichannel	
https://pdg.lbl.gov	Page 4		Crea	ted: 6/1/2021 08:	29

 1 Statistical error only. 2 BATINIC 10 finds evidence for a second P_{11} state with all parameters except for the phase of the pole residue very similar to the parameters we give here.

$\Gamma(N\eta)/\Gamma_{\text{total}}$					Γ_2/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
10 to 50 (\approx 30) OUR ESTIMATE					
18 ± 10	MUELLER	20	DPWA	Multichannel	
17± 8	¹ HUNT	19	DPWA	Multichannel	-
45± 4	¹ SHKLYAR	13	DPWA	Multichannel	
17 ± 10	ANISOVICH	12A	DPWA	Multichannel	
\bullet \bullet \bullet We do not use the following	data for averages	, fits,	limits, e	tc. • • •	
$11\pm$ 7	¹ SHRESTHA	12A	DPWA	Multichannel	
6± 8	² BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$	
36 ± 11	PENNER	02C	DPWA	Multichannel	
$6\pm$ 1	VRANA	00	DPWA	Multichannel	

 1 Statistical error only. 2 BATINIC 10 finds evidence for a second P_{11} state with all parameters except for the phase of the pole residue very similar to the parameters we give here.

$\Gamma(N\omega)/\Gamma_{\rm total}$					Г ₃ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
1 to 5 (\approx 3) OUR ESTIMATE					
2±2	DENISENKO	16	DPWA	Multichannel	
3±2	¹ SHKLYAR	13	DPWA	Multichannel	
\bullet \bullet \bullet We do not use the followin	ng data for average	s, fits,	limits, e	tc. ● ● ●	
13±2	PENNER	02C	DPWA	Multichannel	
1 charter i anno an ba					

¹ Statistical error only.

$\Gamma(\Lambda K)/\Gamma_{total}$

$\Gamma(\Lambda K)/\Gamma_{total}$					Г4/Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
5 to 25 (≈ 15) OUR ESTIMATI	E				
$1.8\pm$ 1.5	¹ HUNT	19	DPWA	Multichannel	
23 ± 7	ANISOVICH	12A	DPWA	Multichannel	
5 ± 3	SHKLYAR	05	DPWA	Multichannel	
• • • We do not use the following	data for averages	s, fits,	limits, e	tc. • • •	
8 ± 4	¹ SHRESTHA	12A	DPWA	Multichannel	
5 ± 2	PENNER	02C	DPWA	Multichannel	
10 ± 10	VRANA	00	DPWA	Multichannel	

 $^1\,\mathrm{Statistical}$ error only.

$\Gamma(\Sigma K)/\Gamma_{\text{total}}$

VALUE (%)	DOCUMENT ID	DOCUMENT ID		COMMENT	-,
• • • We do not use the follo	owing data for average	s, fits,	limits, e	etc. • • •	
7±7	PENNER	0 2C	DPWA	Multichannel	
$\Gamma(\Delta(1232)\pi, P$ -wave $)/\Gamma_{1}$	total				Г ₈ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
28±9	¹ HUNT	19	DPWA	Multichannel	
https://pdg.lbl.gov	Page 5		Crea	ated: 6/1/2021	08:29

 Γ_5/Γ

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

6±3	¹ SHRESTHA	12A	DPWA	Multichannel	
39±8	VRANA	00	DPWA	Multichannel	
1					

¹ Statistical error only.

$\Gamma(N(1535)\pi)/\Gamma_{total}$					٦/و٦
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
15 ± 6	GUTZ	14	DPWA	Multichannel	

$\Gamma(N\rho, S=1/2, P-wave)/\Gamma_{total}$					Γ_{11}/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
17±9	¹ HUNT	19	DPWA	Multichannel	
\bullet \bullet \bullet We do not use the following	data for averages	s, fits,	limits, e	tc. ● ● ●	
17±6	¹ SHRESTHA	12A	DPWA	Multichannel	
17 ± 1	VRANA	00	DPWA	Multichannel	
¹ Statistical error only.					
$\Gamma(N\sigma)/\Gamma_{total}$					Г ₁₂ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
<16	¹ HUNT	19	DPWA	Multichannel	

¹Statistical error only.

N(1710) PHOTON DECAY AMPLITUDES AT THE POLE

$N(1710) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

MODULUS (GeV $^{-1/2}$)	PHASE (°)	DOCUMENT ID		TECN	COMMENT
$0.028 \substack{+ 0.009 \\ - 0.002}$	103^{+20}_{-6}	ROENCHEN	14	DPWA	
$\bullet \bullet \bullet$ We do not use	the following data for	or averages, fits,	limit	s, etc. •	• •
0.020	-83	ROENCHEN	15A	DPWA	Multichannel

N(1710) BREIT-WIGNER PHOTON DECAY AMPLITUDES

$N(1710) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
0.014 ± 0.008	1 HUNT	19	DPWA	Multichannel
0.050 ± 0.010	SOKHOYAN	15A	DPWA	Multichannel
-0.050 ± 0.001	¹ SHKLYAR	13	DPWA	Multichannel
$\bullet~\bullet~$ We do not use the follow	ing data for averages	s, fits,	limits, e	tc. • • •
0.05 ± 0.01	GUTZ	14	DPWA	Multichannel
0.052 ± 0.015	ANISOVICH	12A	DPWA	Multichannel
-0.008 ± 0.003	¹ SHRESTHA	12A	DPWA	Multichannel
0.044	PENNER	0 2D	DPWA	Multichannel
1 Statistical error only.				

$N(1710) \rightarrow n\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
0.0053 ± 0.0003	1 HUNT	19	DPWA	Multichannel
-0.040 ± 0.020	ANISOVICH	13 B	DPWA	Multichannel
$\bullet \bullet \bullet$ We do not use the following	g data for averages	s, fits,	limits, e	etc. ● ● ●
0.017 ± 0.003	¹ SHRESTHA	12A	DPWA	Multichannel
-0.024	PENNER	0 2D	DPWA	Multichannel
¹ Statistical error only.				

N(1710) REFERENCES

For early references, see Physics Letters 111B 1 (1982).

MUELLER	20	PL B803 135323	J. Mueller <i>et al.</i>	(CBELSA/TAPS Collab.)
HUNT	19	PR C99 055205	B.C. Hunt, D.M. Manley	
ANISOVICH	17A	PRL 119 062004	A.V. Anisovich et al.	
DENISENKO	16	PL B755 97	I. Denisenko <i>et al.</i>	
ROENCHEN	15A	EPJ A51 70	D. Roenchen et al.	
SOKHOYAN	15A	EPJ A51 95	V. Sokhoyan <i>et al.</i>	(CBELSA/TAPS Collab.)
GUTZ	14	EPJ A50 74	E. Gutz et al.	(CBELSA/TAPS Collab.)
PDG	14	CP C38 070001	K. Olive <i>et al.</i>	(PDG Collab.)
ROENCHEN	14	EPJ A50 101	D. Roenchen <i>et al.</i>	
Also		EPJ A51 63 (errat.)	D. Roenchen <i>et al.</i>	
SVARC	14	PR C89 045205	A. Svarc <i>et al.</i>	(RBI Zagreb, UNI Tuzla)
ANISOVICH	13B	EPJ A49 67	A.V. Anisovich et al.	· - ,
SHKLYAR	13	PR C87 015201	V. Shklyar, H. Lenske, U. Mosel	(GIES)
ANISOVICH	12A	EPJ A48 15	A.V. Anisovich et al.	(BONN, PNPI)
SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manley	(KSU)
BATINIC	10	PR C82 038203	M. Batinic <i>et al.</i>	(ŻAGR)
SHKLYAR	05	PR C72 015210	V. Shklyar, H. Lenske, U. Mosel	(GIES)
PENNER	02C	PR C66 055211	G. Penner, U. Mosel	(GIES)
PENNER	02D	PR C66 055212	G. Penner, U. Mosel	(GIES)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman, TS.H	. Lee (PITT, ANL)
HOEHLER	93	π N Newsletter 9 1	G. Hohler) (KARL)
CUTKOSKY	90	PR D42 235	R.E. Cutkosky, S. Wang	(CMU)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) IJF
Also		PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJF
HOEHLER	79	PDAT 12-1	G. Hohler <i>et al.</i>	(KARLT) IJF
Also		Toronto Conf. 3	R. Koch	(KARLT) IJF