Heavy Charged Lepton Searches

Charged Heavy Lepton MASS LIMITS

Sequential Charged Heavy Lepton (L[±]) MASS LIMITS

These experiments assumed that a fourth generation L^\pm decayed to a fourth generation ν_L (or L^0) where ν_L was stable, or that L^\pm decays to a light ν_ℓ via mixing.

See the "Quark and Lepton Compositeness, Searches for" Listings for limits on radiatively decaying excited leptons, i.e. $\ell^* \to \ell \gamma$. See the "WIMPs and other Particle Searches" section for heavy charged particle search limits in which the charged particle could be a lepton.

VALUE (GeV)	CL%	DOCUMENT ID	DOCUMENT ID TECN		COMMENT	
>100.8	95	ACHARD	01 B	L3	Decay to νW	
>101.9	95	ACHARD	01 B	L3	$m_L - m_{I0} > 15 \text{ GeV}$	
● • • We do not use the following data for averages, fits, limits, etc. • •						
> 81.5	95	ACKERSTAFF	98 C	OPAL	Assumed $m_{L^{\pm}} - m_{L^{0}} > 8.4$ GeV	
> 80.2	95	ACKERSTAFF	98C	OPAL	$m_{L^0}^{\rm GeV} > m_{L^\pm}^{\rm and} L^\pm \rightarrow \nu W$	
< 48 or $>$ 61	95	¹ ACCIARRI	96G	L3		
> 63.9	95	ALEXANDER	96 P	OPAL	Decay to massless $ u$'s	
> 63.5	95	BUSKULIC	96 S	ALEP	$m_L - m_{I0} > 7 \text{ GeV}$	
> 65	95	BUSKULIC	96 S	ALEP	Decay to massless ν 's	
none 10-225		² AHMED	94	CNTR	H1 Collab. at HERA	
none 12.6-29.6	95	KIM	91 B	AMY	Massless $ u$ assumed	
> 44.3	95	AKRAWY	90 G	OPAL		
none 0.5–10	95	³ RILES	90	MRK2	For $(m_{10} - m_{10}) > 0.25 - 0.4 \text{GeV}$	
> 8		⁴ STOKER	89		For $(m_{I^+} - m_{I^0}) = 0.4 \text{ GeV}$	
> 12		⁴ STOKER	89		For $m_{10} = 0.9 \text{ GeV}$	
none 18.4-27.6	95	⁵ ABE	88	VNS	L	
> 25.5	95	⁶ ADACHI	88 B	TOPZ		
none 1.5-22.0	95	BEHREND	88C	CELL		
> 41	90	⁷ ALBAJAR	87 B	UA1		
> 22.5	95	⁸ ADEVA	85	MRKJ		
> 18.0	95	⁹ BARTEL	83	JADE		
none 4–14.5	95	¹⁰ BERGER	81 B	PLUT		
> 15.5	95	11 BRANDELIK	81	TASS		
> 13.		12 AZIMOV	80			
> 16.	95	¹³ BARBER	80 B	CNTR		
> 0.490		¹⁴ ROTHE	69	RVUE		

 $^{^1}$ ACCIARRI 96G assumes LEP result that the associated neutral heavy lepton mass > 40 GeV.

Created: 6/1/2021 08:32

 $^{^2}$ The AHMED 94 limits are from a search for neutral and charged sequential heavy leptons at HERA via the decay channels $L^-\to e\gamma,\,L^-\to \nu W^-,\,L^-\to eZ;$ and $L^0\to \nu\gamma,\,L^0\to e^-W^+,\,L^-\to \nu Z,$ where the W decays to $\ell\nu_\ell$, or to jets, and Z decays to $\ell^+\ell^-$ or jets.

³ RILES 90 limits were the result of a special analysis of the data in the case where the mass difference $m_{L^-} - m_{L^0}$ was allowed to be quite small, where L^0 denotes the neutrino

- into which the sequential charged lepton decays. With a slightly reduced m_{L^\pm} range, the mass difference extends to about 4 GeV.
- ⁴ STOKER 89 (Mark II at PEP) gives bounds on charged heavy lepton (L^+) mass for the generalized case in which the corresponding neutral heavy lepton (L^0) in the SU(2) doublet is not of negligible mass.
- 5 ABE 88 search for L^+ and $L^-\to \,$ hadrons looking for acoplanar jets. The bound is valid for $m_{\nu}\,<$ 10 GeV.
- 6 ADACHI 88B search for hadronic decays giving acoplanar events with large missing energy. ${\sf E_{cm}}^{ee}=$ 52 GeV.
- ⁷ Assumes associated neutrino is approximately massless.
- ⁸ ADEVA 85 analyze one-isolated-muon data and sensitive to τ <10 nanosec. Assume B(lepton) = 0.30. $E_{\rm cm}$ = 40–47 GeV.
- ⁹BARTEL 83 limit is from PETRA e^+e^- experiment with average $E_{\rm cm}=34.2$ GeV.
- 10 BERGER 81B is DESY DORIS and PETRA experiment. Looking for $e^+e^- \rightarrow L^+L^-$.
- ¹¹ BRANDELIK 81 is DESY-PETRA experiment. Looking for $e^+e^- \rightarrow L^+L^-$.
- ¹² AZIMOV 80 estimated probabilities for M+N type events in $e^+e^- \rightarrow L^+L^-$ deducing semi-hadronic decay multiplicities of L from e^+e^- annihilation data at $E_{\rm cm}=(2/3)m_L$. Obtained above limit comparing these with e^+e^- data (BRANDELIK 80).
- 13 BARBER 80B looked for $e^+e^-
 ightarrow ~L^+L^-$, $L
 ightarrow ~\nu_L^+$ X with MARK-J at DESY-PETRA.

Stable Charged Heavy Lepton (L^{\pm}) MASS LIMITS

VALUE (GeV)	CL%	DOCUMENT ID		TECN
>102.6	95	ACHARD	01 B	L3
• • • We do not use the	following o	data for averages	s, fits,	limits, etc. \bullet \bullet
> 28.2	95 1	⁵ ADACHI	90 C	TOPZ
none 18.5–42.8	95	AKRAWY	900	OPAL
> 26.5	95	DECAMP	90F	ALEP
none m_{μ} –36.3	95	SODERSTRO	V190	MRK2

 $^{^{15}}$ ADACHI 90C put lower limits on the mass of stable charged particles with electric charge Q satisfying 2/3 < Q/e < 4/3 and with spin 0 or 1/2. We list here the special case for a stable charged heavy lepton.

Charged Long-Lived Heavy Lepton MASS LIMITS

VALUE (GeV)	CL%	DOCUMENT ID		TECN	CHG	COMMENT	
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
>574	95	CHATRCHYA	N 13 AB	CMS		Leptons singlet model	
>102.0	95	ABBIENDI	03L	OPAL		pair produced in e^+e^-	
> 0.1		¹⁶ ANSORGE	73 B	HBC	_	Long-lived	
none 0.55-4.5		¹⁷ BUSHNIN	73	CNTR	_	Long-lived	
none 0.2-0.92		¹⁸ BARNA	68	CNTR	_	Long-lived	
none 0.97-1.03		¹⁸ BARNA	68	CNTR	_	Long-lived	

¹⁶ ANSORGE 73B looks for electron pair production and electron-like Bremsstrahlung.

Created: 6/1/2021 08:32

 $^{^{14}\,\}mathrm{ROTHE}$ 69 examines previous data on μ pair production and π and K decays.

 $^{^{17}}$ BUSHNIN 73 is SERPUKHOV 70 GeV p experiment. Masses assume mean life above 7×10^{-10} and 3×10^{-8} respectively. Calculated from cross section (see "Charged Quasi-Stable Lepton Production Differential Cross Section" below) and 30 GeV muon pair production data.

¹⁸BARNA 68 is SLAC photoproduction experiment.

Doubly-Charged Heavy Lepton MASS LIMITS

 VALUE (GeV)
 CL%
 DOCUMENT ID
 TECN
 CHG

 • • • We do not use the following data for averages, fits, limits, etc. • • •

 none 1–9 GeV
 90
 19 CLARK
 81
 SPEC
 ++

Doubly-Charged Lepton Production Cross Section $(\mu N \text{ Scattering})$

 VALUE (cm²)
 EVTS
 DOCUMENT ID
 TECN
 CHG

 • • • We do not use the following data for averages, fits, limits, etc. • • •

 <6. × 10^{-38} 0
 20 CLARK
 81
 SPEC
 ++

REFERENCES FOR Heavy Charged Lepton Searches

CHATDOUNAN	12 A D	ILIED 1207 100		(CMC C II I)
ABBIENDI	03L	JHEP 1307 122	S. Chatrchyan <i>et al.</i> G. Abbiendi <i>et al.</i>	(CMS Collab.)
ACHARD	03L 01B	PL B572 8	P. Achard <i>et al.</i>	(OPAL Collab.)
ACKERSTAFF	98C	PL B517 75 EPJ C1 45	K. Ackerstaff <i>et al.</i>	(L3 Collab.)
ACCIARRI	96G	PL B377 304	M. Acciarri <i>et al.</i>	(OPAL Collab.) (L3 Collab.)
ALEXANDER	96G 96P	PL B385 433	G. Alexander <i>et al.</i>	(OPAL Collab.)
BUSKULIC	96S	PL B384 439	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
AHMED	905	PL B340 205	T. Ahmed <i>et al.</i>	(H1 Collab.)
KIM	94 91B	IJMP A6 2583	G.N. Kim <i>et al.</i>	(AMY Collab.)
ADACHI	91D	PL B244 352	I. Adachi <i>et al.</i>	(TOPAZ Collab.)
AKRAWY	90G	PL B244 352	M.Z. Akrawy <i>et al.</i>	(OPAL Collab.)
AKRAWY	900	PL B252 290	M.Z. Akrawy et al.	(OPAL Collab.)
DECAMP	90F	PL B236 511	D. Decamp et al.	(ALEPH Collab.)
RILES	90	PR D42 1	K. Riles et al.	(Mark II Collab.)
SODERSTROM		PRL 64 2980	E. Soderstrom <i>et al.</i>	(Mark II Collab.)
STOKER	89	PR D39 1811	D.P. Stoker <i>et al.</i>	(Mark II Collab.)
ABE	88	PRL 61 915	K. Abe et al.	(VENUS Collab.)
ADACHI	88B	PR D37 1339	I. Adachi <i>et al</i> .	(TOPAZ Collab.)
BEHREND	88C	ZPHY C41 7	H.J. Behrend <i>et al.</i>	(CELLO Collab.)
ALBAJAR	87B	PL B185 241	C. Albajar <i>et al.</i>	(UA1 Collab.)
ADEVA	85	PL 152B 439	B. Adeva <i>et al.</i>	(Mark-J Collab.)
Also		PRPL 109 131	B. Adeva et al.	(Mark-J Collab.)
BARTEL	83	PL 123B 353	W. Bartel et al.	(JADE Collab.)
BERGER	81B	PL 99B 489	C. Berger et al.	(PLUTO Collab.)
BRANDELIK	81	PL 99B 163	R. Brandelik <i>et al.</i>	(TASSO Collab.)
CLARK	81	PRL 46 299	A.R. Clark et al.	(UCB), LBL, $FNAL+)$
Also		PR D25 2762	W.H. Smith et al.	(LBL, FNAL, PRIN)
AZIMOV	80	JETPL 32 664 Translated from	Y.I. Azimov, V.A. Khoze	(PNPI)
BARBER	80B	PRL 45 1904	D.P. Barber <i>et al.</i>	(Mark-J Collab.)
BRANDELIK	80	PL 92B 199	R. Brandelik <i>et al.</i>	(TASSO Collab.)
ANSORGE	73B	PR D7 26	R.E. Ansorge <i>et al.</i>	(CAVE)
BUSHNIN	73	NP B58 476	Y.B. Bushnin <i>et al.</i>	(SERP)
Also		PL 42B 136	S.V. Golovkin <i>et al.</i>	(SERP)
ROTHE	69	NP B10 241	K.W. Rothe, A.M. Wolsky	(PENN)
BARNA	68	PR 173 1391	A. Barna et al.	(SLAC, STAN)
				(

- OTHER RELATED PAPERS ———

Created: 6/1/2021 08:32

PERL 81 SLAC-PUB-2752 M.L. Perl (SLAC) Physics in Collision Conference.

 $^{^{19}}$ CLARK 81 is FNAL experiment with 209 GeV muons. Bounds apply to μ_P which couples with full weak strength to muon. See also section on "Doubly-Charged Lepton Production Cross Section."

 $^{^{20}}$ CLARK 81 is FNAL experiment with 209 GeV muon. Looked for μ^+ nucleon $\to ~\overline{\mu}^0_P$ X, $\overline{\mu}^0_P \to ~\mu^+\mu^-\overline{\nu}_\mu$ and $\mu^+\,n \to ~\mu^{++}_P$ X, $\mu^{++}_P \to ~2\mu^+\nu_\mu$. Above limits are for $\sigma\times BR$ taken from their mass-dependence plot figure 2.