Charged Higgs Bosons (H^{\pm} and $H^{\pm\pm}$), Searches for

CONTENTS:

 H^{\pm} (charged Higgs) mass limits for m $_{H^+}$ < m(top)

 H^{\pm} (charged Higgs) mass limits for $m_{H^+}^{-} > m(top)$

 $H^{\pm\pm}$ (doubly-charged Higgs boson) mass limits

- Limits for $H^{\pm\pm}$ with $T_3 = \pm 1$

- Limits for $H^{\pm\pm}$ with $T_3 = 0$

- H^{\pm} (charged Higgs) mass limits for $m_{H^{+}} < m(top)$

Unless otherwise stated, LEP limits assume $B(H^+ \rightarrow \tau^+ \nu)+B(H^+ \rightarrow c\overline{s})=1$, and hold for all values of $B(H^+ \rightarrow \tau^+ \nu_{\tau})$, and assume H^+ weak isospin of $T_3=+1/2$. In the following, $\tan\beta$ is the ratio of the two vacuum expectation values in two-doublet models (2HDM).

The limits are also applicable to point-like technipions. For a discussion of techniparticles, see the Review of Dynamical Electroweak Symmetry Breaking in this Review.

Limits obtained at the LHC are given in the ${\rm m}_h^{mod-}$ benchmark scenario, see CARENA 13, and hold for all $\tan\!\beta$ values.

For limits obtained in hadronic collisions before the observation of the top quark, and based on the top mass values inconsistent with the current measurements, see the 1996 (Physical Review **D54** 1 (1996)) Edition of this Review.

Searches in e^+e^- collisions at and above the Z pole have conclusively ruled out the existence of a charged Higgs in the region $m_{H^+} \lesssim 45$ GeV, and are meanwhile superseded by the searches in higher energy e^+e^- collisions at LEP. Results that are by now obsolete are therefore not included in this compilation, and can be found in a previous Edition (The European Physical Journal **C15** 1 (2000)) of this Review.

In the following, and unless otherwise stated, results from the LEP experiments (ALEPH, DELPHI, L3, and OPAL) are assumed to derive from the study of the $e^+e^- \rightarrow H^+H^-$ process. Limits from $b \rightarrow s\gamma$ decays are usually stronger in generic 2HDM models than in Supersymmetric models.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
none 80–140	95	¹ AAD	15af	ATLS	$t \rightarrow b H^+$
none 90–155	95	² KHACHATRY.			$t \rightarrow b H^+, H^+ \rightarrow \tau^+ u$
> 80	95	³ LEP	13	LEP	$e^+e^- \rightarrow H^+H^-, E_{cm} \leq$
> 76.3	95	⁴ ABBIENDI	12	OPAL	$e^+e^- \rightarrow H^+H^-, E_{cm} \leq 209 \text{GeV}$
> 74.4	95	ABDALLAH	041	DLPH	$E_{\rm cm} \leq 209 \; {\rm GeV}$
> 76.5	95	ACHARD	03E	L3	$E_{\rm cm}^{\rm one} \leq 209 {\rm GeV}$
> 79.3	95	HEISTER	0 2P	ALEP	$E_{\rm cm} \leq 209 \; {\rm GeV}$
https://pdg.lbl.g	σv	Page 1			Created: 6/1/2021 08:33

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

	se the for	lowing data for ave	rages,	nus, nn	
		⁵ AAD	20W	ATLS	$H^+ \rightarrow t \overline{b}$
		⁶ SIRUNYAN	20A0	CMS	$H^+ \rightarrow t \overline{b}$
		⁷ SIRUNYAN	20AV	CMS	$H^+ \rightarrow t \overline{b}$
		⁸ SIRUNYAN	20be	CMS	$t \rightarrow bH^+, H^+ \rightarrow c\overline{s}$
		⁹ SIRUNYAN	19ah	CMS	$H^+ \rightarrow \tau^+ \nu$
		¹⁰ SIRUNYAN		CMS	
		¹¹ SIRUNYAN		CMS	
		Sintentinin	1900	civio	$W^+ A^0, A^0 \rightarrow \mu^+ \mu^-$
		¹² SIRUNYAN	19cq	CMS	$H^+ \rightarrow W^+ Z$
		¹³ AABOUD	18BW	/ATLS	
		14			$\frac{H^+}{\overline{t}bH^+}, \frac{\tau^+\nu}{H^+} \rightarrow t\overline{b}$
		¹⁴ AABOUD			
		¹⁵ AABOUD		ATLS	
		¹⁶ HALLER	18	RVUE	$b ightarrow s \gamma$
		¹⁷ SIRUNYAN	18D0	CMS	
		¹⁸ MISIAK	17		$b ightarrow s(d) \gamma$
		¹⁹ SIRUNYAN	17AE	CMS	$H^{\pm} \rightarrow W^{\pm} Z$
		²⁰ AABOUD	16A	ATLS	t(b) H $^+$, H $^+$ $ ightarrow$ $ au^+ u$
		²¹ AAD	16aj	ATLS	$t(b) H^+, H^+ ightarrow t \overline{b}$
		²² AAD	16aj	ATLS	$q q \rightarrow H^+, H^+ \rightarrow t \overline{b}$
		²³ AAD	15af	ATLS	t H [±]
		²⁴ AAD	15M	ATLS	$H^{\pm} \rightarrow W^{\pm} Z$
		²⁵ KHACHATRY.	15 AX	CMS	$t H^+, H^+ \rightarrow t \overline{b}$
		²⁶ KHACHATRY.			$t H^{\pm}, H^{\pm} \rightarrow \tau^{\pm} \nu$
		²⁷ KHACHATRY.			$t \rightarrow bH^+, H^+ \rightarrow c\overline{s}$
		²⁸ AAD		ATLS	$H_2^0 \rightarrow H^{\pm} W^{\mp} \rightarrow$
					$H^0 W^{\pm} W^{\mp}, H^0 \rightarrow b\overline{b}$
		²⁹ AALTONEN	14A	CDF	$t \rightarrow b \tau \nu$
		³⁰ AAD		ATLS	
		³¹ AAD		ATLS	
			101	/11 20	universality
		³² AAD		ATLS	
		³³ CHATRCHYAN			
		³⁴ AALTONEN		CDF	
>316	95	³⁵ DESCHAMPS	10		Type II, flavor physics data
		³⁶ AALTONEN	09 AJ	CDF	$t \rightarrow bH^+$
		³⁷ ABAZOV	09 AC	D0	$t \rightarrow bH^+$
		³⁸ ABAZOV	09 AG	D0	$t \rightarrow bH^+$
		³⁹ ABAZOV	09AI	D0	$t \rightarrow b H^+$
		⁴⁰ ABAZOV	09 P	D0	$H^+ \rightarrow t \overline{b}$
		⁴¹ ABULENCIA	06E	CDF	
> 92.0	95	ABBIENDI	04	OPAL	$B(\tau\nu)=1$
> 76.7	95	⁴² ABDALLAH	041	DLPH	Type I
		⁴³ ABBIENDI	03	OPAL	$ au ightarrow \ \mu \overline{ u} u$, e $\overline{ u} u$
		⁴⁴ ABAZOV	0 2B	D0	$t ightarrow ~b H^+$, $H ightarrow ~ au u$
		⁴⁵ BORZUMATI	02	RVUE	
		⁴⁶ ABBIENDI			$B \rightarrow \tau \nu_{\tau} X$
		47 BARATE			$B \rightarrow \tau \nu_{\tau}$
>315	99	⁴⁸ GAMBINO	01	RVUE	$b ightarrow s \gamma$
					Created 6 (1 /2021 00 22

https://pdg.lbl.gov

		⁴⁹ AFFOLDER	001	CDF	$t \rightarrow b H^+, H \rightarrow \tau \nu$
> 59.5	95	ABBIENDI	99E	OPAL	$E_{ m cm} \leq 183~ m GeV$
		⁵⁰ АВВОТТ	99e	D0	$t \rightarrow bH^+$
		⁵¹ ACKERSTAFF	99 D	OPAL	$ au ightarrow \mathbf{e} u u$, $\mu u u$
		⁵² ACCIARRI	97F	L3	$B \rightarrow \tau \nu_{\tau}$
		⁵³ AMMAR		CLEO	$ au ightarrow \mu u u$
		⁵⁴ COARASA	97	RVUE	$B \rightarrow \tau \nu_{\tau} X$
			97	RVUE	$t \rightarrow bH^+, H \rightarrow \tau \nu$
		⁵⁶ MANGANO	97	RVUE	$B_{u(c)} \rightarrow \tau \nu_{\tau}$
		⁵⁷ STAHL	97		$\tau \rightarrow \mu \nu \nu$
>244	95	⁵⁸ ALAM	95	CLE2	$b ightarrow s\gamma$
		⁵⁹ BUSKULIC	95	ALEP	$b \rightarrow \tau \nu_{\tau} X$

¹AAD 15AF search for $t\overline{t}$ production followed by $t \to bH^+$, $H^+ \to \tau^+ \nu$ in 19.5 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. Upper limits on B($t \to bH^+$) B($H^+ \to \tau \nu$) between 2.3×10^{-3} and 1.3×10^{-2} (95% CL) are given for $m_{H^+} = 80$ -160 GeV. See their Fig. 8 for the excluded regions in different benchmark scenarios of the MSSM. The region $m_{H^+} < 140$ GeV is excluded for $\tan \beta > 1$ in the considered scenarios.

- ² KHACHATRYAN 15AX search for $t\bar{t}$ production followed by $t \rightarrow bH^+$, $H^+ \rightarrow \tau^+ \nu$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. Upper limits on B($t \rightarrow bH^+$) B($H^+ \rightarrow \tau \nu$) between 1.2×10^{-2} and 1.5×10^{-3} (95% CL) are given for $m_{H^+} = 80$ -160 GeV. See their Fig. 11 for the excluded regions in different benchmark scenarios of the MSSM. The region $m_{H^+} < 155$ GeV is excluded for $\tan \beta > 1$ in the considered scenarios.
- ³ LEP 13 give a limit that refers to the Type II scenario. The limit for $B(H^+ \rightarrow \tau \nu) =$ 1 is 94 GeV (95% CL), and for $B(H^+ \rightarrow cs) = 1$ the region below 80.5 as well as the region 83–88 GeV is excluded (95% CL). LEP 13 also search for the decay mode $H^+ \rightarrow$ $A^0 W^*$ with $A^0 \rightarrow b\overline{b}$, which is not negligible in Type I models. The limit in Type I models is 72.5 GeV (95% CL) if $m_{A0} > 12$ GeV.
- ⁴ABBIENDI 12 also search for the decay mode $H^+ \rightarrow A^0 W^*$ with $A^0 \rightarrow b \overline{b}$.
- ⁵ AAD 20W search for dijet resonances in events with isolated leptons using 139 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. As a byproduct, $H^+ \rightarrow t \overline{b}$ produced in association with $\overline{t}b$ is searched for. Limits on the product of cross section times branching ratio for $m_{H^+} = 0.6-2$ TeV are given in their Fig. 5(c).
- ⁶ SIRUNYAN 20AO search for $H^+ \rightarrow t \overline{b}$ produced in association with t(b) in all jet final states in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 6 for limits on the product of cross section times branching ratio for $m_{H^+} = 0.2$ -3 TeV. Limits for *s*-channel production are also given for $m_{H^+} = 0.8$ -3 TeV. See also Fig. 7 for the corresponding limits in scenarios in the minimal supersymmetric standard model. Cross section limits from combined results with SIRUNYAN 20AV are given in Fig. 8.
- ⁷ SIRUNYAN 20AV search for $H^+ \rightarrow t \overline{b}$ produced in association with t(b) in final states with one or two leptons, in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5 for limits on the product of cross section times branching ratio for $m_{H^+} = 0.2$ -3 TeV, and their Fig. 6 for the corresponding limits in scenarios in the minimal supersymmetric standard model.
- ⁸SIRUNYAN 20BE search for $t \rightarrow bH^+$ followed by the decay $H^+ \rightarrow c\overline{s}$ in pair produced top quark events using 35.9 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. Limits on the branching ratio in the range 1.68–0.25% (95%CL) are given for $m_{H^+} = 80-160$ GeV, see their Fig. 4.
- ⁹ SIRUNYAN 19AH search for H^+ in the decay of a pair-produced t quark, or in associated tbH^+ or nonresonant $b\overline{b}H^+W^-$ production, followed by $H^+ \rightarrow \tau^+\nu$, in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. Upper limits on cross section times branching ratio

between 6 pb and 5 fb (95% CL) are given for $m_{H^+} = 80-3000$ GeV (including the non-resonant production near the top quark mass), see their Fig. 6 (left). See their Fig. 6 (right) for the excluded regions in the $m_b^{\text{mod}-}$ scenario of the MSSM.

- ¹⁰ SIRUNYAN 19BP search for vector boson fusion production of H^+ decaying to $H^+ \rightarrow W^+ Z \rightarrow \ell^+ \nu \ell^+ \ell^-$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 7 for limits on cross section times branching ratio for $m_{H^+} = 0.3$ –2.0 TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
- ¹¹ SIRUNYAN 19CC search for $t \rightarrow bH^+$ from pair produced top quarks, with the decay chain $H^+ \rightarrow W^+ A^0$, $A^0 \rightarrow \mu^+ \mu^-$ in 35.9 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 2 for limits on the product of branching ratios for $m_{A^0} = 15$ -75 GeV.
- ¹² SIRUNYAN 19CQ search for vector boson fusion production of H^+ decaying to $H^+ \rightarrow W^+ Z \rightarrow \ell^+ \nu q \overline{q}$ or $q \overline{q} \ell^+ \ell^-$ in 35.9 fb⁻¹ of p p collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5 for limits on cross section times branching ratio for $m_{H^+} = 0.6-2.0$ TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
- ¹³ AABOUD 18BW search for $\overline{t} b H^+$ associated production or the decay $t \to b H^+$, followed by $H^+ \to \tau^+ \nu$, in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 8(a) for upper limits on cross section times branching ratio for $m_{H^+} = 90-2000$ GeV, and Fig. 8(b) for limits on B($t \to b H^+$) B($H^+ \to \tau^+ \nu$) for $m_{H^+} = 90-160$ GeV. See also their Fig. 9 for the excluded region in the hMSSM parameter space.
- ¹⁴ AABOUD 18CD search for $\overline{t}bH^+$ associated production followed by $H^+ \rightarrow t\overline{b}$ in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 8 for upper limits on cross section times branching ratio for $m_{H^+} = 0.2$ -2 TeV. See also their Fig. 9 for the excluded region in the parameter space of the $m_h^{\rm mod-}$ and hMSSM scenarios of the MSSM. The theory predictions overlaid to the experimental limits to determine the excluded m_{H^+} range are shown without their respective uncertainty band.
- ¹⁵AABOUD 18CH search for vector boson fusion production of H^{\pm} decaying to $H^{\pm} \rightarrow W^{\pm}Z \rightarrow \ell^{\pm}\nu\ell^{+}\ell^{-}$ in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 7 for limits on cross section times branching ratio for $m_{H^{\pm}} = 0.2$ –0.9 TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
- ¹⁶ HALLER 18 give 95% CL lower limits on m_{H^+} of 590 GeV in type II two Higgs doublet model from combined data (including an unpublished BELLE result) for B($b \rightarrow s\gamma$).
- ¹⁷ SIRUNYAN 18DO search for $t\overline{t}$ production followed by $t \to bH^+$, $H^+ \to c\overline{b}$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 3 for upper limits on B($t \to bH^+$) for $m_{H^+} = 90$ -150 GeV assuming that B($H^+ \to c\overline{b}$) = 1 and B($t \to bH^+$) + B($t \to bW^+$) = 1.
- ¹⁸ MISIAK 17 give 95% CL lower limits on m_{H^+} between 570 and 800 GeV in type II two Higgs doublet model from combined data (including an unpublished BELLE result) for $B(b \rightarrow s(d)\gamma)$.
- ¹⁹ SIRUNYAN 17AE search for vector boson fusion production of H^{\pm} decaying to $H^{\pm} \rightarrow W^{\pm}Z \rightarrow \ell^{\pm}\nu\ell^{+}\ell^{-}$ in 15.2 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 3 for limits on cross section times branching ratio for $m_{H^{\pm}} = 0.2$ -2.0 TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model.
- ²⁰ AABOUD 16A search for $t(b) H^{\pm}$ associated production followed by $H^{+} \rightarrow \tau^{+}\nu$ in 3.2 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. Upper limits on $\sigma(t(b) H^{\pm}) B(H^{+} \rightarrow \tau\nu)$ between 1.9 pb and 15 fb (95% CL) are given for $m_{H^{+}} = 200-2000$ GeV, see their Fig. 6. See their Fig. 7 for the excluded regions in the hMSSM scenario.
- ²¹AAD 16AJ search for t(b) H^{\pm} associated production followed by $H^{\pm} \rightarrow tb$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 6 for upper limits on $\sigma(t(b) H^{\pm})$ B($H^{+} \rightarrow tb$) for $m_{H^{+}} = 200$ -600 GeV.

- ²² AAD 16AJ search for H^{\pm} production from quark-antiquark annihilation, followed by $H^{\pm} \rightarrow tb$, in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 10 for upper limits on $\sigma(H^{\pm})$ B($H^{+} \rightarrow tb$) for $m_{H^{+}} = 400$ –3000 GeV.
- ²³ AAD 15AF search for $t H^{\pm}$ associated production followed by $H^{\pm} \rightarrow \tau^{\pm} \nu$ in 19.5 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. Upper limits on $\sigma(t H^{\pm}) \ {\rm B}(H^+ \rightarrow \tau \nu)$ between 760 and 4.5 fb (95% CL) are given for $m_{H^+} = 180\text{-}1000$ GeV. See their Fig. 8 for the excluded regions in different benchmark scenarios of the MSSM.
- ²⁴ AAD 15M search for vector boson fusion production of H^{\pm} decaying to $H^{\pm} \rightarrow W^{\pm} Z \rightarrow q \overline{q} \ell^{+} \ell^{-}$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 2 for limits on cross section times branching ratio for $m_{H^{\pm}} = 200$ –1000 GeV, and Fig. 3 for limits on thetriplet vacuum expectation value fraction in the Georgi-Machacek model.
- ²⁵ KHACHATRYAN 15AX search for tH^{\pm} associated production followed by $H^{\pm} \rightarrow tb$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. Upper limits on $\sigma(tH^{\pm}) \ {\rm B}(H^+ \rightarrow t\overline{b})$ between 2.0 and 0.13 pb (95% CL) are given for $m_{H^+} = 180$ -600 GeV. See their Fig. 11 for the excluded regions in different benchmark scenarios of the MSSM.
- ²⁶ KHACHATRYAN 15AX search for tH^{\pm} associated production followed by $H^{\pm} \rightarrow \tau^{\pm}\nu$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. Upper limits on $\sigma(tH^{\pm}) \ {\rm B}(H^+ \rightarrow \tau\nu)$ between 380 and 25 fb (95% CL) are given for $m_{H^+} = 180$ –600 GeV. See their Fig. 11 for the excluded regions in different benchmark scenarios of the MSSM.
- ²⁷ KHACHATRYAN 15BF search for $t\overline{t}$ production followed by $t \rightarrow bH^+$, $H^+ \rightarrow c\overline{s}$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. Upper limits on B($t \rightarrow bH^+$) B($H^+ \rightarrow c\overline{s}$) between 1.2×10^{-2} and 6.5×10^{-2} (95% CL) are given for $m_{H^+} = 90$ -160 GeV.
- ²⁸ AAD 14M search for the decay cascade $H_2^0 \rightarrow H^{\pm} W^{\mp} \rightarrow H^0 W^{\pm} W^{\mp}$, H^0 decaying to $b\overline{b}$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Table III for limits on cross section times branching ratio for $m_{H_2^0}^{0}$ = 325–1025 GeV and m_{H^+} = 225–925 GeV.
- ²⁹ AALTONEN 14A measure $B(t \rightarrow b\tau\nu) = 0.096 \pm 0.028$ using 9 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. For $m_{H^+} = 80$ -140 GeV, this measured value is translated to a limit $B(t \rightarrow bH^+) < 0.059$ at 95% CL assuming $B(H^+ \rightarrow \tau^+\nu) = 1$.
- ³⁰ AAD 13AC search for $t\bar{t}$ production followed by $t \rightarrow bH^+$, $H^+ \rightarrow c\bar{s}$ (flavor unidentified) in 4.7 fb⁻¹ of pp collisions at $E_{cm} = 7$ TeV. Upper limits on B($t \rightarrow bH^+$) between 0.05 and 0.01 (95%CL) are given for $m_{H^+}=90-150$ GeV and B($H^+ \rightarrow c\bar{s}$)=1.
- ³¹ AAD 13V search for $t\bar{t}$ production followed by $t \to bH^+$, $H^+ \to \tau^+ \nu$ through violation of lepton universality with 4.6 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. Upper limits on $B(t \to bH^+)$ between 0.032 and 0.044 (95% CL) are given for $m_{H^+} = 90$ -140 GeV and $B(H^+ \to \tau^+ \nu) = 1$. By combining with AAD 12BH, the limits improve to 0.008 to 0.034 for $m_{H^+} = 90$ -160 GeV. See their Fig. 7 for the excluded region in the $m_h^{\rm max}$ scenario of the MSSM.
- ³² AAD 12BH search for $t\bar{t}$ production followed by $t \to bH^+$, $H^+ \to \tau^+ \nu$ with 4.6 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. Upper limits on B($t \to bH^+$) between 0.01 and 0.05 (95% CL) are given for $m_{H^+} = 90$ -160 GeV and B($H^+ \to \tau^+ \nu$) = 1. See their Fig. 8 for the excluded region in the $m_h^{\rm max}$ scenario of the MSSM.
- ³³ CHATRCHYAN 12AA search for $t\bar{t}$ production followed by $t \rightarrow bH^+$, $H^+ \rightarrow \tau^+ \nu$ with 2 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. Upper limits on B($t \rightarrow bH^+$) between 0.019 and 0.041 (95% CL) are given for $m_{H^+} = 80\text{-}160$ GeV and B($H^+ \rightarrow \tau^+ \nu$)=1. ³⁴ AALTONEN 11P search in 2.7 fb⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm} = 1.96$ TeV for the decay
- chain $t \to bH^+$, $H^+ \to W^+A^0$, $A^0 \to \tau^+\tau^-$ with m_{A^0} between 4 and 9 GeV. See their Fig. 4 for limits on B($t \to bH^+$) for 90 $< m_{H^+} < 160$ GeV.

- ³⁵ DESCHAMPS 10 make Type II two Higgs doublet model fits to weak leptonic and semileptonic decays, $b \rightarrow s\gamma$, B, B_s mixings, and $Z \rightarrow b\overline{b}$. The limit holds irrespective of tan β .
- ³⁶ AALTONEN 09AJ search for $t \rightarrow bH^+$, $H^+ \rightarrow c\overline{s}$ in $t\overline{t}$ events in 2.2 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. Upper limits on B($t \rightarrow bH^+$) between 0.08 and 0.32 (95% CL) are given for $m_{H^+} = 60$ –150 GeV and B($H^+ \rightarrow c\overline{s}$) = 1.
- ³⁷ ABAZOV 09AC search for $t \rightarrow bH^+$, $H^+ \rightarrow \tau^+ \nu$ in $t\bar{t}$ events in 0.9 fb⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. Upper limits on B($t \rightarrow bH^+$) between 0.19 and 0.25 (95% CL) are given for $m_{H^+} = 80$ -155 GeV and B($H^+ \rightarrow \tau^+ \nu$) = 1. See their Fig. 4 for an excluded region in a MSSM scenario.
- ³⁸ ABAZOV 09AG measure $t\bar{t}$ cross sections in final states with ℓ + jets ($\ell = e, \mu$), $\ell\ell$, and $\tau\ell$ in 1 fb⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm} = 1.96$ TeV, which constrains possible $t \rightarrow bH^+$ branching fractions. Upper limits (95% CL) on B($t \rightarrow bH^+$) between 0.15 and 0.40 (0.48 and 0.57) are given for B($H^+ \rightarrow \tau^+ \nu$) = 1 (B($H^+ \rightarrow c\bar{s}$) = 1) for $m_{H^+} = 80-155$ GeV.
- ³⁹ ABAZOV 09AI search for $t \rightarrow bH^+$ in $t\overline{t}$ events in 1 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} =$ 1.96 TeV. Final states with ℓ + jets ($\ell = e, \mu$), $\ell\ell$, and $\tau\ell$ are examined. Upper limits on B($t \rightarrow bH^+$) (95% CL) between 0.15 and 0.19 (0.19 and 0.22) are given for B($H^+ \rightarrow \tau^+ \nu$) = 1 (B($H^+ \rightarrow c\overline{s}$) = 1) for $m_{H^+} =$ 80–155 GeV. For B($H^+ \rightarrow \tau^+ \nu$) = 1 also a simultaneous extraction of B($t \rightarrow bH^+$) and the $t\overline{t}$ cross section is performed, yielding a limit on B($t \rightarrow bH^+$) between 0.12 and 0.26 for $m_{H^+} =$ 80–155 GeV. See their Figs. 5–8 for excluded regions in several MSSM scenarios.
- ⁴⁰ ABAZOV 09P search for H^+ production by $q \overline{q}'$ annihilation followed by $H^+ \rightarrow t \overline{b}$ decay in 0.9 fb⁻¹ of $p \overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. Cross section limits in several two-doublet models are given for $m_{H^+} = 180-300$ GeV. A region with $20 \lesssim \tan\beta \lesssim$ 70 is excluded (95% CL) for 180 GeV $\lesssim m_{H^+} \lesssim 184$ GeV in type-I models.
- ⁴¹ ABULENCIA 06E search for associated $H^0 W$ production in $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A fit is made for $t\overline{t}$ production processes in dilepton, lepton + jets, and lepton + τ final states, with the decays $t \to W^+ b$ and $t \to H^+ b$ followed by $H^+ \to \tau^+ \nu$, $c\overline{s}$, $t^*\overline{b}$, or $W^+ H^0$. Within the MSSM the search is sensitive to the region $\tan\beta < 1$ or > 30 in the mass range $m_{H^+} = 80-160$ GeV. See Fig. 2 for the excluded region in a certain MSSM scenario.
- ⁴²ABDALLAH 04I search for $e^+e^- \rightarrow H^+H^-$ with H^{\pm} decaying to $\tau\nu$, *cs*, or W^*A^0 in Type-I two-Higgs-doublet models.
- $^{43}\,{\rm ABBIENDI}$ 03 give a limit $m_{H^+}>1.28{\rm tan}\beta$ GeV (95%CL) in Type II two-doublet models.
- ⁴⁴ ABAZOV 02B search for a charged Higgs boson in top decays with $H^+ \rightarrow \tau^+ \nu$ at $E_{\rm cm}$ =1.8 TeV. For m_{H^+} =75 GeV, the region tan β > 32.0 is excluded at 95%CL. The excluded mass region extends to over 140 GeV for tan β values above 100.
- ⁴⁵ BORZUMATI 02 point out that the decay modes such as $b\overline{b}W$, A^0W , and supersymmetric ones can have substantial branching fractions in the mass range explored at LEP II and Tevatron.
- ⁴⁶ ABBIENDI 01Q give a limit $\tan\beta/m_{H^+} < 0.53 \text{ GeV}^{-1}$ (95%CL) in Type II two-doublet ______ models.
- ⁴⁷ BARATE 01E give a limit $\tan\beta/m_{H^+} < 0.40 \text{ GeV}^{-1}$ (90% CL) in Type II two-doublet models. An independent measurement of $B \rightarrow \tau \nu_{\tau} X$ gives $\tan\beta/m_{H^+} < 0.49 \text{ GeV}^{-1}$ (90% CL).
- ⁴⁸ GAMBINO 01 use the world average data in the summer of 2001 B($b \rightarrow s\gamma$) = (3.23 ± 0.42) × 10⁻⁴. The limit applies for Type-II two-doublet models.

- ⁴⁹ AFFOLDER 00I search for a charged Higgs boson in top decays with $H^+ \rightarrow \tau^+ \nu$ in $p\overline{p}$ collisions at $E_{\rm cm}$ =1.8 TeV. The excluded mass region extends to over 120 GeV for tan β values above 100 and B($\tau \nu$) = 1. If B($t \rightarrow bH^+$) \gtrsim 0.6, m_{H^+} up to 160 GeV is excluded. Updates ABE 97L.
- ⁵⁰ ABBOTT 99E search for a charged Higgs boson in top decays in $p\overline{p}$ collisions at $E_{\rm cm}$ =1.8 TeV, by comparing the observed $t\overline{t}$ cross section (extracted from the data assuming the dominant decay $t \rightarrow bW^+$) with theoretical expectation. The search is sensitive to regions of the domains $\tan\beta \lesssim 1$, 50 $< m_{H^+}$ (GeV) $\lesssim 120$ and $\tan\beta \gtrsim 40$, 50 $< m_{H^+}$

(GeV) \lesssim 160. See Fig. 3 for the details of the excluded region.

- ⁵¹ ACKERSTAFF 99D measure the Michel parameters ρ , ξ , η , and $\xi\delta$ in leptonic τ decays from $Z \rightarrow \tau \tau$. Assuming $e_{-\mu}$ universality, the limit $m_{H^+} > 0.97 \tan\beta$ GeV (95%CL) is obtained for two-doublet models in which only one doublet couples to leptons.
- $^{52}\,{\rm ACCIARRI}$ 97F give a limit $m_{H^+}>2.6\,\tan\beta$ GeV (90% CL) from their limit on the exclusive $B\to~\tau\nu_{\tau}$ branching ratio.
- ⁵³ AMMAR 97B measure the Michel parameter ρ from $\tau \rightarrow e\nu\nu$ decays and assumes e/μ universality to extract the Michel η parameter from $\tau \rightarrow \mu\nu\nu$ decays. The measurement is translated to a lower limit on m_{H^+} in a two-doublet model $m_{H^+} > 0.97 \tan\beta$ GeV (90% CL).
- ⁵⁴COARASA 97 reanalyzed the constraint on the $(m_{H^{\pm}}, \tan\beta)$ plane derived from the inclusive $B \rightarrow \tau \nu_{\tau} X$ branching ratio in GROSSMAN 95B and BUSKULIC 95. They show that the constraint is quite sensitive to supersymmetric one-loop effects.
- ⁵⁵ GUCHAIT 97 studies the constraints on m_{H^+} set by Tevatron data on $\ell \tau$ final states in $t\bar{t} \rightarrow (Wb)(Hb), W \rightarrow \ell \nu, H \rightarrow \tau \nu_{\tau}$. See Fig. 2 for the excluded region.
- ⁵⁶ MANGANO 97 reconsiders the limit in ACCIARRI 97F including the effect of the potentially large $B_c \rightarrow \tau \nu_{\tau}$ background to $B_u \rightarrow \tau \nu_{\tau}$ decays. Stronger limits are obtained.
- ⁵⁷ STAHL 97 fit τ lifetime, leptonic branching ratios, and the Michel parameters and derive limit $m_{H^+} > 1.5 \tan\beta$ GeV (90% CL) for a two-doublet model. See also STAHL 94.
- 58 ALAM 95 measure the inclusive $b \rightarrow s\gamma$ branching ratio at $\Upsilon(4S)$ and give B($b \rightarrow s\gamma) < 4.2 \times 10^{-4}$ (95% CL), which translates to the limit $m_{H^+} > [244 + 63/(\tan\beta)^{1.3}]$ GeV in the Type II two-doublet model. Light supersymmetric particles can invalidate this to bound.
- ⁵⁹ BUSKULIC 95 give a limit $m_{H^+} > 1.9 \tan\beta$ GeV (90% CL) for Type-II models from $b \rightarrow \tau \nu_{\tau} X$ branching ratio, as proposed in GROSSMAN 94.

- H^{\pm} (charged Higgs) mass limits for $m_{H^+} > m(top)$ ------

Limits obtained at the LHC are given in the m_h^{mod-} benchmark scenario, see CARENA 13, and depend on the tan β values.

000 0/111			rana oo.	
VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
> 181	95	¹ AABOUD	18BWATLS	aneta=10
> 249	95	¹ AABOUD	18BWATLS	aneta=20
> 390	95	¹ AABOUD	18BWATLS	aneta= 30
> 894	95	¹ AABOUD	18BWATLS	aneta=40
>1017	95	¹ AABOUD	18BWATLS	aneta=50
>1103	95	¹ AABOUD	18BWATLS	aneta=60

 $^1\,\rm AABOUD$ 18BW search for $\overline{t}\,b\,H^+$ associated production in 36.1 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm CM}=$ 13 TeV. See also their Fig. 9 for the excluded region in the hMSSM parameter space.

- $H^{\pm\pm}$ (doubly-charged Higgs boson) mass limits -

This section covers searches for a doubly-charged Higgs boson with couplings to lepton pairs. Its weak isospin T_3 is thus restricted to two possibilities depending on lepton chiralities: $T_3(H^{\pm\pm}) = \pm 1$, with the coupling $g_{\ell\ell}$ to $\ell_L^- \ell_L^{\prime-}$ and $\ell_R^+ \ell_R^{\prime+}$ ("left-handed") and $T_3(H^{\pm\pm}) = 0$, with the coupling to $\ell_R^- \ell_R^{\prime-}$ and $\ell_L^+ \ell_L^{\prime+}$ ("right-handed"). These Higgs bosons appear in some left-right symmetric models based on the gauge group $SU(2)_L \times SU(2)_R \times U(1)$, the type-II seesaw model, and the Zee-Babu model. The two cases are listed separately in the following. Unless noted, one of the lepton flavor combinations is assumed to be dominant in the decay.

	13 — I	T			
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>220	95	¹ AABOUD	19ĸ	ATLS	$W^{\pm}W^{\pm}$
>768	95		18BC	ATLS	ее
>846	95		18BC	ATLS	$\mu\mu$
>468	95		15 AG	ATLS	$e\mu$
>400	95		15 AP	ATLS	eτ
>400	95			ATLS	μau
>169	95	⁵ CHATRCHYAN			au au
>300	95	⁵ CHATRCHYAN			μau
>293	95	⁵ CHATRCHYAN			eτ
>395	95	⁵ CHATRCHYAN			$\mu\mu$
>391	95	⁵ CHATRCHYAN			e μ
>382	95	⁵ CHATRCHYAN			ee
> 98.1	95	_		DLPH	au au
> 99.0	95			OPAL	au au
$\bullet \bullet \bullet$ We do not use the	following	data for averages,	fits,	limits, et	tc. ● ● ●
		⁸ SIRUNYAN	19cq	CMS	$W^{\pm}W^{\pm}$
		⁹ SIRUNYAN	18cc	CMS	$W^{\pm}W^{\pm}$
>551	95		15AG	ATLS	ее
>516	95	³ AAD	15AG	ATLS	$\mu\mu$
]	¹⁰ KANEMURA	15	RVUE	$W^{(*)\pm}W^{(*)\pm}$
		¹¹ KHACHATRY	. 15 D	CMS	$W^{\pm}W^{\pm}$
		¹² KANEMURA		RVUE	$W^{(*)\pm}W^{(*)\pm}$
>330	95	¹³ AAD	13Y	ATLS	$\mu\mu$
>237	95	¹³ AAD		ATLS	$\mu \tau$
>355	95	¹⁴ AAD	12AY	ATLS	$\mu\mu$
>398	95 ¹	¹⁵ AAD	12cq	ATLS	$\mu\mu$
>375	95	¹⁵ AAD	12CQ	ATLS	eμ
>409		¹⁵ AAD	12CQ	ATLS	ee
>128	95	¹⁶ ABAZOV	12A	D0	au au
>144		¹⁶ ABAZOV	12A	D0	μau
>245			11AF	CDF	$\mu\mu$
>210			11AF	CDF	$e\mu$
>225	95 ¹		11AF	CDF	e e
>114	95 ¹		08AA		eτ
>112	95 ¹		08AA		μau
>168	95	¹⁹ ABAZOV	08V	D0	$\mu\mu$

	Limits	for	H±±	with	Ta	=	±1
--	--------	-----	-----	------	----	---	-----------

>133 >118.4	95 95	²⁰ AKTAS ²¹ ACOSTA ²² ABAZOV ²³ ABBIENDI	06A 05L 04E 03Q	CDF D0	single $H^{\pm\pm}$ stable $\mu\mu$ $E_{\rm cm} \leq 209$ GeV, single $H^{\pm\pm}$
		²⁴ GORDEEV	97	SPEC	muonium conversion
		²⁵ ASAKA	95	THEO	
> 45.6	95	²⁶ ACTON	92M	OPAL	
> 30.4	95	²⁷ ACTON	92M	OPAL	
none 6.5–36.6	95	²⁸ SWARTZ	90	MRK2	

¹AABOUD 19K search for pair production of $H^{++}H^{--}$ followed by the decay $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. The search is interpreted in a doublet-triplet extension of the scalar sector with a vev of 0.1 GeV, leading to B($H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$) = 1. See their Fig. 5 for limits on the cross section for $m_{H^{++}}$ between 200 and 700 GeV.

- and 700 GeV. $^2\,{\rm See}$ their Figs. 11(b) and 13 for limits with smaller branching ratios.
- ³AAD 15AG search for $H^{++}H^{--}$ production in 20.3 fb⁻¹ of *pp* collisions at $E_{cm} = 8$ TeV. The limit assumes 100% branching ratio to the specified final state. See their Fig. 5 for limits for arbitrary branching ratios.
- ⁴ AAD 15AP search for $H^{++}H^{--}$ production in 20.3 fb⁻¹ of *pp* collisions at $E_{cm} = 8$ TeV. The limit assumes 100% branching ratio to the specified final state.
- ⁵ CHATRCHYAN 12AU search for $H^{++}H^{--}$ production with 4.9 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 7$ TeV. The limit assumes 100% branching ratio to the specified final state. See their Table 6 for limits including associated $H^{++}H^{-}$ production or assuming different scenarios.
- ⁶ABDALLAH 03 search for $H^{++}H^{--}$ pair production either followed by $H^{++} \rightarrow \tau^+ \tau^+$, or decaying outside the detector.
- ⁷ABBIENDI 02C searches for pair production of $H^{++}H^{--}$, with $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ (ℓ,ℓ' = e,μ,τ). The limit holds for $\ell = \ell' = \tau$, and becomes stronger for other combinations of leptonic final states. To ensure the decay within the detector, the limit only applies for $g(H\ell\ell) \gtrsim 10^{-7}$.
- ⁸ SIRUNYAN 19CQ search for $H^{\pm\pm}$ production by vector boson fusion followed by the decay $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm} \rightarrow qq\ell\nu$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5 for limits on cross section times branching ratio for $m_{H^{\pm\pm}}$ between 0.6 and 2 TeV.
- ⁹SIRUNYAN 18CC search for $H^{\pm\pm}$ production by vector boson fusion followed by the decay $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 3 for limits on cross section times branching ratio for $m_{H^{\pm\pm}}$ between 200 and 1000 GeV.
- ¹⁰ KANEMURA 15 examine the case where H^{++} decays preferentially to $W^{(*)}W^{(*)}$ and estimate that a lower mass limit of ~ 84 GeV can be derived from the same-sign dilepton data of AAD 15AG if H^{++} decays with 100% branching ratio to $W^{(*)}W^{(*)}$.
- ¹¹ KHACHATRYAN 15D search for $H^{\pm\pm}$ production by vector boson fusion followed by the decay $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ in 19.4 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 4 for limits on cross section times branching ratio for $m_{H^{++}}$ between 160 and 800 to GeV.
- ¹² KANEMURA 14 examine the case where H^{++} decays preferentially to $W^{(*)}W^{(*)}$ and estimate that a lower mass limit of ~ 60 GeV can be derived from the same-sign dilepton data of AAD 12CY.
- ¹³AAD 13Y search for $H^{++}H^{--}$ production in a generic search of events with three charged leptons in 4.6 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. The limit assumes 100% branching ratio to the specified final state.

- ¹⁴ AAD 12AY search for $H^{++}H^{--}$ production with 1.6 fb⁻¹ of pp collisions at $E_{cm} = 7$ TeV. The limit assumes 100% branching ratio to the specified final state.
- ¹⁵ AAD 12cQ search for $H^{++}H^{--}$ production with 4.7 fb⁻¹ of pp collisions at $E_{cm} =$ 7 TeV. The limit assumes 100% branching ratio to the specified final state. See their Table 1 for limits assuming smaller branching ratios.
- ¹⁶ ABAZOV 12A search for $H^{++}H^{--}$ production in 7.0 fb⁻¹ of $p\overline{p}$ collisions at $E_{cm} = 1.96$ TeV.
- ¹⁷ AALTONEN 11AF search for $H^{++}H^{--}$ production in 6.1 fb⁻¹ of $p\overline{p}$ collisions at E_{cm} = 1.96 TeV.

¹⁸ AALTONEN 08AA search for $H^{++}H^{--}$ production in $p\overline{p}$ collisions at $E_{cm} = 1.96$ TeV. The limit assumes 100% branching ratio to the specified final state.

- ¹⁹ABAZOV 08V search for $H^{++}H^{--}$ production in $p\overline{p}$ collisions at E_{cm} = 1.96 TeV. The limit is for B($H \rightarrow \mu\mu$) = 1. The limit is updated in ABAZOV 12A.
- ²⁰ AKTAS 06A search for single $H^{\pm\pm}$ production in ep collisions at HERA. Assuming that H^{++} only couples to $e^+\mu^+$ with $g_{e\mu} = 0.3$ (electromagnetic strength), a limit $m_{H^{++}} > 141$ GeV (95% CL) is derived. For the case where H^{++} couples to $e\tau$ only the limit is 112 GeV.
- ²¹ACOSTA 05L search for $H^{++}H^{--}$ pair production in $p\overline{p}$ collisions. The limit is valid for $g_{\rho\rho\prime} < 10^{-8}$ so that the Higgs decays outside the detector.
- ²²ABAZOV 04E search for $H^{++}H^{--}$ pair production in $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$. The limit is valid for $g_{\mu\mu} \gtrsim 10^{-7}$.
- ²³ ABBIENDI 03Q searches for single $H^{\pm\pm}$ via direct production in $e^+e^- \rightarrow e^{\mp}e^{\mp}H^{\pm\pm}$, and via *t*-channel exchange in $e^+e^- \rightarrow e^+e^-$. In the direct case, and assuming $B(H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}) = 1$, a 95% CL limit on $h_{ee} < 0.071$ is set for $m_{H^{\pm\pm}} < 160$ GeV (see Fig. 6). In the second case, indirect limits on h_{ee} are set for $m_{H^{\pm\pm}} < 2$ TeV (see Fig. 8).
- ²⁴ GORDEEV 97 search for muonium-antimuonium conversion and find $G_{M\overline{M}}/G_F < 0.14$ (90% CL), where $G_{M\overline{M}}$ is the lepton-flavor violating effective four-fermion coupling. This limit may be converted to $m_{H^{++}} > 210$ GeV if the Yukawa couplings of H^{++} to *ee* and $\mu\mu$ are as large as the weak gauge coupling. For similar limits on muoniumantimuonium conversion, see the muon Particle Listings.
- ²⁵ ASAKA 95 point out that H^{++} decays dominantly to four fermions in a large region of parameter space where the limit of ACTON 92M from the search of dilepton modes does not apply.
- ²⁶ ACTON 92M limit assumes $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ or $H^{\pm\pm}$ does not decay in the detector. Thus the region $g_{\ell\ell} \approx 10^{-7}$ is not excluded.
- 27 ACTON 92M from $\Delta\Gamma_{\mathcal{Z}}$ <40 MeV.
- ²⁸ SWARTZ 90 assume $\tilde{H^{\pm\pm}} \rightarrow \ell^{\pm}\ell^{\pm}$ (any flavor). The limits are valid for the Higgslepton coupling g($H\ell\ell$) $\gtrsim 7.4 \times 10^{-7} / [m_H/\text{GeV}]^{1/2}$. The limits improve somewhat for ee and $\mu\mu$ decay modes.

13 = 0				
CL%	DOCUMENT ID		TECN	COMMENT
95	¹ AABOUD	18BC	ATLS	ее
95	¹ AABOUD	18BC	ATLS	$\mu\mu$
95		15ag	ATLS	$e\mu$
95	³ AAD	15 AP	ATLS	eτ
95	³ AAD	15 AP	ATLS	μau
95	⁴ ABDALLAH	03	DLPH	au au
95		03F	L3	au au
95	⁶ ABBIENDI	02C	OPAL	au au
	Page 10		Crea	ated: 6/1/2021 08:33
	95 95 95 95 95 95 95	CL%DOCUMENT ID951 AABOUD951 AABOUD952 AAD953 AAD953 AAD954 ABDALLAH955 ACHARD956 ABBIENDI	CL% DOCUMENT ID 95 1 AABOUD 18BC 95 1 AABOUD 18BC 95 2 AAD 15AG 95 3 AAD 15AP 95 4 ABDALLAH 03 95 5 ACHARD 03F 95 6 ABBIENDI 02C	CL%DOCUMENT IDTECN951 AABOUD18BC ATLS951 AABOUD18BC ATLS952 AAD15AG ATLS953 AAD15AP ATLS953 AAD15AP ATLS954 ABDALLAH03 DLPH955 ACHARD03F L3956 ABBIENDI02C OPAL

Limits for $H^{\pm\pm}$ with $T_3 = 0$

• • • We do not use the following data for averages, fits, limits, etc. • • •

		0 0		
>374	95	² AAD	15AG ATLS	ее
>438	95	² AAD	15AG ATLS	$\mu \mu$
>251	95	⁷ AAD	12AY ATLS	$\mu \mu$
>306	95	⁸ AAD	12CQ ATLS	$\mu \mu$
>310	95	⁸ AAD	12CQ ATLS	$e\mu$
>322	95	⁸ AAD	12CQ ATLS	ee
>113	95	⁹ ABAZOV	12A D0	μau
>205	95	¹⁰ AALTONEN	11AF CDF	$\mu\mu$
>190	95	¹⁰ AALTONEN	11AF CDF	e μ
>205	95	¹⁰ AALTONEN	11AF CDF	e e
>145	95	¹¹ ABAZOV	08v D0	$\mu\mu$
		¹² AKTAS	06A H1	single $\mathit{H}^{\pm\pm}$
>109	95	¹³ ACOSTA	05L CDF	stable
> 98.2	95	¹⁴ ABAZOV	04E D0	$\mu\mu$
		¹⁵ ABBIENDI	03Q OPAL	$E_{\rm cm} \leq$ 209 GeV, single $H^{\pm\pm}$
		¹⁶ GORDEEV	97 SPEC	muonium conversion
> 45.6	95	¹⁷ ACTON	92M OPAL	
> 25.5	95	¹⁸ ACTON	92M OPAL	
none 7.3-34.3	95	¹⁹ SWARTZ	90 MRK2	

¹See their Figs. 12(b) and 14 for limits with smaller branching ratios.

- ²AAD 15AG search for $H^{++}H^{--}$ production in 20.3 fb⁻¹ of *pp* collisions at $E_{cm} = 8$ TeV. The limit assumes 100% branching ratio to the specified final state. See their Fig. 5 for limits for arbitrary branching ratios.
- ³AAD 15AP search for $H^{++}H^{--}$ production in 20.3 fb⁻¹ of pp collisions at $E_{cm} = 8$ TeV. The limit assumes 100% branching ratio to the specified final state. ⁴ABDALLAH 03 search for $H^{++}H^{--}$ pair production either followed by $H^{++} \rightarrow$
- $\tau^+ \tau^+$, or decaying outside the detector.
- ⁵ ACHARD 03F search for $e^+e^- \rightarrow H^{++}H^{--}$ with $H^{\pm\pm} \rightarrow \ell^{\pm}\ell'^{\pm}$. The limit holds for $\ell = \ell' = \tau$, and slightly different limits apply for other flavor combinations. The limit is valid for $g_{\ell\ell'} \gtrsim 10^{-7}$.

⁶ABBIENDI 02C searches for pair production of $H^{++}H^{--}$, with $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ (ℓ,ℓ' $= e, \mu, \tau$). the limit holds for $\ell = \ell' = \tau$, and becomes stronger for other combinations of leptonic final states. To ensure the decay within the detector, the limit only applies for $g(H\ell\ell) \gtrsim 10^{-7}$.

- ⁷ AAD 12AY search for $H^{++}H^{--}$ production with 1.6 fb⁻¹ of pp collisions at $E_{\rm cm} =$ 7 TeV. The limit assumes 100% branching ratio to the specified final state.
- ⁸ AAD 12CQ search for $H^{++}H^{--}$ production with 4.7 fb⁻¹ of pp collisions at $E_{cm} =$ 7 TeV. The limit assumes 100% branching ratio to the specified final state. See their Table 1 for limits assuming smaller branching ratios.
- ⁹ABAZOV 12A search for $H^{++}H^{--}$ production in 7.0 fb⁻¹ of $p\overline{p}$ collisions at $E_{cm} =$ 1.96 TeV.
- ¹⁰AALTONEN 11AF search for $H^{++}H^{--}$ production in 6.1 fb⁻¹ of $p\overline{p}$ collisions at E_{cm} = 1.96 TeV.
- ¹¹ABAZOV 08V search for $H^{++}H^{--}$ production in $p\overline{p}$ collisions at E_{cm} = 1.96 TeV. The limit is for B($H \rightarrow \mu\mu$) = 1. The limit is updated in ABAZOV 12A.
- ¹²AKTAS 06A search for single $H^{\pm\pm}$ production in *ep* collisions at HERA. Assuming that H^{++} only couples to $e^+\mu^+$ with $g_{e\,\mu} = 0.3$ (electromagnetic strength), a limit $m_{H^{++}}~>$ 141 GeV (95% CL) is derived. For the case where H^{++} couples to $e\tau$ only the limit is 112 GeV.

- ¹³ACOSTA 05L search for $H^{++}H^{--}$ pair production in $p\overline{p}$ collisions. The limit is valid for $g_{\ell \ell'} < 10^{-8}$ so that the Higgs decays outside the detector.
- ¹⁴ABAZOV 04E search for $H^{++}H^{--}$ pair production in $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$. The limit is valid for $g_{\mu\mu} \gtrsim 10^{-7}$.
- ¹⁵ ABBIENDI 03Q searches for single $H^{\pm\pm}$ via direct production in $e^+e^- \rightarrow e^\mp e^\mp H^{\pm\pm}$, and via *t*-channel exchange in $e^+e^- \rightarrow e^+e^-$. In the direct case, and assuming $B(H^{\pm\pm} \rightarrow \ell^\pm \ell^\pm) = 1$, a 95% CL limit on $h_{ee} < 0.071$ is set for $m_{H^{\pm\pm}} < 160$ GeV (see Fig. 6). In the second case, indirect limits on h_{ee} are set for $m_{H^{\pm\pm}} < 2$ TeV (see Fig. 8).
- ¹⁶ GORDEEV 97 search for muonium-antimuonium conversion and find $G_{M\overline{M}}/G_F < 0.14$ (90% CL), where $G_{M\overline{M}}$ is the lepton-flavor violating effective four-fermion coupling. This limit may be converted to $m_{H^{++}} > 210$ GeV if the Yukawa couplings of H^{++} to *ee* and $\mu\mu$ are as large as the weak gauge coupling. For similar limits on muoniumantimuonium conversion, see the muon Particle Listings.
- ¹⁷ ACTON 92M limit assumes $H^{\pm\pm} \rightarrow \ell^{\pm} \ell^{\pm}$ or $H^{\pm\pm}$ does not decay in the detector. Thus the region $g_{\ell \ell} \approx 10^{-7}$ is not excluded.
- ¹⁸ ACTON 92M from $\Delta\Gamma_Z$ <40 MeV.
- ¹⁹SWARTZ 90 assume $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ (any flavor). The limits are valid for the Higgslepton coupling g($H\ell\ell$) $\gtrsim 7.4 \times 10^{-7} / [m_H/\text{GeV}]^{1/2}$. The limits improve somewhat for ee and $\mu\mu$ decay modes.

H^{\pm} and $H^{\pm\pm}$ REFERENCES

AAD	20W	JHEP 2006 151	G. Aad <i>et al.</i>	(ATLAS Collab.)
SIRUNYAN	20AO	JHEP 2007 126	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	20AV	JHEP 2001 096	A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
SIRUNYAN	20BE	PR D102 072001	A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
AABOUD	19K	EPJ C79 58	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
SIRUNYAN	19AH	JHEP 1907 142	A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
SIRUNYAN	19BP	PL B795 281	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19CC	PRL 123 131802	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19CQ	PL B798 134985	A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
AABOUD	18BC	EPJ C78 199	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18BW	JHEP 1809 139	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18CD	JHEP 1811 085	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18CH	PL B787 68	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
HALLER	18	EPJ C78 675	J. Haller <i>et al.</i>	(Gfitter Group)
SIRUNYAN	18CC	PRL 120 081801	A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
SIRUNYAN	18DO	JHEP 1811 115	A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
MISIAK	17	EPJ C77 201	M. Misiak, M. Steinhauser	· · · · · ·
SIRUNYAN	17AE	PRL 119 141802	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD	16A	PL B759 555	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AAD	16AJ	JHEP 1603 127	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15AF	JHEP 1503 088	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15AG	JHEP 1503 041	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15AP	JHEP 1508 138	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15M	PRL 114 231801	G. Aad <i>et al.</i>	(ATLAS Collab.)
KANEMURA	15	PTEP 2015 051B02	S. Kanemura <i>et al.</i>	,
KHACHATRY	15AX	JHEP 1511 018	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	15BF	JHEP 1512 178	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	15D	PRL 114 051801	V. Khachatryan <i>et al.</i>	(CMS_Collab.)
AAD	14M	PR D89 032002	G. Aad <i>et al.</i>	(ATLAS Collab.)
AALTONEN	14A	PR D89 091101	T. Aaltonen <i>et al.</i>	(CDF Collab.)
KANEMURA	14	PR D90 115018	S. Kanemura <i>et al.</i>	· · · · ·
AAD	13AC	EPJ C73 2465	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	13V	JHEP 1303 076	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	13Y	PR D87 052002	G. Aad <i>et al.</i>	(ATLAS Collab.)
CARENA	13	EPJ C73 2552	M. Carena <i>et al.</i>	
LEP	13	EPJ C73 2463	LEP Collabs (ALEPH, DELPHI,	L3, OPAL, LEP)
AAD	12AY	PR D85 032004	G. Aad <i>et al.</i>	(ATLAS Collab.)

AAD	12BH	JHEP 1206 039	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		EPJ C72 2244	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	-	JHEP 1212 007	G. Aad <i>et al.</i>	(ATLAS Collab.)
ABAZOV	12A	PRL 108 021801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABBIENDI	12	EPJ C72 2076	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
		JHEP 1207 143	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
		EPJ C72 2189	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
AALTONEN		PRL 107 181801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11AF 11P	PRL 107 031801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
	11F 10			
DESCHAMPS	-	PR D82 073012	O. Deschamps <i>et al.</i>	(CLER, ORSAY, LAPP)
AALTONEN		PRL 103 101803	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV		PR D80 051107	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV		PR D80 071102	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	09AI	PL B682 278	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	09P	PRL 102 191802	V.M. Abazov <i>et al.</i>	(D0 Collab.)
AALTONEN		PRL 101 121801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	08V	PRL 101 071803	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABULENCIA	06E	PRL 96 042003	A. Abulencia <i>et al.</i>	(CDF Collab.)
AKTAS	06A	PL B638 432	A. Aktas <i>et al.</i>	(H1 Collab.)
ACOSTA	05L	PRL 95 071801	D. Acosta <i>et al.</i>	(CDF Collab.)
ABAZOV	04E	PRL 93 141801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABBIENDI	04	EPJ C32 453	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABDALLAH	04I	EPJ C34 399	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ABBIENDI	03	PL B551 35	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	03Q	PL B577 93	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABDALLAH	03	PL B552 127	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ACHARD	03E	PL B575 208	P. Achard <i>et al.</i>	(L3 Collab.)
ACHARD	03F	PL B576 18	P. Achard <i>et al.</i>	(L3 Collab.)
ABAZOV	02B	PRL 88 151803	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABBIENDI	02C	PL B526 221	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
BORZUMATI	02	PL B549 170	F.M. Borzumati, A. Djouadi	(01712 0011001)
HEISTER	02P	PL B543 1	A. Heister <i>et al.</i>	(ALEPH Collab.)
ABBIENDI	01Q	PL B520 1	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
BARATE	01Q	EPJ C19 213	R. Barate <i>et al.</i>	(ALEPH Collab.)
GAMBINO	01	NP B611 338	P. Gambino, M. Misiak	(ALLI IT CONAD.)
AFFOLDER	001	PR D62 012004	T. Affolder <i>et al.</i>	(CDF Collab.)
PDG	00	EPJ C15 1	D.E. Groom <i>et al.</i>	
ABBIENDI	99E	EPJ C7 407	G. Abbiendi <i>et al.</i>	(PDG Collab.)
ABBOTT	99L 99E		B. Abbott <i>et al.</i>	(OPAL Collab.)
		PRL 82 4975		(D0 Collab.)
ACKERSTAFF	99D	EPJ C8 3	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
ABE	97L	PRL 79 357	F. Abe <i>et al.</i>	(CDF Collab.)
ACCIARRI	97F	PL B396 327	M. Acciarri <i>et al.</i>	(L3 Collab.)
AMMAR	97B	PRL 78 4686	R. Ammar <i>et al.</i>	(CLEO Collab.)
COARASA	97	PL B406 337	J.A. Coarasa, R.A. Jimenez, J.	<pre>/</pre>
GORDEEV	97	PAN 60 1164	V.A. Gordeev <i>et al.</i>	(PNPI)
СИСИАІТ	07	Translated from YAF 60		(ТАТА)
GUCHAIT	97 07	PR D55 7263	M. Guchait, D.P. Roy	(TATA)
MANGANO	97	PL B410 299	M. Mangano, S. Slabospitsky	
STAHL	97	ZPHY C74 73	A. Stahl, H. Voss	(BONN)
PDG	96	PR D54 1	R. M. Barnett <i>et al.</i>	(PDG Collab.)
ALAM	95	PRL 74 2885	M.S. Alam <i>et al.</i>	(CLEO_Collab.)
ASAKA	95	PL B345 36	T. Asaka, K.I. Hikasa	(TOHOK)
BUSKULIC	95	PL B343 444	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
GROSSMAN	95B	PL B357 630	Y. Grossman, H. Haber, Y. Nir	
GROSSMAN	94	PL B332 373	Y. Grossman, Z. Ligeti	
STAHL	94	PL B324 121	A. Stahl	(BONN)
ACTON	92M	PL B295 347	P.D. Acton <i>et al.</i>	(OPAL Collab.)
SWARTZ	90	PRL 64 2877	M.L. Swartz <i>et al.</i>	(Mark II Collab.)