$$I^{G}(J^{PC}) = 0^{+}(0 \text{ or } 2^{++})$$

was $\chi_{c0}(391\overline{5})$

The experimental analysis prefers $J^{PC} = 0^{++}$. However, a reanalysis presented in ZHOU 15C shows that if helicity-2 dominance assumption is abandoned and a sizable helicity-0 component is allowed, a $J^{PC} = 2^{++}$ assignment is possible.

X(3915) MASS

 $^1\,\text{Obtained}$ from the full amplitude analysis. Parameterized with the relativistic Breit-Wigner line shape.

https://pdg.lbl.gov

Created: 6/1/2021 08:31

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

 $^{2}\omega J/\psi$ threshold enhancement fitted as an S-wave Breit-Wigner resonance.

³ Could also be X(3940). Significance 3.1σ . Fit with additional resonance at 3963.7 ± 5.7 MeV, significance 3.4σ .

X(3915) WIDTH VALUE (MeV) **EVTS** DOCUMENT ID TECN COMMENT $18.8\pm$ 3.5 OUR AVERAGE 20AI LHCB $B^+ \rightarrow D^+ D^- K^+$ ¹ AAIJ $17.4\pm~5.1\pm~0.8$ 1.2k 12AD BABR $e^+e^- \rightarrow e^+e^- \omega J/\psi$ $13 \ \pm \ 6 \ \pm \ 3$ 59 LEES +10DEL-AMO-SA..10B BABR $B \rightarrow \omega J/\psi K$ 31 \pm 5 8 BELL 10.6 $e^+e^- \rightarrow e^+e^- \omega J/\psi$ 10 $17 \hspace{0.1in} \pm 10 \hspace{0.1in} \pm \hspace{0.1in} 3$ 49 **UEHARA** ² CHOI 87 ±22 ±26 58 05 BELL $B \rightarrow \omega J/\psi K$ • • We do not use the following data for averages, fits, limits, etc. • • • ³ ABLIKIM $3.8\pm~7.5\pm~2.6$ 19V BES $e^+e^- \rightarrow \gamma \omega J/\psi$ $34 \begin{array}{c} +12\\ -8 \end{array} \pm 5$ ² AUBERT 08W BABR Superseded by DEL-AMO-SANCHEZ 10B 1 Obtained from the full amplitude analysis. Parameterized with the relativistic Breit-

¹ Obtained from the full amplitude analysis. Parameterized with the relativistic Breit-Wigner line shape.

 $2\omega J/\psi$ threshold enhancement fitted as an S-wave Breit-Wigner resonance.

³ Could also be X(3940). Significance 3.1σ . Fit with additional resonance at 3963.7 ± 5.7 MeV, significance 3.4σ .

X(3915) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ_1	$\omega J/\psi$	seen
Γ2	$\overline{D}^{*0} D^0$	
Γ ₃	$\pi^+\pi^-\eta_c(1S)$	not seen
Γ ₄	$\eta_c \eta_{-}$	not seen
Γ ₅	$\eta_c \pi^0$	not seen
Г ₆	KK	not seen
Γ ₇	$\gamma \gamma$	seen
Г ₈	$\pi^0 \chi_{c1}$	

X(3915) $\Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(\omega J/\psi) \times \Gamma(\gamma \gamma)/\Gamma_{\text{total}} \qquad \qquad \Gamma_1 \Gamma_7/\Gamma$									
VALUE (eV)	EVTS	DOCUMENT ID		TECN	COMMENT				
54 \pm 9 OUR /	AVERAGE								
$52\!\pm\!10\!\pm\!3$	59 ± 10	¹ LEES	12A0	BABR	$e^+e^- ightarrow e^+e^-\omega J/\psi$				
$61\!\pm\!17\!\pm\!8$	49 ± 15	¹ UEHARA	10	BELL	10.6 $e^+e^- \rightarrow e^+e^-\omega J/\psi$				
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$									
$18\pm$ 5 ± 2	49 ± 15	² UEHARA	10	BELL	10.6 $e^+e^- \rightarrow e^+e^-\omega J/\psi$				
1 For $J^{P} =$ 2 For $J^{P} =$	0 ⁺ . 2 ⁺ , helicity-2	2.							

https://pdg.lbl.gov

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

X(3915) BRANCHING RATIOS

$\Gamma(\omega J/\psi)/\Gamma_{t}$	otal			Г1/Г
VALUE		DOCUMENT ID	TECN COMMENT	
seen		¹ DEL-AMO-SA10	BABR $B ightarrow \omega J/$	ψK
seen		² CHOI 05	BELL $B \rightarrow \omega J/$	ψK
${}^{1} \text{ DEL-AMO} = (3.0 {+}0.7 {-$	SANCHEZ 10B $7+0.5 \\ 6-0.3$) × 10 ⁻⁵ \pm 0.3) × 10 ⁻⁵ . ports B($B \rightarrow X$	reports $B(B^{\pm} \to X(39)$ and $B(B^{0} \to X(3915))$ $(3915) K) \times B(X(3915) \to X(3915))$	$15) K^{\pm}) imes B(X(3915)) + B(X(3915)) + B(X(3915)) + J/\psi\omega) = (7.1 \pm 1.3 \pm 1.3)$	$(5) \rightarrow J/\psi\omega)$ $\rightarrow J/\psi\omega) =$ $= 3.1) \times 10^{-5}.$
$\Gamma(\omega J/\psi)/\Gamma(\psi)$	D ^{*0} D ⁰)	DOCUMENT ID	TECN COMMENT	Γ_1/Γ_2
<u>VALUE</u>	<u>CL%</u>	1_{AUSUEV} 10	$\frac{1200}{1200} \times \frac{1200}{1200} \times \frac{1200}{1200$	
1 By combini 10^{-4} from B($B o X$)	ng the upper lim AUSHEV 10 wit (3915) K) × B(2	it B($B \rightarrow X(3915) K$) × th the average of CHOI 0 $X(3915) \rightarrow \omega J/\psi) = (0$	$B(X(3915) \rightarrow D^{*0})$ 5 and AUBERT 08W 1.51 \pm 0.11) \times 10 ⁻⁴ .	$\overline{D}{}^0) < 0.67 imes$ measurements
$\Gamma(\eta_c \eta) / \Gamma_{\text{total}}$				Γ ₄ /Γ
VALUE	<u> </u>	DOCUMENT ID	<u>TECN</u> <u>COMMENT</u>	+
¹ VINOKURG at 90% CL. $\Gamma(\eta_c \pi^0)/\Gamma_{to}$	DVA 15 reports	$B(B^+ \rightarrow K^+ X(3915)^0$) × B($X \rightarrow \eta_c \eta$) <	^{4.7} × 10 ⁻⁵ Γ₅/Γ
VALUE	<u> </u>	1 VINOKUDOVA 15	$\frac{1ECN}{DEU} \xrightarrow{COMMENT}{COMMENT}$	+ 0
¹ VINOKUR(at 90% CL.	90 DVA 15 reports l	$B(B^+ \rightarrow K^+ X(3915)^0)$	$BELL B^+ \to K$ $0 \times B(X \to \eta_c \pi^0) < 0$	$\eta_c \pi^{-5}$ (1.7×10^{-5})
$\Gamma(\gamma\gamma)/\Gamma_{total}$	<u>EVTS</u>	DOCUMENT ID TE	CN COMMENT	Г ₇ /Г
seen	59 ± 10	LEES 12AD BA	BR $e^+e^- \rightarrow e^+e^-$	$-\omega J/\psi$
seen		UEHARA 10 BE	LL 10.6 $e^+e^- \rightarrow$	$e^+e^-\omega J/\psi$
$\Gamma(\pi^0 \chi_{c1}) / \Gamma_{1}$	total <u>EVTS</u>	DOCUMENT ID	TECN COMMENT	Г ₈ /Г
• • • We do n	ot use the follow	ving data for averages, fit	s, limits, etc. • • •	
not seen	42 ± 14	¹ BHARDWAJ 19	BELL $B^{\pm} \rightarrow \chi_{c1}$	$\pi^0 \kappa^{\pm}$

https://pdg.lbl.gov

¹ BHARDWAJ 19 reports B($B^+ \rightarrow K^+ X(3915)$) × B($X(3915) \rightarrow \chi_{c1} \pi^0$) < 3.8×10⁻⁵ at 90% CL. A signal significance 2.3 standard deviations.

X(3915) REFERENCES