η (1405)

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

See also the $\eta(1475)$. See the related review(s): Pseudoscalar and Pseudovector Mesons in the 1400 MeV Region

η(1405) MASS

VALUE (MeV)

DOCUMENT ID

1408.8±2.0 OUR AVERAGE Includes data from the 2 datablocks that follow this one. Error includes scale factor of 2.2. See the ideogram below.

$\eta\pi\pi$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
The data in this blo	ck is included in	the average printed	for a p	revious datablock.

1405.8 \pm 2.6 OUR	AVERAGE	Error includes sca	le factor of 2.3	3. See the ideogram below.
1409.0 ± 1.7	743	ABLIKIM	12E BES3	$J/\psi \rightarrow \gamma (\pi^+ \pi^- \pi^0)$
1407.0 ± 3.5	198	ABLIKIM	12E BES3	$J/\psi \rightarrow \gamma (\pi^0 \pi^0 \pi^0)$
$1399.8 \pm \ 2.2 {+2.8 \atop -0.1}$		¹ ABLIKIM	11J BES3	$J/\psi ightarrow \omega (\eta \pi^+ \pi^-)$
1392 ±14	900 ± 375	AMSLER	04B CBAR	$0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^+ \pi^- \eta$
1394 \pm 8	$6.6\pm2.0k$	AMSLER	04b CBAR	$0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^0 \pi^0 \eta$
https://pdg.lbl.g	gov	Page 1	Cr	eated: 6/1/2021 08:30

 η (1405) mass, $\eta \pi \pi$ mode (MeV)

$K\overline{K}\pi$ MODE ($a_0(980)\pi$ or direct $K\overline{K}\pi$)

<u>VALUE (MeV)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> The data in this block is included in the average printed for a previous datablock.

1413.9± **1.7 OUR AVERAGE** Error includes scale factor of 1.1.

1413	± 14		3651	1 NICHITIU	02	OBLX	$0 \ \bar{p}p \to K^+ K^- \pi^+ \pi^- \pi^0$
1416	\pm 4	± 2	20k	ADAMS	01 B	B852	18 GeV $\pi^- p \rightarrow K^+ K^- \pi^0 n$
1405	\pm 5			² CICALO	99	OBLX	$0 \overline{p} p \rightarrow \ \kappa^{\pm} \kappa^{0}_{S} \pi^{\mp} \pi^{+} \pi^{-}$
1407	\pm 5			² BERTIN	97	OBLX	$0 \ \overline{\rho} \rho \rightarrow \ \kappa^{\pm} (\breve{\kappa^{0}}) \pi^{\mp} \pi^{+} \pi^{-}$

² BERTIN 95 OBLX $0 \overline{p} p \rightarrow K \overline{K} \pi \pi \pi$ $1416~\pm~2$ ³ BAI 1416 \pm 8 $^{+7}_{-5}$ 90C MRK3 $J/\psi \rightarrow \gamma \kappa^0_{S} \kappa^{\pm} \pi^{\mp}$ 700 89 MPS 21.4 $\pi^- p \rightarrow n K^0_S K^0_S \pi^0$ ³ RATH $1413 ~\pm~ 5$ \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet ⁴ AUGUSTIN 92 DM2 $J/\psi \rightarrow \gamma K \overline{K} \pi$ 1459 \pm 5

¹ Decaying dominantly directly to $K^+ K^- \pi^0$.

² Decaying into $(K\overline{K})_{S}\pi$, $(K\pi)_{S}\overline{K}$, and $a_{0}(980)\pi$. ³ From fit to the $a_{0}(980)\pi 0^{-+}$ partial wave. Cannot rule out a $a_{0}(980)\pi 1^{++}$ partial wave.

⁴ Excluded from averaging because averaging would be meaningless.

$\pi\pi\gamma$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1403±17 OUR #	WERAGE Erro	r includes scale fa	actor o	of 1.8.	
1390 ± 12	235 ± 91	AMSLER	04 B	CBAR	$0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^+ \pi^- \eta$
$1424 \pm 10 \pm 11$	547	BAI	04J	BES2	$J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$
• • • We do not	use the followir	ng data for averag	es, fit	s, limits,	etc. • • •
1401 ± 18		^{1,2} AUGUSTIN	90	DM2	$J/\psi \rightarrow \pi^+ \pi^- \gamma \gamma$
$1432\pm$ 8		² COFFMAN	90	MRK3	$J/\psi \rightarrow \pi^+ \pi^- 2\gamma$
1 Roct fit with	a cingle Broit M	lignor			

Best fit with a single Breit Wigner.

²This peak in the $\gamma \rho$ channel may not be related to the η (1405).

4π MODE

• • • We do not use the following data for averages, fits, limits, etc. • • • 1420±20 BUGG 95 MRK3 $J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-$ 1489±12 3270 ¹ BISELLO 89B DM2 $J/\psi \rightarrow 4\pi\gamma$	VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1420 ± 20 BUGG 95 MRK3 $J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-$ 1489 ± 12 3270 1 BISELLO 898 DM2 $J/\psi \rightarrow 4\pi\gamma$	• • • We do not use	the following	data for average	es, fits	, limits,	etc. • • •
	$\begin{array}{c} 1420 \!\pm\! 20 \\ 1489 \!\pm\! 12 \end{array}$	3270 1	BUGG BISELLO	95 89в	MRK3 DM2	$\begin{array}{ll} J/\psi \rightarrow & \gamma \pi^+ \pi^- \pi^+ \pi^- \\ J/\psi \rightarrow & 4\pi \gamma \end{array}$

¹ Estimated by us from various fits.

$K\overline{K}\pi$ MODE (unresolved)

VALUE	(MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • •	We do r	not use the	following data for ave	erages,	fits, lin	nits, etc. • • •
1452.7	7± 3.3	191	^{1,2} ABLIKIM	13M	BES3	$\psi(2S) \rightarrow \omega K K \pi$
1437.6	$5\pm$ 3.2	249 ± 35	^{1,2} ABLIKIM	08E	BES2	$J/\psi \rightarrow \omega K^0_S K^+ \pi^- + \text{c.c.}$
1445.9	9± 5.7	62 ± 18	^{1,2} ABLIKIM	08E	BES2	$J/\psi ightarrow \omega \kappa + \kappa^{-} \pi^{0}$
1442	± 10	410	¹ BAI	9 8C	BES	$J/\psi ightarrow \gamma K^+ K^- \pi^0$
1445	± 8	693	¹ AUGUSTIN	90	DM2	$J/\psi \rightarrow \gamma K^0_S K^{\pm} \pi^{\mp}$
1433	± 8	296	¹ AUGUSTIN	90	DM2	$J/\psi \rightarrow \gamma \kappa^{+} \kappa^{-} \pi^{0}$
1413	± 8	500	¹ DUCH	89	ASTE	$\overline{p}p \rightarrow \pi^+\pi^- K^\pm \pi^\mp K^0$
1453	\pm 7	170	¹ RATH	89	MPS	21.4 $\pi^- p \to K^0_S K^0_S \pi^0 n$
1419	\pm 1	8800	¹ BIRMAN	88	MPS	$8 \pi^- p \rightarrow K^+ \overline{K}^0 \pi^- n$
1424	\pm 3	620	¹ REEVES	86	SPEC	6.6 $p\overline{p} \rightarrow K\overline{K}\pi X$
1421	\pm 2		¹ CHUNG	85	SPEC	$8 \pi^- p \rightarrow K \overline{K} \pi n$
1440	$^{+20}_{-15}$	174	¹ EDWARDS	82E	CBAL	$J/\psi \rightarrow \gamma K^+ K^- \pi^0$
1440	$^{+10}_{-15}$		¹ SCHARRE	80	MRK2	$J/\psi \rightarrow \gamma \kappa^0_S \kappa^\pm \pi^\mp$
1425	\pm 7	800	^{1,3} BAILLON	67	HBC	$0 \overline{p} p \rightarrow \ K \overline{K} \pi \pi \pi$

¹ These experiments identify only one pseudoscalar in the 1400–1500 range. Data could also refer to $\eta(1475)$.

 $^2\,\mbox{Systematic uncertainty not evaluated}.$

³ From best fit of 0 $^{-+}$ partial wave , 50% $K^{*}(892)K$, 50% $a_{0}(980)\pi$.

η (1405) WIDTH

VALUE (MeV) DOCUMENT ID

50.1±2.6 OUR AVERAGE Includes data from the 2 datablocks that follow this one. Error includes scale factor of 1.7. See the ideogram below.

 η (1405) width (MeV)

$\eta\pi\pi$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
The data in this block	is included i	n the average printed	for a pr	evious datablock.

52.6 \pm 3.2 OUR A	VERAGE	Error includes scale	factor	of 1.3.	See the ideogram below.
48.3± 5.2	743	ABLIKIM	12E	BES3	$J/\psi \rightarrow \gamma (\pi^+ \pi^- \pi^0)$
55.0 ± 11.0	198	ABLIKIM	12E	BES3	$J/\psi ightarrow \gamma (\pi^0 \pi^0 \pi^0)$
$52.8 \pm \ 7.6 {+0.1 \atop -7.6}$		¹ ABLIKIM	11 J	BES3	$J/\psi ightarrow \omega (\eta \pi^+ \pi^-)$
55 ± 11	900	AMSLER	04 B	CBAR	$0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^+ \pi^- \eta$
55 ± 12	6.6k	AMSLER	04 B	CBAR	$0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^0 \pi^0 \gamma$
80 ±21	9.0k	MANAK	00A	MPS	$18 \pi^- p \rightarrow \eta \pi^+ \pi^- n$

¹ The selected process is $J/\psi \rightarrow \omega a_0(980) \pi$.

² From fit to the $a_0(980)\pi 0^{-+}$ partial wave.

³ From $\eta \pi^+ \pi^-$ mass distribution - mainly $a_0(980)\pi$ - no spin-parity determination available.

⁴Superseded by AMSLER 04B.

 η (1405) width $\eta\pi\pi$ mode (MeV)

$K\overline{K}\pi$ MODE ($a_0(980)\pi$ or direct $K\overline{K}\pi$)

VALUE (MeV) ______ EVTS _____ DOCUMENT_ID _____ TECN _____ COMMENT

The data in this block is included in the average printed for a previous datablock.

48± 4 OUR AVERAGE Error includes scale factor of 2.1. See the ideogram below. OBLX 0 $\bar{p}p \to K^+ K^- \pi^+ \pi^- \pi^0$ ¹ NICHITIU $51\pm~6$ 3651 02 01B B852 18 GeV $\pi^- p \rightarrow K^+ K^- \pi^0 n$ 99 OBLX $0 \overline{p} p \rightarrow K^{\pm} K^0_S \pi^{\mp} \pi^+ \pi^-$ 97 OBLX $0.0 \overline{p} p \rightarrow K^{\pm} (K^0) \pi^{\mp} \pi^+ \pi^ 42\pm10\pm$ 9 20k ADAMS $50\pm~4$ CICALO ² BERTIN $48\pm$ 5 OBLX $0 \overline{p} p \rightarrow K \overline{K} \pi \pi \pi$ $50\pm~4$ ² BERTIN 95 75 ± 9 AUGUSTIN 92 DM2 $J/\psi \rightarrow \gamma K \overline{K} \pi$

$91^{+67}_{-31}^{+15}_{-38}$	³ BAI	90C	MRK3	$J/\psi \rightarrow \gamma \kappa^0_S \kappa^\pm \pi^\mp$
19± 7	³ RATH	89	MPS	$21.4 \pi^{-} p \rightarrow n K_{S}^{0} K_{S}^{0} \pi^{0}$
-		•		

¹Decaying dominantly directly to $K^+ K^- \pi^0$.

² Decaying into $(K\overline{K})_{S}\pi$, $(K\pi)_{S}\overline{K}$, and $a_{0}(980)\pi$. ³ From fit to the $a_{0}(980)\pi 0^{-+}$ partial wave , but $a_{0}(980)\pi 1^{++}$ cannot be excluded.

 η (1405) width $K\overline{K}\pi$ mode (a_0 (980) π dominant) (MeV)

 $\pi\pi\gamma$ MODE

VALU	E (MeV)		EVTS	DOCUMENT ID		TECN	COMMENT
89	±17	OUR	AVERAGE	Error includes scale	facto	r of 1.7.	
64	± 18		235 ± 91	AMSLER	04 B	CBAR	$0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^+ \pi^- \gamma$
101.0	D± 8.8	± 8.8	547	BAI	04J	BES2	$J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$
• • •	• We d	o not	use the follo	wing data for average	es, fits	s, limits,	etc. • • •
174	± 44			AUGUSTIN	90	DM2	$J/\psi \rightarrow \pi^+ \pi^- \gamma \gamma$
90	± 26			1 COFFMAN	90	MRK3	$J/\psi \rightarrow \pi^+ \pi^- 2\gamma$

¹This peak in the $\gamma \rho$ channel may not be related to the η (1405).

4π MODE

• • • We do not use the following data for averages, fits, limits, etc. • • • 160±30 BUGG 95 MRK3 $J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+$ 144±13 3270 ¹ BISELLO 80P DM2 $J/\psi \rightarrow \Lambda \pi \gamma$	VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMEN	IT	
160±30 BUGG 95 MRK3 $J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^-$	• • • We do not use	the following	data for averag	es, fits	s, limits,	etc. • •	•	
144 ± 13 3270 DISELEO 090 DIVIZ $J/\psi \rightarrow 4\pi^{\gamma}\gamma$	160 ± 30 144 ± 13	3270 1	BUGG BISELLO	95 89в	MRK3 DM2	$J/\psi ightarrow J/\psi ightarrow$	$\gamma \pi^+ \pi^- \pi^+ \pi 4\pi\gamma$.—

¹ Estimated by us from various fits.

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

KΚ	π MOE	DE (unresolv	red)			
VALU	E (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• •	• We do	not use the fo	ollowing data for ave	erages,	fits, lim	nits, etc. • • •
45.9	9± 8.2	191	^{1,2} ABLIKIM	13M	BES3	$\psi(2S) \rightarrow \omega K K \pi$
48.9	9± 9.0	249 ± 35	^{1,2} ABLIKIM	08E	BES2	$J/\psi \rightarrow \omega K^0_S K^+ \pi^- + \text{c.c.}$
34.2	2 ± 18.5	62 ± 18	^{1,2} ABLIKIM	08E	BES2	$J/\psi \rightarrow \omega K^{+} K^{-} \pi^{0}$
93	± 14	296	¹ AUGUSTIN	90	DM2	$J/\psi \rightarrow \gamma K^+ K^- \pi^0$
105	± 10	693	¹ AUGUSTIN	90	DM2	$J/\psi \rightarrow \gamma K^0_{\varsigma} K^{\pm} \pi^{\mp}$
62	± 16	500	¹ DUCH	89	ASTE	$\overline{p}p \rightarrow K\overline{K}\pi\pi\pi$
100	± 11	170	¹ RATH	89	MPS	$21.4 \pi^{-} p \rightarrow K^{0}_{\varsigma} K^{0}_{\varsigma} \pi^{0} n$
66	± 2	8800	¹ BIRMAN	88	MPS	$8 \pi^- p \rightarrow K^+ \overline{K}^0 \pi^- n$
60	± 10	620	¹ REEVES	86	SPEC	6.6 $p \overline{p} \rightarrow K K \pi X$
60	± 10		¹ CHUNG	85	SPEC	$8 \pi^- p \rightarrow K \overline{K} \pi n$
55	$^{+20}_{-30}$	174	¹ EDWARDS	82E	CBAL	$J/\psi \rightarrow \gamma K^+ K^- \pi^0$
50	$+30 \\ -20$		¹ SCHARRE	80	MRK2	$J/\psi \rightarrow \gamma K^0_S K^{\pm} \pi^{\mp}$
80	± 10	800	^{1,3} BAILLON	67	HBC	$0.0 \overline{p} p \rightarrow \ K \overline{K} \pi \pi \pi$

¹ These experiments identify only one pseudoscalar in the 1400–1500 range. Data could also refer to $\eta(1475)$. ² Systematic uncertainty not evaluated. ³ From best fit to 0⁻⁺ partial wave, 50% K*(892) K, 50% $a_0(980)\pi$.

	Mode	Fraction (Γ_i/Γ)	Confidence level
Γ_1	$K\overline{K}\pi$	seen	
Γ2	$\eta \pi \pi$	seen	
Γ ₃	$a_0(980)\pi$	seen	
Г ₄	$\eta(\pi\pi)_{S-wave}$	seen	
Γ ₅	$f_0(980) \pi^0 \to \pi^+ \pi^- \pi^0$	not seen	
Г ₆	$f_0(980)\eta$	seen	
Γ ₇	4π	seen	
Г ₈	ρρ	<58 %	99.85%
Г9	$\gamma \gamma$		
Γ ₁₀	$ ho^{0}\gamma$	seen	
Γ_{11}	$\phi\gamma$		
Γ ₁₂	K*(892)K	seen	

η (1405) DECAY MODES

η (1405) Γ (i) Γ ($\gamma\gamma$)/ Γ (total)

$\Gamma(K\overline{K}\pi)$	$\times \Gamma(\gamma)$	$\gamma)/\Gamma_{total}$				$\Gamma_1\Gamma_9/\Gamma$
VALUE (keV)	CL%	DOCUMENT IL)	TECN	COMMENT	
• • • We do	o not use	e the following data	a for av	verages,	fits, limits, etc. •	• •
< 0.035	90	^{1,2} АНОНЕ	05	CLE2	10.6 $e^+e^- ightarrow$	$e^+e^-K^0_SK^\pm\pi^\mp$
¹ Using η (1405) mass and width 1410 MeV and 51 MeV, respectively. ² Assuming three-body phase-space decay to $\kappa_5^0 \kappa^{\pm} \pi^{\mp}$.						

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

$\Gamma(\eta \pi \pi)$	× Γ(γγ),	/F _{total}			TECN	COMMEN	1T	Γ ₂ Γ ₉ /Γ
<0.095	<u>02 ///</u> 95	ACCIA	RRI	01 G	L3	183-202	$2 e^+e^- \rightarrow e^+e^-$	$e^{-}\eta\pi^{+}\pi^{-}$
$\Gamma(ho^0\gamma)$ ×	$\langle \Gamma(\gamma\gamma)/$	Γ _{total}						Г ₁₀ Г9/Г
VALUE (keV)		<u>CL%</u>	<u>DOCU</u>	MENT	ID	TECN	COMMENT	
• • • We d	lo not use t	the followi 95	ing data ALTH	a for av IOFF	verages, 1 84E	TASS	etc. • • • $e^+e^- \rightarrow e^+e^+e^+e^+e^+e^+e^+e^+e^+e^+e^+e^+e^+e$	$e^{-\pi^{+}\pi^{-}\gamma}$
		η(14	105) B	RAN	CHING	RATIO	S	
$\Gamma(\eta \pi \pi)/I$	Γ(<i>ΚΚ</i> π)							Γ_2/Γ_1
VALUE		<u>CL%</u>	<u>DOC</u>	UMENT	ĪD	TECN	COMMENT	
1.09 ± 0.4	18		I AMS	SLER	04E	B CBAR	$0 \ \overline{p} p \rightarrow \pi^+ \pi$	$-\pi^+\pi^-\eta$
• • • VVe d	lo not use t	the follow	ing data	a for av	verages, i	fits, limit	ts, etc. ● ● ●	
<0.5		90	EDV	VARDS	5 83E	3 CBAL	$J/\psi \rightarrow \eta \pi \pi \gamma$	γ
<1.1		90 05	SCH		80	MRK2	$2 J/\psi \rightarrow \eta \pi \pi \gamma$	γ
<1.5		95	FUS	TER	68E	3 HRC	0.0 <i>pp</i>	
¹ Using tl	he data of	BAILLON	67 on	$\overline{p}p \rightarrow$	$KK\pi$.			
$\Gamma(\rho^0\gamma)/\Gamma$	$(\eta \pi \pi)$					TC		Γ ₁₀ /Γ ₂
<u>VALUE</u>			<u>D(</u>				<u>N COMMENT</u>	
U.111±U.UC)4		A	VISLEI	τ ι	14B CB/	чк орр	
Г(<i>a</i> ₀ (980))π)/Γ(<i>Κ</i>	$\overline{K}\pi$)	DOCU		חו	TECN	COMMENT	Γ_3/Γ_1
• • • We d	lo not use t	<u>the followi</u>	ing data	for a	verages	fits limit		
. 0 15							$0 = k + \frac{k}{k} = k$	
~ 0.15		500			80	ASTE	$\overline{p}p \rightarrow \overline{K}\overline{K}\pi^{+}$	$\chi^{\pm} = \kappa^0$
~ 0.0		500	1 REEV	r FS	09 86	SPEC	$pp \rightarrow \pi^{*}\pi^{*}$	πX
¹ Assumir	ng that the	a ₀ (980)	decays	only in	to $K\overline{K}$.	SILC	0.0 pp / KK	
Г(<i>a</i> ₀ (980)	$)\pi)/\Gamma(\eta\pi$	π						Γ_3/Γ_2
VALUE		<u>EVTS</u>	DOCU	MENT	ID	TECN	COMMENT	-, -
• • • We d	lo not use t	the followi	ing data	a for a	verages, i	fits, limit	ts, etc. • • •	
0.29 ± 0.10			ABEL	E	98E	CBAR	$0 \ p \overline{p} \rightarrow \eta \pi^0 \pi^0$	$0 \pi 0$
0.19 ± 0.04	2	2200	¹ ALDE		97 B	GAM4	$100 \pi^- p \rightarrow \eta$	$\pi^{0} \pi^{0} n$
0.56 ± 0.04	± 0.03		¹ AMSI	ER	95F	CBAR	$0 \overline{p} p \rightarrow \pi^+ \pi^-$	$-\pi^0\pi^0\eta$
¹ Assumir	ng that the	a ₀ (980)	decays	only in	to $\eta\pi$.			
Г(<i>a</i> ₀ (980)	$\pi)/\Gamma(\eta($	$\pi\pi)$ S-wa	ve)					Γ ₃ /Γ ₄
VALUE		EVTS	DOCU	MENT	ID	TECN	COMMENT	
• • • We d	lo not use t	the followi	ing data	a for a	verages,	fits, limit	ts, etc. ● ● ●	
0.91 ± 0.12			ANIS	OVICH	l 01	SPEC	$0.0 \ \overline{p} p \rightarrow \eta \pi^+$	$\pi^-\pi^+\pi^-$
0.15 ± 0.04	ç	9082	¹ MAN	AK	00A	MPS	18 $\pi^- p \rightarrow \eta \pi$	$+\pi^{-}n$
0.70±0.12	± 0.20		² BAI		99	BES	$J/\psi \rightarrow \gamma \eta \pi^+$	π^{-}
¹ Statistic ² Assumir	cal error on ng that the	ly. <i>a</i> 0(980) -	decays	only in	to $\eta\pi$.			

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

$\Gamma(\rho^0\gamma)/\Gamma(K\overline{K}\pi)$						Γ_{10}/Γ_1
VALUE		DOCUMENT ID		TECN	COMMENT	
0.0152 ± 0.0038		¹ COFFMAN	90	MRK3	$J/\psi \rightarrow \gamma \gamma \gamma$	$\pi^+\pi^-$
¹ Using B($J/\psi \rightarrow \gamma \eta$ ($\gamma \gamma \rho^{0}$)=6.4 × 10 ⁻⁵ .	1405) —	$\Rightarrow \gamma K \overline{K} \pi = 4.2$	× 10 ⁻	$^{-3}$ and	$B(J/\psi \rightarrow \gamma)$	η (1405) $ ightarrow$
$\Gamma(\gamma\gamma)/\Gamma(K\overline{K}\pi)$				TECH	COMMENT	Γ ₉ /Γ ₁
<u>VALUE</u> (<u>_L%_</u>	1 ADLIKINA	100	DECO	$\frac{COMMENT}{(25)}$	+
¹ Using results from BAI	00d.	ADEIMINI	100	BL33	$\psi(23) \rightarrow \pi$	· <i>π</i> · γ·γ·γ
$\Gamma(\eta(\pi\pi)_{S-\text{wave}})/\Gamma(\eta\pi)_{VALUE}$	π π) <u>vts</u>	DOCUMENT ID		TECN	<u>COMMENT</u>	Γ_4/Γ_2
• • • We do not use the f	ollowing	data for average	s, fits,	limits, e	etc. • • •	
0.81±0.04 2	200	ALDE	97 B	GAM4	100 $\pi^- p \rightarrow$	$\eta \pi^0 \pi^0 n$
$\frac{\Gamma(f_0(980)\eta)}{\Gamma(\eta\pi\pi)}$		DOCUMENT ID		TECN	<u>COMMENT</u>	Г ₆ /Г ₂
• • • We do not use the f	ollowing	data for average	s, fits,	limits, e	etc. • • •	
$0.32 {\pm} 0.07$		¹ ANISOVICH	00	SPEC	0.9–1.2 <u>p</u> p -	$\rightarrow \eta 3\pi^0$
1 Using preliminary Cryst	tal Barre	l data.				
$\frac{\Gamma(f_0(980)\pi^0 \rightarrow \pi^+\pi^-)}{VALUE}$	π ⁰)/Γ _t	otal <u>DOCUMENT ID</u>		TECN	COMMENT	Г ₅ /Г
not seen		¹ ABLIKIM	17AJ	BES3	$\psi(2S) ightarrow \gamma$	$\pi^+\pi^-\pi^0$
¹ ABLIKIM 17AJ reports 5.0×10^{-7} .	s Β(ψ(25	$5) \rightarrow \gamma \eta (1405)$) →	γ f ₀ (980	$\gamma \pi^0 \rightarrow \gamma \pi^-$	$\pi^{-}\pi^{0}$) <
$\Gamma(ho ho)/\Gamma_{total}$						Г ₈ /Г
VALUE C	L <u>%</u>	DOCUMENT I	D	TECN	COMMENT	
<0.58 99	9.85	^{1,2} AMSLER	04	b CBA	R 0 <u>p</u> p	
1 Assuming that the $\eta(1$ 2 Using the data of BAII	405) dec _LON 67	ays are saturated on $\overline{p}p o \ K\overline{K}$	l by th π.	he $\pi\pi\eta$,	$K\overline{K}\pi$ and $\rho\rho$	modes.
Γ(K*(892)K)/Γ(a₀(98 VALUE	30)π) DOCU	MENT ID	TECN	СОММЕ	ENT	Г ₁₂ /Г ₃
• • • We do not use the f	ollowing	data for average	s, fits,	limits, e	etc. • • •	
0.084 ± 0.024	¹ ADAN	MS 01B I	B852	18 Ge\	$\sqrt{\pi^- p} \rightarrow K^-$	$+ K^{-} \pi^{0} n$
¹ Statistical error only.						
$\Gamma(\phi\gamma)/\Gamma(\rho^0\gamma)$	~1%	DOCUMENT ID		TECN	COMMENT	Γ_{11}/Γ_{10}
• • • We do not use the f	ollowing	data for average	s, fits.	limits.	etc. • • •	
0.09±0.03	0	¹ ABLIKIM	181	BES3	$J/\psi ightarrow \gamma \gamma \phi$	∌(1020)
0.13 ± 0.04		² ABLIKIM	181	BES3	$J/\psi \rightarrow \gamma \gamma \phi$	¢(1020)́
<0.77	95	³ BAI	04J	BES2	$J/\psi \rightarrow \gamma \gamma \gamma$	к+к-

- ¹ Constructive interference between X(1835) and $\eta(1405)/\eta(1475)$ decays to $\gamma\phi$ is assumed. Also see $\eta(1475)$. ABLIKIM 181 reports the inverse as 11.10 ± 3.5 . ² Destructive interference between X(1835) and $\eta(1405)/\eta(1475)$ decays to $\gamma\phi$ is assumed. Also see $\eta(1475)$. ABLIKIM 181 reports the inverse as 7.53 ± 2.49 . ³ Calculated by us from B($J/\psi \rightarrow \eta(1405)\gamma \rightarrow \phi\gamma\gamma$) < 0.82×10^{-4} and B($J/\psi \rightarrow \eta(1405)\gamma \rightarrow \rho^0\gamma\gamma$) = $(1.07 \pm 0.17 \pm 0.11) \times 10^{-4}$.

η (1405) REFERENCES

ABLIKIM	19BA	PR D100 092003	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	18I	PR D97 051101	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	18O	PR D97 072014	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	17AJ	PR D96 112008	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	13M	PR D87 092006	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	12E	PRL 108 182001	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	11J	PRL 107 182001	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	08E	PR D77 032005	M. Ablikim et al.	(BES Collab.)
AHOHE	05	PR D71 072001	R. Ahohe <i>et al.</i>	(ČLEO Collab.)
AMSLER	04B	EPJ C33 23	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
BAI	04J	PL B594 47	J.Z. Bai <i>et al.</i>	(BES Collab.)
NICHITIU	02	PL B545 261	F. Nichitiu <i>et al.</i>	(OBELIX Collab.)
ACCIARRI	01G	PL B501 1	M. Acciarri <i>et al.</i>	(L3 Collab.)
ADAMS	01B	PL B516 264	G.S. Adams et al.	(BNL E852 Collab.)
ANISOVICH	01	NP A690 567	A V Anisovich <i>et al</i>	(
ANISOVICH	00	PL B472 168	A V Anisovich <i>et al</i>	
RAI	00D	PL B476 25	17 Bai <i>et al</i>	(BES Collab.)
MANAK	00A	PR D62 012003	L Manak et al	(BNI E852 Collab.)
RAI	90,1	PI B446 356	17 Bai et al	(BFS Collab.)
	99	PL B462 453	C Cicalo et al	(OBELIX Collab.)
ARFLE	98F	NP R514 45	A Abele et al	(Crystal Barrel Collab.)
RAI	98C	PI B440 217	17 Bai et al	(BES Collab.)
	07R	PAN 60 386	D Alde et al.	(CAMS Collab.)
ALDL	510	Translated from YAE 60	458	
BERTIN	97	PL B400 226	A. Bertin <i>et al.</i>	(OBELIX Collab.)
AMSLER	95F	PL B358 389	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
BERTIN	95	PL B361 187	A. Bertin <i>et al.</i>	(OBELIX Collab.)
BUGG	95	PL B353 378	D.V. Bugg et al.	(LOQM, PNPL, WASH)
AUGUSTIN	92	PR D46 1951	IF Augustin G Cosme	(DM2 Collab.)
BOLTON	92B	PRL 69 1328	T. Bolton <i>et al.</i>	(Mark III Collab.)
FUKUI	91C	PL B267 293	S. Fukui <i>et al.</i>	(SUGL NAGO, KEK, KYOT+)
AUGUSTIN	90	PR D42 10	J.E. Augustin <i>et al.</i>	(DM2 Collab.)
BAI	90C	PRL 65 2507	Z. Bai <i>et al.</i>	(Mark III Collab.)
COFFMAN	90	PR D41 1410	D.M. Coffman <i>et al</i>	(Mark III Collab.)
BISELLO	89B	PR D39 701	G. Busetto <i>et al.</i>	(DM2 Collab.)
DUCH	89	ZPHY C45 223	K.D. Duch et al.	(ASTERIX Collab.) JP
RATH	89	PR D40 693	M.G. Rath <i>et al.</i>	(NDAM, BRAN, BNL, CUNY+)
BIRMAN	88	PRI 61 1557	A Birman <i>et al</i>	(BNI FSU IND MASD) IP
ANDO	86	PRL 57 1296	A. Ando <i>et al.</i>	(KEK, KYOT, NIRS, SAGA+) LIP
REEVES	86	PR D34 1960	D.F. Reeves <i>et al.</i>	(FLOR, BNL, IND+) JP
CHUNG	85	PRL 55 779	S.U. Chung et al.	(BNL, FLOR, IND+) JP
ALTHOFF	84F	PI 147B 487	M Althoff et al	(TASSO Collab.)
FDWARDS	83B	PRI 51 859	C Edwards <i>et al</i>	(CIT HARV PRIN+)
EDWARDS	82E	PRL 49 259	C. Edwards <i>et al.</i>	(CIT, HARV, PRIN+)
Also		PRL 50 219	C. Edwards <i>et al.</i>	(CIT, HARV, PRIN+)
SCHARRE	80	PL 97B 329	D.L. Scharre <i>et al.</i>	(SLAC, LBL)
FOSTER	68B	NP B8 174	M. Foster <i>et al.</i>	(CERN, CDEF)
BAILLON	67	NC 50A 393	P.H. Baillon <i>et al.</i>	(CERN, CDEF, IRAD)
				(,,)