$$\eta_c(1S)$$

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

$\eta_{c}(1S)$ MASS

VALUE (MeV	')			EVTS		DOCUMENT ID		TECN	COMMENT
2983.9	±	0.4	0	ur a'	VERAGE	E	rror includes sca	ale fa	ctor of 1	2.
2983.9	\pm	0.7	\pm	0.1		1	AAIJ	20н	LHCB	$pp \rightarrow bX \rightarrow p\overline{p}X$
2985.9	\pm	0.7	\pm	2.1	1705		ABLIKIM	19AV	BES3	$J/\psi \rightarrow \gamma \omega \omega$
2984.6	±	0.7	±	2.2	2673		XU	18	BELL	$e^+e^- \rightarrow e^+e^- n'\pi^+\pi^-$
2986.7	±	0.5	±	0.9	11k	2	AAIJ	17AD	LHCB	$pp \rightarrow B^+ X \rightarrow$
2982.8	±	1.0	±	0.5	6.4k	3	AAIJ	17 BB	LHCB	$pp \rightarrow b\overline{b}X \rightarrow 2(K^+K^-)X$
2982.2	±	1.5	±	0.1	2.0k	4	AAIJ	15BI	LHCB	$pp \rightarrow \eta_{c}(1S)X$
2983.5	±	1.4	+	1.6 3.6		5	ANASHIN	14	KEDR	$J/\psi \rightarrow \gamma \eta_{C}$
2979.8	\pm	0.8	\pm	3.5	4.5k	6,7	LEES	14E	BABR	$\gamma \gamma \rightarrow K^+ K^- \pi^0$
2984.1	\pm	1.1	\pm	2.1	900 6	,7,8	LEES	14E	BABR	$\gamma \gamma \rightarrow K^+ K^- \eta$
2984.3	\pm	0.6	\pm	0.6	ç	9,10	ABLIKIM	12F	BES3	$\psi(2S) \rightarrow \gamma \eta_c$
2984.49)±	1.16	δ±	0.52	832	6	ABLIKIM	12N	BES3	$\psi(2S) \rightarrow \pi^0 \gamma$ hadrons
2982.7	+	1.8	+	2.2	486		ZHANG	12A	BELL	$e^+e^- \rightarrow$
	_		_							$e^+e^-\eta'\pi^+\pi^-$
2984.5	±	0.8	±	3.1	11k		DEL-AMO-SA	.11M	BABR	$\gamma \gamma \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$
2985.4	±	1.5	+ -	0.5 2.0	920	10	VINOKUROVA	11	BELL	$\overset{B^{\pm}}{\overset{\rightarrow}{}_{\kappa^{\pm}}(\kappa^{0}_{c}\kappa^{\pm}\pi^{\mp})}$
2982.2	±	0.4	±	1.6	14k	11	LEES	10	BABR	$10.6 e^+ e^- \rightarrow e^+ e^- K^0_{\varsigma} K^{\pm} \pi^{\mp}$
2985.8	±	1.5	±	3.1	0.9k		AUBERT	08 AB	BABR	$B \rightarrow \eta_{c}(1S) \kappa^{(*)} \rightarrow \kappa^{(*)}$
2986 1	+	10	+	25	7 5k		LIEHARA	08	BELL	$K K \pi K^{(1)}$ $\gamma \gamma \rightarrow n \rightarrow \text{hadrons}$
2070	+	5	+	6	501	12		07	RELL	$e^+e^- \rightarrow I/2/(c\overline{c})$
2910		5		2	105			07	DELL	$e^+e^- \rightarrow 5/\psi(cc)$
2971	±	3		1	195		WU	06	BELL	$B^+ \rightarrow p \overline{p} K^+$
2974	±	7	+	2	20		WU	06	BELL	$B^+ \rightarrow \Lambda \overline{\Lambda} K^+$
2981.8	±	1.3	±	1.5	592		ASNER	04	CLEO	$\begin{array}{ccc} \gamma \gamma \rightarrow & \eta_{\mathcal{C}} \rightarrow \\ & \mathcal{K}^{0}_{\mathcal{C}} \mathcal{K}^{\pm} \pi^{\mp} \end{array}$
2984.1	±	2.1	\pm	1.0	190	13	AMBROGIANI	03	E835	$\overline{p}p \rightarrow \eta_c \rightarrow \gamma\gamma$
• • • \	Ne	do n	ot i	use th	e followi	ng d	lata for averages	s, fits	, limits,	etc. • • •
2982.5	±	0.4	±	1.4	12k	14	DEL-AMO-SA	. 11 M	BABR	$\gamma\gamma \rightarrow K^{0}_{S}K^{\pm}\pi^{\mp}$
2982.2	±	0.6				15	MITCHELL	09	CLEO	$e^+e^- \rightarrow \gamma X$
2982	+	5			270	16	AUBERT	06F	BABR	$B^{\pm} \rightarrow K^{\pm} X -$
2982.5	±	1.1	±	0.9	2.5k	17	AUBERT	04D	BABR	$\gamma \gamma \rightarrow \eta_c(1S) \rightarrow$
2077 5		1 0	J	1 0	15	5.18	DAL	02		$K\overline{K}\pi$
2977.5	±	1.0	±	1.2	100	,10 10	BAI	03	BE2	$J/\psi \rightarrow \gamma \eta_c$
2979.6	±	2.3	±	1.0	180 18	5 20	FANG	03	RELL	$B \rightarrow \eta_c \kappa$
2976.3	±	2.3	±	1.2	1.	,20	BAI	00F	BES	$J/\psi, \ \psi(2S) \rightarrow \gamma \eta_{C}$

140^{15,21} BAL 2976.6 \pm 2.9 \pm 1.3 00F BES $J/\psi \rightarrow \gamma \eta_c$ $\begin{array}{ccc} \mathsf{CLE2} & \gamma\gamma \rightarrow & \eta_{\textit{C}} \rightarrow \\ & & \mathsf{K}^{\pm} \, \mathsf{K}^{0}_{\,\mathsf{S}} \, \pi^{\mp} \end{array}$ 2980.4 \pm 2.3 \pm 0.6 ²² BRANDENB... 00B ²¹ BAI $2975.8~\pm~3.9~\pm~1.2$ Sup. by BAI 00F 99B BES 980 DLPH $e^+e^- \rightarrow e^+e^-$ 2999 + 825 ABREU +hadrons **ARMSTRONG 95F** E760 $\overline{p}p \rightarrow \gamma\gamma$ $2974.4~\pm~1.9$ 15,23 BISELLO 91 DM2 $J/\psi \rightarrow \eta_{c} \gamma$ ¹⁵ BAI ± 4 80 90B MRK3 $J/\psi \rightarrow$ 2969 ± 4 $\gamma K^+ K^- K^+ K^-$ ¹⁵ BAI MRK3 $J/\psi \rightarrow$ 2956 ± 12 **90**B ± 12 $\gamma K^+ K^- K^0_{\varsigma} K^0_{\prime}$ 2982.6 + 2.7 - 2.3 SPEC $\overline{p}p \rightarrow \gamma\gamma$ 12 BAGLIN **87**B ^{15,23} BALTRUSAIT...86 MRK3 $J/\psi \rightarrow \eta_c \gamma$ 2980.2 ± 1.6 CBAL $J/\psi \rightarrow \gamma X, \psi(2S) \rightarrow$ \pm 2.3 \pm 4.0 ¹⁵ GAISER 86 2984 γX 15,24 BALTRUSAIT...84 MRK3 $J/\psi \rightarrow 2\phi\gamma$ 2976 \pm 8 ²⁵ HIMEL 80B MRK2 e^+e^- 2982 \pm 8 18 ²⁵ PARTRIDGE 80B CBAL $e^+e^ \pm 9$ 2980

 1 AAIJ 20H report $m_{J/\psi} - m_{\eta_c(1S)} = 113.0 \pm 0.7 \pm 0.1$ MeV. We use the current value $m_{J/\psi} = 3096.900 \pm 0.006$ MeV to obtain the quoted mass.

 2 AAIJ 17AD report $m_{J/\psi}$ – $m_{\eta_c(1S)}$ = 110.2 \pm 0.5 \pm 0.9 MeV. We use the current value $m_{J/\psi} = 3096.900 \pm 0.006$ MeV to obtain the quoted mass.

 3 From a fit of the $\phi\phi$ invariant mass with the mass and width of $\eta_c(1S)$ as free parameters.

 4 AAIJ 15BI reports $m_{J/\psi}$ – $m_{\eta_c(1S)}$ = 114.7 \pm 1.5 \pm 0.1 MeV from a sample of $\eta_{c}(1S)$ and J/ψ produced in *b*-hadron decays. We have used current value of $m_{I/\psi} =$ 3096.900 \pm 0.006 MeV to arrive at the quoted $m_{\eta_{c}}(1S)$ result.

⁵ Taking into account an asymmetric photon lineshape.

⁶With floating width.

⁷Ignoring possible interference with the non-resonant 0^- amplitude.

⁸ Using both, $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays.

⁹ From a simultaneous fit to six decay modes of the η_{c} .

 10 Accounts for interference with non-resonant continuum. 11 Taking into account interference with the non-resonant $J^P=0^-$ amplitude.

 12 From a fit of the J/ψ recoil mass spectrum. Supersedes ABE,K 02 and ABE 04G.

¹³ Using mass of $\psi(2S) = 3686.00$ MeV.

 14 Not independent from the measurements reported by LEES 10.

¹⁵ MITCHELL 09 observes a significant asymmetry in the lineshapes of $\psi(2S) \rightarrow \gamma \eta_c$ and $J/\psi \rightarrow \gamma \eta_{c}$ transitions. If ignored, this asymmetry could lead to significant bias whenever the mass and width are measured in $\psi(2S)$ or J/ψ radiative decays.

 16 From the fit of the kaon momentum spectrum. Systematic errors not evaluated.

¹⁷ Superseded by LEES 10.

¹⁸ From a simultaneous fit of five decay modes of the η_c .

¹⁹Superseded by VINOKUROVA 11.

 20 Weighted average of the $\psi(2S)$ and $J/\psi(1S)$ samples. Using an η_c width of 13.2 MeV.

 21 Average of several decay modes. Using an η_c width of 13.2 MeV.

²³ Average of several decay modes.

²² Superseded by ASNER 04.

 $^{24}\eta_{\it C} \rightarrow ~\phi\phi.$ 25 Mass adjusted by us to correspond to $J/\psi(1S)$ mass = 3097 MeV.

	$\eta_{c}(1S)$ WIDTH										
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT					
32.0±	0.7 OUR			c .							
32.1 ±			Error includes scale	a facto	PLC2						
33.0±	1.0±4.1 23	1705		19AV	DE33	$J/\psi \rightarrow \gamma \omega \omega$					
30.8	2.2 ± 2.9	2673	XU	18	BELL	$e^+e^- \rightarrow e^+e^-\eta'\pi^+\pi^-$					
34.0±	1.9 ± 1.3	11k		17AD	LHCB	$pp \rightarrow B^+ X \rightarrow p\overline{p}K^+ X$					
31.4±	3.5 ± 2.0	6.4k	- AAIJ	17BB	LHCB	$pp \rightarrow bbX \rightarrow 2(K^+K^-)X$					
$27.2\pm$	$3.1^{+5.4}_{-2.6}$		² ANASHIN	14	KEDR	$J/\psi \rightarrow \gamma \eta_{C}$					
$25.2\pm$	$2.6\!\pm\!2.4$	4.5k	^{3,4} LEES	14E	BABR	$\gamma \gamma \rightarrow K^+ K^- \pi^0$					
$34.8\pm$	3.1 ± 4.0	900 ³ ,	^{4,5} LEES	14E	BABR	$\gamma \gamma \rightarrow K^+ K^- \eta$					
$32.0\pm$	1.2 ± 1.0		^{6,7} ABLIKIM	12F	BES3	$\psi(2S) \rightarrow \gamma \eta_{c}$					
$36.4\pm$	3.2 ± 1.7	832	³ ABLIKIM	12N	BES3	$\psi(2S) ightarrow \pi^{0} \gamma$ hadrons					
37.8^{+}_{-}	${}^{5.8}_{5.3}{\pm}3.1$	486	ZHANG	12A	BELL	$e^+e^- \rightarrow e^+e^-\eta'\pi^+\pi^-$					
$36.2\pm$	$2.8\!\pm\!3.0$	11k	DEL-AMO-SA.	.11M	BABR	$\gamma \gamma \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$					
$35.1\pm$	$3.1^{+1.0}_{-1.6}$	920	⁷ VINOKUROVA	11	BELL	$B^{\pm} \rightarrow \ K^{\pm}(K^0_S K^{\pm} \pi^{\mp})$					
31.7±	1.2 ± 0.8	14k	⁸ LEES	10	BABR	$10.6 \ e^+ e^- \xrightarrow{\rightarrow}_{e^+ e^- \ K_S^0 \ K^{\pm} \pi^{\mp}}$					
36.3+	3.7 ± 4.4 $3.6 \pm$	0.9k	AUBERT	08 AB	BABR	$B \rightarrow \eta_{c}(1S) \kappa^{(*)} \rightarrow \kappa^{\kappa} \kappa^{\kappa} \kappa^{(*)}$					
$28.1\pm$	3.2 ± 2.2	7.5k	UEHARA	08	BELL	$\gamma \gamma \rightarrow \eta_{c} \rightarrow \text{hadrons}$					
48 _	$\frac{8}{7}$ ±5	195	WU	06	BELL	$B^+ \rightarrow p \overline{p} K^+$					
40 ±1	19 ± 5	20	WU	06	BELL	$B^+ \rightarrow \Lambda \overline{\Lambda} K^+$					
$24.8\pm$	3.4 ± 3.5	592	ASNER	04	CLEO	$\gamma \gamma \rightarrow \eta_c \rightarrow K^0_S K^{\pm} \pi^{\mp}$					
20.4^+	${}^{7.7}_{6.7}{\pm}2.0$	190	AMBROGIANI	03	E835	$\overline{p}p \rightarrow \eta_{C} \rightarrow \gamma\gamma$					
23.9 ⁺¹	L2.6 7.1		ARMSTRONG	95F	E760	$\overline{p}p \rightarrow \gamma\gamma$					
• • • \	We do not	use the follo	wing data for avera	iges, f	its, limit	s, etc. ● ● ●					
$32.1\pm$	1.1 ± 1.3	12k	⁹ DEL-AMO-SA.	. 11 M	BABR	$\gamma \gamma \rightarrow K^0_{c} K^{\pm} \pi^{\mp}$					
$34.3\pm$	2.3 ± 0.9	2.5k	¹⁰ AUBERT	04 D	BABR	$\gamma \gamma \rightarrow \eta_{c}(1S) \rightarrow K\overline{K}\pi$					
$17.0\pm$	3.7±7.4		¹¹ BAI	03	BES	$J/\psi \rightarrow \gamma \eta_c$					
$29 \pm$	8 ±6	180	¹² FANG	03	BELL	$B \rightarrow \eta_c K$					
$11.0\pm$	8.1 ± 4.1		¹³ BAI	00F	BES	$J/\psi \rightarrow \gamma \eta_c$ and $\psi(2S) \rightarrow \psi(2S)$					
$27.0\pm$	$5.8 {\pm} 1.4$		¹⁴ BRANDENB	00 B	CLE2	$\gamma \eta_{c} \gamma \gamma \rightarrow \eta_{c} \rightarrow \kappa^{\pm} \kappa^{0}_{S} \pi^{\mp}$					
7.0^{+}_{-}	7.5 7.0	12	BAGLIN	87 B	SPEC	$\overline{p}p \rightarrow \gamma\gamma$					
10.1_3	33.0 8.2	23	¹⁵ BALTRUSAIT.	.86	MRK3	$J/\psi ightarrow \gamma \rho \overline{ ho}$					
$11.5\pm$	4.5		GAISER	86	CBAL	$J/\psi ightarrow \gamma X$, $\psi(2S) ightarrow \gamma X$					
< 40	90% CL	18	HIMEL	80 B	MRK2	e ⁺ e ⁻					
< 20	90% CL		PARTRIDGE	80 B	CBAL	e ⁺ e ⁻					
https:	//pdg.lbl	.gov	Page 3		C	reated: 6/1/2021 08:30					

¹ From a fit of the $\phi \phi$ invariant mass with the mass and width of $\eta_{c}(1S)$ as free parameters.

² Taking into account an asymmetric photon lineshape.

³With floating mass.

⁴ Ignoring possible interference with the non-resonant 0^- amplitude.

⁵ Using both, $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays.

⁶ From a simultaneous fit to six decay modes of the η_c .

⁷ Accounts for interference with non-resonant continuum. ⁸ Taking into account interference with the non-resonant $J^P = 0^-$ amplitude. ⁹ Not independent from the measurements reported by LEES 10.

¹⁰ Superseded by LEES 10.

¹¹ From a simultaneous fit of five decay modes of the η_{c} .

¹²Superseded by VINOKUROVA 11.

¹³ From a fit to the 4-prong invariant mass in $\psi(2S) \rightarrow \gamma \eta_c$ and $J/\psi(1S) \rightarrow \gamma \eta_c$ decays.

¹⁴ Superseded by ASNER 04.

 15 Positive and negative errors correspond to 90% confidence level.

Mode Fraction (Γ_i/Γ) Confidence level Decays involving hadronic resonances Γ_1 $\eta'(958)\pi\pi$ $(4.1 \pm 1.7)\%$ Γ_2 (1.8 ± 0.5)% $\rho \rho$ $K^*(892)^0 K^- \pi^+ + \text{ c.c.}$ Γ₃ $(2.0 \pm 0.7)\%$ $K^{*}(892)\overline{K}^{*}(892)$ $(6.9 \pm 1.3) \times 10^{-3}$ Γ4 $K^{*}(892)^{0}\overline{K}^{*}(892)^{0}\pi^{+}\pi^{-}$ (1.1 ± 0.5)% Γ_5 Γ_6 $\phi K^+ K^ (2.9 \pm 1.4) \times 10^{-3}$ $(1.74\pm0.19)\times10^{-3}$ Γ_7 $\phi\phi$ $\phi 2(\pi^{+}\pi^{-})$ $\times 10^{-3}$ Γ₈ < 4 90% Γg $a_0(980)\pi$ < 2 % 90% Γ₁₀ $a_{2}(1320)\pi$ < 2 90% % $K^{*}(892)\overline{K}$ + c.c. Γ_{11} % < 1.28 90% Γ_{12} $f_{2}(1270)\eta$ < 1.1 % 90% Γ₁₃ $(2.9 \pm 0.8) \times 10^{-3}$ $\omega \omega$ Γ_{14} $\times 10^{-4}$ $\omega \phi$ < 2.5 90% Γ_{15} $f_{5}(1270) f_{5}(1270)$ (9.8 ± 2.5) $\times 10^{-3}$ (9.5 ± 3.2) $\times \, 10^{-3}$ Γ_{16} $f_{2}(1270) f'_{2}(1525)$ Γ_{17} $f_0(980)\eta$ seen Γ_{18} $f_0(1500)\eta$ seen Γ_{19} $f_0(2200)\eta$ seen Γ_{20} $a_0(980)\pi$ seen Γ_{21} $a_0(1320)\pi$ seen Γ₂₂ $a_0(1450)\pi$ seen Γ_{23} $a_0(1950)\pi$ seen Γ₂₄ $K_0^*(1430)K$ seen $\Gamma_{25} K_{2}^{*}(1430)\overline{K}$ seen $K_{0}^{*}(1950)\overline{K}$ Γ_{26} seen

$\eta_c(1S)$ DECAY MODES

Decays into stable hadrons

-			
I 27	$K K \pi$	$(7.3 \pm 0.4)\%$	
Г ₂₈	$KK\eta$	$(1.36\pm0.15)\%$	
Γ ₂₉	$\eta \pi^+ \pi^-$	(1.7 ± 0.6)%	
Γ ₃₀	$\eta 2(\pi^+\pi^-)$	(4.4 ± 1.6)%	
Γ ₃₁	$K^+ K^- \pi^+ \pi^-$	(6.6 ± 1.1) $ imes 10^{-3}$	
Γ ₃₂	$K^+ K^- \pi^+ \pi^- \pi^0$	(3.5 \pm 0.6)%	
Γ ₃₃	$K^0 K^- \pi^+ \pi^- \pi^+ + \text{c.c.}$	(5.6 ± 1.9)%	
Γ ₃₄	$K^+ K^- 2(\pi^+ \pi^-)$	$(7.5 \pm 2.4) \times 10^{-3}$	
Г ₃₅	$2(K^+K^-)$	$(1.43\pm0.30)\times10^{-3}$	
Г36	$\pi^{+}\pi^{-}\pi^{0}$	$< 5 \times 10^{-4}$	90%
Г37	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(4.7 ±1.4)%	
Γ ₃₈	$2(\pi^{+}\pi^{-})$	$(9.1 \pm 1.2) \times 10^{-3}$	
Γ30	$2(\pi^{+}\pi^{-}\pi^{0})$	(15.8 + 2.3) %	
Γ40	$3(\pi^+\pi^-)$	(1.7 + 0.4) %	
Γ ₄₁	\overline{D}	$(1.44\pm0.14) \times 10^{-3}$	
Γ ₄₁	$p \overline{p} \pi^0$	$(3.6 \pm 1.5) \times 10^{-3}$	
· 42 Γ ₄₂	$\Lambda\overline{\Lambda}$	$(1.06\pm0.23)\times10^{-3}$	
· 43 Γ ₄	$K^+ \overline{p} \Lambda + c c$	$(25 \pm 0.4) \times 10^{-3}$	
· 44 Глг	$\frac{1}{4}(1520) \Lambda + c c$	$(2.5 \pm 0.1) \times 10^{-3}$	
Γ45 Γ46	$\Sigma + \overline{\Sigma} -$	$(3.1 \pm 1.5) \times 10^{-3}$	
'40 Γ₄⊸	$\overline{=}-\overline{=}+$	$(2.1 \pm 0.0) \times 10^{-4}$	
Γ47	$\pi^+\pi^ \overline{n}$	$(5.3 \pm 2.1) \times 10^{-3}$	
• 48		$(5.5 \pm 2.1) \times 10$	
		Radiative decays	
Γ ₄₉	$\gamma \gamma$	$(1.61\pm0.12) imes10^{-4}$	
	Channe	(C) Devite (D)	
		conjugation (C), Parity (P), (C) , violating modes	
_	Lepton tami	ly number (LF) violating modes	
I 50	$\pi^+\pi^-$	$P, CP < 1.1 \times 10^{-4}$	90%
51 51	$\pi^{\circ}\pi^{\circ}$	$P, CP < 4 \times 10^{-5}$	90%
Γ ₅₂	K^+K^-	$P,CP < 6 \times 10^{-4}$	90%
Г ₅₃	KSKS	$P,CP < 3.1 \times 10^{-4}$	90%

CONSTRAINED FIT INFORMATION

An overall fit to the total width, 8 combinations of partial widths obtained from integrated cross section, and 19 branching ratios uses 93 measurements and one constraint to determine 13 parameters. The overall fit has a $\chi^2 = 117.8$ for 81 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta p_i \delta p_j \rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

<i>x</i> 7	16									
×15	3	5								
×27	18	35	6							
×28	9	17	3	47						
×31	10	18	3	21	10					
×35	7	13	2	21	10	8				
×38	12	22	4	25	12	14	10			
×41	11	20	4	27	13	12	10	15		
×43	3	5	1	6	3	3	2	4	23	
×49	-27	-51	_9	-59	-28	-32	-23	-38	-38	_9
Г	-1	-3	0	-3	$^{-1}$	-2	$^{-1}$	-2	6	1
	<i>x</i> 4	<i>x</i> 7	<i>x</i> ₁₅	×27	×28	×31	×35	×38	×41	_x 43
Г	-27									

	Mode	Rate (MeV)
Γ ₄	$K^*(892)\overline{K}^*(892)$	0.22 ±0.04
Γ ₇	$\phi \phi$	0.056 ± 0.006
Γ ₁₅	$f_2(1270) f_2(1270)$	0.31 ± 0.08
Г ₂₇	$K\overline{K}\pi$	2.32 ± 0.14
Γ ₂₈	$K\overline{K}\eta$	0.43 ± 0.05
Г ₃₁	$K^+ K^- \pi^+ \pi^-$	0.210 ± 0.035
Г ₃₅	$2(K^+K^-)$	0.046 ± 0.010
Г ₃₈	$2(\pi^{+}\pi^{-})$	0.29 ± 0.04
Γ ₄₁	р Р	0.046 ± 0.005
Г ₄₃	$\Lambda\overline{\Lambda}$	0.034 ±0.008
Г ₄₉	$\gamma \gamma$	$0.00515 \!\pm\! 0.00035$

$\eta_c(1S)$ PARTIAL WIDTHS

$\Gamma(\gamma \gamma)$				Г ₄₉
VALUE (keV)	EVTS	DOCUMENT ID	TECN	COMMENT
$5.15\pm~0.35~{ m OUR}~{ m F}$	IT			
• • • We do not use	the follow	ving data for average	es, fits, limits	s, etc. ● ● ●
$5.8~\pm~1.1$	486	¹ ZHANG	12A BELL	$e^+e^{-} \rightarrow$
$5.2 \pm 1.2 27 5.5 \pm 1.2 \pm 1.815 7.4 \pm 0.4 \pm 2.3 13.9 \pm 2.0 \pm 3.0 3.8 \pm 1.1 \pm 1.9$	73 ± 43 57 ± 33 41 190	^{2,3} AUBERT ⁴ KUO ⁵ ASNER ⁶ ABDALLAH ⁷ AMBROGIANI	 06E BABR 05 BELL 04 CLEO 03J DLPH 03 E835 	$e^{+}e^{-}\eta'\pi^{+}\pi^{-}$ $B^{\pm} \rightarrow K^{\pm}X_{c\overline{c}}$ $\gamma\gamma \rightarrow p\overline{p}$ $\gamma\gamma \rightarrow \eta_{c} \rightarrow K^{0}_{S}K^{\pm}\pi^{\mp}$ $\gamma\gamma \rightarrow \eta_{c}$ $\overline{p}p \rightarrow \eta_{c} \rightarrow \gamma\gamma$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	76	^{5,8} BRANDENB ⁹ ACCIARRI	00в CLE2 99т L3	$ \begin{array}{l} \gamma\gamma \rightarrow \eta_{c} \rightarrow K^{\pm}K_{S}^{0}\pi^{\mp} \\ e^{+}e^{-} \rightarrow e^{+}e^{-}\eta_{c} \end{array} $
https://pdg.lbl.go	v	Page 6	C	reated: $6/1/2021$ 08:30

27	± 16	± 10	5	⁵ SHIRAI	98	AMY	58 e^+e^-
6.7	$+ 2.4 \\ - 1.7$	\pm 2.3		⁴ ARMSTRONG	95F	E760	$\overline{p} p \rightarrow \gamma \gamma$
11.3	± 4.2			¹⁰ ALBRECHT	94H	ARG	$e^+e^- \rightarrow e^+e^-\eta_c$
8.0	\pm 2.3	\pm 2.4	17	¹¹ ADRIANI	93N	L3	$e^+e^- \rightarrow e^+e^-\eta_c$
5.9	$^{+\ 2.1}_{-\ 1.8}$	\pm 1.9		⁷ CHEN	90 B	CLEO	$e^+e^- \rightarrow e^+e^-\eta_c$
6.4	$^{+}_{-} \begin{array}{c} 5.0 \\ - \\ 3.4 \end{array}$			¹² AIHARA	88D	ТРС	$e^+e^- \rightarrow e^+e^- X$
4.3	$^{+}_{-} 3.4$	± 2.4		⁴ BAGLIN	87 B	SPEC	$\overline{p} p ightarrow \gamma \gamma$
28	± 15			^{5,13} BERGER	86	PLUT	$\gamma \gamma \rightarrow K \overline{K} \pi$
1							

¹Assuming there is no interference with the non-resonant background.

² Calculated by us using $\Gamma(\eta_c \rightarrow K\overline{K}\pi) \times \Gamma(\eta_c \rightarrow \gamma\gamma) / \Gamma = 0.44 \pm 0.05$ keV from PDG 06 and $B(\eta_c \rightarrow K\overline{K}\pi) = (8.5 \pm 1.8)\%$ from AUBERT 06E.

³Systematic errors not evaluated.

⁴ Normalized to B($\eta_c \rightarrow p\overline{p}$)= (1.3 ± 0.4) × 10⁻³.

⁵ Normalized to $B(\eta_c \rightarrow K^{\pm} K^0_S \pi^{\mp}).$

⁶Average of $K_S^0 K^{\pm} \pi^{\mp}$, $\pi^+ \pi^- K^+ K^-$, and $2(K^+ K^-)$ decay modes.

⁷ Normalized to the sum of B($\eta_c \rightarrow \ \kappa^{\pm} \kappa_S^0 \pi^{\mp}$), B($\eta_c \rightarrow \ \kappa^{+} \kappa^{-} \pi^{+} \pi^{-}$), and B($\eta_c \rightarrow \ \kappa^{+} \kappa^{-} \pi^{+} \pi^{-}$), and B($\eta_c \rightarrow \ \kappa^{+} \kappa^{-} \pi^{+} \pi^{-}$), and B($\eta_c \rightarrow \ \kappa^{+} \kappa^{-} \pi^{+} \pi^{-}$), and B($\eta_c \rightarrow \ \kappa^{+} \kappa^{-} \pi^{+} \pi^{-}$), and B($\eta_c \rightarrow \ \kappa^{+} \kappa^{-} \pi^{+} \pi^{-}$), and B($\eta_c \rightarrow \ \kappa^{+} \kappa^{-} \pi^{+} \pi^{-}$), and B($\eta_c \rightarrow \ \kappa^{+} \kappa^{-} \pi^{+} \pi^{-}$), and B($\eta_c \rightarrow \ \kappa^{+} \kappa^{-} \pi^{+} \pi^{-}$), and B($\eta_c \rightarrow \ \kappa^{+} \kappa^{-} \pi^{+} \pi^{-}$), and B($\eta_c \rightarrow \ \kappa^{+} \kappa^{-} \pi^{+} \pi^{-}$), and B($\eta_c \rightarrow \ \kappa^{+} \kappa^{-} \pi^{+} \pi^{-}$), and B($\eta_c \rightarrow \ \kappa^{+} \kappa^{-} \pi^{+} \pi^{-}$), and B($\eta_c \rightarrow \ \kappa^{+} \kappa^{-} \pi^{+} \pi^{-} \pi^{-}$), and B($\eta_c \rightarrow \ \kappa^{+} \kappa^{-} \pi^{+} \pi^{-} \pi^{-})$, and B($\eta_c \rightarrow \ \kappa^{+} \kappa^{-} \pi^{+} \pi^{-} \pi^{-}$ $2\pi^+ 2\pi^-$).

⁸ Superseded by ASNER 04.

⁹ Normalized to the sum of 9 branching ratios. ¹⁰ Normalized to the sum of $B(\eta_c \rightarrow \kappa^{\pm} \kappa_S^0 \pi^{\mp})$, $B(\eta_c \rightarrow \phi \phi)$, $K^+ K^- \pi^+ \pi^-$), and $B(\eta_c \to 2\pi^+ 2\pi^-)$.

¹¹ Superseded by ACCIARRI 99T.

¹²Normalized to the sum of $B(\eta_c \rightarrow K^{\pm}K_S^0\pi^{\mp})$, $B(\eta_c \rightarrow 2K^{+}2K^{-})$, $B(\eta_c \rightarrow K^{\pm}K_S^{-}\pi^{\mp})$ $K^+ K^- \pi^+ \pi^-$), and $B(\eta_c \to 2\pi^+ 2\pi^-)$.

¹³ Re-evaluated by AIHARA 88D.

$\eta_c(1S) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(\text{total})$

$\Gamma(\eta'(958)\pi\pi) \times$	$\Gamma(\gamma\gamma)/\Gamma$	total					Γ ₁ Γ ₄₉ /Γ
VALUE (eV)	EVTS	DOCUMENT I	D	TECN	СОМ	MENT	
98.1±3.9±11.7	2673	XU	18	BELL	. e+e	$^{-} \rightarrow$	$e^+e^-\eta'\pi^+\pi^-$
• • • We do not us	e the follow	ving data for av	verages, f	fits, lin	nits, eto	c. • • •	•
$75.8^{+6.3}_{-6.2}\pm$ 8.4	486	¹ ZHANG	12A	BELL	. e ⁺ e	$e^- \rightarrow e^-$	$e^+e^-\eta'\pi^+\pi^-$
1 Superseded by $ angle$	KU 18.						
$\Gamma(\rho\rho) \times \Gamma(\gamma\gamma)$	/Γ _{total}						Г ₂ Г ₄₉ /Г
VALUE (eV)	CL% EVT	TS DOCUI	MENT ID		TECN	COMN	1ENT
• • • We do not us	e the follow	ving data for av	verages, f	fits, lin	nits, eto	. • • •	
<39	90 < 155	6 UEHA	RA	08	BELL	$\gamma \gamma$ –	$\rightarrow 2(\pi^+\pi^-)$
Γ(<i>K</i> *(892) <i>K</i> *(89	92)) × Г($(\gamma\gamma)/\Gamma_{total}$					Γ ₄ Γ ₄₉ /Γ
VALUE (eV)	EV	TS DOCUM	ENT ID	7	TECN	COMME	NT
36 ± 6 OUR FIT	•						
32.4±4.2±5.8	882 ± 11	.5 UEHAI	RA	08 E	BELL	$\gamma \gamma \rightarrow$	$\pi^+\pi^-K^+K^-$
https://pdg.lbl.g	ov	Page 7			Creat	ed: 6/	1/2021 08:30

 $\Gamma(\phi\phi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_7\Gamma_{AQ}/\Gamma$ VALUE (eV) DOCUMENT ID EVTS TECN COMMENT 9.0 \pm 0.8 OUR FIT 12B BELL $\gamma \gamma \rightarrow 2(K^+K^-)$ $7.75 \pm 0.66 \pm 0.62$ $386\,\pm\,31$ 1_{110} • • • We do not use the following data for averages, fits, limits, etc. • • • $6.8 \pm 1.2 \pm 1.3$ $132\,\pm\,23$ UEHARA 08 BELL $\gamma \gamma \rightarrow 2(K^+K^-)$ ¹Supersedes UEHARA 08. Using B($\phi \rightarrow K^+K^-$) = (48.9 ± 0.5)%. $\Gamma(\omega\omega) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_{13}\Gamma_{49}/\Gamma$ DOCUMENT ID VALUE (eV) TECN COMMENT EVTS 12B BELL $\gamma \gamma \rightarrow 2(\pi^+ \pi^- \pi^0)$ 85 ± 29 1 LIU $8.67 \pm 2.86 \pm 0.96$ ¹ Using B($\omega \rightarrow \pi^+ \pi^- \pi^0$) = (89.2 ± 0.7)%. $\Gamma(\omega\phi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_{14}\Gamma_{49}/\Gamma$ TECN COMMENT VALUE (eV) CL% DOCUMENT ID \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet 90 1 LIU12B BELL $\gamma \gamma \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$ < 0.49 ¹Using B($\phi \rightarrow K^+K^-$) = (48.9 ± 0.5)% and B($\omega \rightarrow \pi^+\pi^-\pi^0$) = (89.2 ± 0.7)%. $\Gamma(f_2(1270)f_2(1270)) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_{15}\Gamma_{49}/\Gamma$ VALUE (eV) DOCUMENT ID TECN COMMENT EVTS 50±13 OUR FIT 08 BELL $\gamma \gamma \rightarrow 2(\pi^+ \pi^-)$ **UEHARA** $69 \pm 17 \pm 12$ 3182 ± 766 $\Gamma(f_2(1270)f'_2(1525)) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_{16}\Gamma_{49}/\Gamma$ DOCUMENT ID VALUE (eV) TECN COMMENT EVTS 08 BELL $\gamma \gamma \rightarrow \pi^+ \pi^- \kappa^+ \kappa^ 49 \pm 9 \pm 13$ 1128 ± 206 **UEHARA** $\Gamma(K\overline{K}\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_{27}\Gamma_{49}/\Gamma$ VALUE (keV) DOCUMENT ID TECN COMMENT CL% EVTS 0.374±0.021 OUR FIT 0.407±0.027 OUR AVERAGE Error includes scale factor of 1.2. BABR 10.6 $e^+e^- \rightarrow e^+e^- K_S^0 K^{\pm}\pi^{\mp}$ ¹LEES $0.374 \pm 0.009 \pm 0.031$ 14k 10 04 CLEO $\gamma \gamma \rightarrow \eta_{c} \rightarrow K_{S}^{0} K^{\pm} \pi^{\mp}$ 03 DLPH $\gamma \gamma \rightarrow K_{S}^{0} K^{\pm} \pi^{\mp}$ 98 AMY $\gamma \gamma \rightarrow \eta_{c} \rightarrow K^{\pm} K_{S}^{0} \pi^{\mp}$ 94H ARG $\gamma \gamma \rightarrow K^{\pm} K_{S}^{0} \pi^{\mp}$ ^{2,3} ASNER $0.407 \pm 0.022 \pm 0.028$ ^{3,4} ABDALLAH $0.60\ \pm 0.12\ \pm 0.09$ 41 ³ SHIRAI $1.47 \pm 0.87 \pm 0.27$ ³ ALBRECHT 0.84 ± 0.21 $0.60 \begin{array}{c} +0.23 \\ -0.20 \end{array}$ 90B CLEO $\gamma \gamma \rightarrow \eta_{c} \kappa^{\pm} \kappa^{0}_{S} \pi^{\mp}$ ³ CHEN ³ BRAUNSCH... 89 TASS $\gamma \gamma \rightarrow \kappa \overline{\kappa} \pi$ $1.06 \pm 0.41 \pm 0.27$ 11 $^{+0.60}_{-0.45}$ 7 ³ BERGER 86 PLUT $\gamma \gamma \rightarrow K \overline{K} \pi$ ± 0.3 1.5• • • We do not use the following data for averages, fits, limits, etc. • • • ⁵ DEL-AMO-SA..11M BABR $\gamma \gamma \rightarrow \ \kappa_{S}^{0} \kappa^{\pm} \pi^{\mp}$ 12k $0.386 \pm 0.008 \pm 0.021$ ^{3,6} BRANDENB... 00B CLE2 $\gamma \gamma \rightarrow \eta_c \rightarrow \kappa^{\pm} \kappa_S^0 \pi^{\mp}$ $0.418 \pm 0.044 \pm 0.022$

<0.63	95	³ BEHREND	89 CELL	$\gamma \gamma \rightarrow K^0_S K^{\pm} \pi^{\mp}$
<4.4	95	ALTHOFF	85b TASS	$\gamma \gamma \rightarrow K \overline{K} \pi$

¹ From the corrected and unfolded mass spectrum. ² Calculated by us from the value reported in ASNER 04 that assumes $B(\eta_c \rightarrow K\overline{K}\pi)$ = 5.5 ± 1.7% ³ We have multiplied $K^{\pm}K_S^0\pi^{\mp}$ measurement by 3 to obtain $K\overline{K}\pi$. ⁴ Calculated by us from the value reported in ABDALLAH 03J, which uses $B(\eta_c \rightarrow K_S^0K^{\pm}\pi^{\mp}) = (1.5 \pm 0.4)\%$.

 5 Not independent from the measurements reported by LEES 10.

⁶Superseded by ASNER 04.

Г(<i>k</i>	(+/	K -	$\pi^+\pi^-$	$) \times \Gamma(\gamma \gamma)$	/Γ _{total}					Г ₃₁ Г ₄₉ /Г
VALU	/ <i>E</i> (e'	V)		EV	<u>-</u> - <u>S</u>	OCUMENT IL	>	TECN	COMMENT	
34	±	5	OUR	FIT						
27	±	6	OUR	AVERAGE						
25.	$7\pm$	3.1	2 ± 4.9	$9 2019 \pm 24$	-8 U	EHARA	08	BELL	$\gamma \gamma \rightarrow \pi^+$	$\pi^- K^+ K^-$
280	±	100	± 60	4	2 ¹ A	BDALLAH	03J	DLPH	$\gamma \gamma \rightarrow \pi^+$	$\pi^- K^+ K^-$
170	±	80	± 20	13.9 ± 6	6 A	LBRECHT	94H	ARG	$\gamma \gamma \rightarrow \pi^+$	$\pi^- K^+ K^-$
1	Calc π+1	ulat π [—] P	ed by K ⁺ K ⁻	us from the) $=$ (2.0 \pm	value re 0.7)%.	ported in A	ABDAL	LAH 03	3J, which u	ses B($\eta_{\mathcal{C}} \rightarrow$
Г(/	(+)	K -	$\pi^+\pi^-$	⁻ π ⁰) × Γ	$(\gamma \gamma) / \Gamma_{t}$	otal				Г ₃₂ Г ₄₉ /Г

) (/				JZ .	Ŧ <i>J </i>
VALUE (keV)	EVTS	DOCUMENT ID	TECN	COMMENT		
• • • We do not use	the followin	g data for averages, fi	ts, limits	s, etc. ● ● ●		
$0.190 \!\pm\! 0.006 \!\pm\! 0.028$	11k	¹ DEL-AMO-SA11M	BABR	$\gamma \gamma \rightarrow K^+ K^- \pi$	$+\pi$	$-\pi^0$
¹ Not independent f	rom other i	measurements reported	l in DEL	-AMO-SANCHEZ	11M	۱.

$\Gamma(2(K^+K^-)) \times \Gamma$		Г ₃₅ Г ₄₉ /Г				
VALUE (eV)	EVTS	DOCUMENT ID		TECN	COMME	NT
7.3 \pm 1.5 OUR FIT						
5.8 \pm 1.9 OUR AVE	RAGE					
$5.6\pm$ $1.1\pm$ 1.6	216 ± 42	UEHARA	08	BELL	$\gamma \gamma \rightarrow$	$2(K^+K^-)$
$350 \pm 90 \pm 60$	46	¹ ABDALLAH	03J	DLPH	$\gamma \gamma \rightarrow$	$2(K^+K^-)$
$231 \hspace{.1in} \pm 90 \hspace{.1in} \pm 23$	9.1 ± 3.3	² ALBRECHT	94H	ARG	$\gamma\gamma\rightarrow$	$2(K^+K^-)$
1 Calculated by us f	rom the value	reported in ABDA	LLAF	1 03J, v	vhich us	es B $(\eta_{c} \rightarrow)$

 $2(K^+ K^-) = (2.1 \pm 1.2)\%.$ ² Includes all topological modes except $\eta_c \rightarrow \phi \phi$.

$\Gamma(2(\pi^+\pi^-)) \times \Gamma($	$(\gamma \gamma) / \Gamma_{total}$			Г ₃₈ Г ₄₉ /Г
VALUE (eV)	EVTS	DOCUMENT ID	TECN	COMMENT
47 \pm 6 OUR FIT				
42 \pm 6 OUR AVE	RAGE			
$40.7 \pm \ 3.7 \pm \ 5.3$	5381 ± 492	UEHARA	08 BELL	$\gamma \gamma \rightarrow 2(\pi^+ \pi^-)$
$180 \pm 70 \pm 20$	21.4 ± 8.6	ALBRECHT	94h ARG	$\gamma \gamma \rightarrow 2(\pi^+ \pi^-)$

$\Gamma(p\overline{p}) \times \Gamma(\gamma\gamma)/\Gamma_{t}$	otal				Г ₄₁	Γ ₄₉ /Γ
VALUE (eV)	EVTS	DOCUMENT ID		TECN	COMMENT	
7.4 \pm 0.7 OUR FIT						
$7.20 \pm 1.53 \substack{+0.67 \\ -0.75}$	157 ± 33	1 KUO	05	BELL	$\gamma \gamma \rightarrow p \overline{p}$	
$\bullet \bullet \bullet$ We do not use the	ne following dat	a for averages, fi	ts, lim	its, etc.	• • •	
$4.6 \begin{array}{c} +1.3 \\ -1.1 \end{array} \pm 0.4$	190	¹ AMBROGIAN	II 03	E835	$\overline{p}p \rightarrow \gamma\gamma$	
$8.1 \begin{array}{c} +2.9 \\ -2.0 \end{array}$		¹ ARMSTRON	G 95F	E760	$\overline{p}p \rightarrow \gamma \gamma$	

 $^1\,\mathrm{Not}$ independent from the $\mathrm{\Gamma}_{\gamma\,\gamma}$ reported by the same experiment.

$\Gamma(K_S^0 K_S^0) \times \Gamma(K_S^0)$	$\gamma\gamma)/\Gamma_{total}$				Г ₅₃ Г ₄₉	<u>م/و</u>
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT	
<1.6	90	¹ UEHARA	13	BELL	$\gamma \gamma \rightarrow \kappa^0_S \kappa^0_S$	
• • • We do not us	e the following	g data for average	s, fits,	limits,	etc. • • •	
<0.29	90	² UEHARA	13	BELL	$\gamma\gamma ightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
1	. ·	5.1 . I				

¹ Taking into account interference with the non-resonant continuum.

 2 Neglecting interference with the non-resonant continuum.

$\eta_c(1S)$ BRANCHING RATIOS

— HADRONIC DECAYS -

$\Gamma(\eta'(958)\pi\pi)/\Gamma_{total}$	l				Г1/Г
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
0.041 ± 0.017	14	¹ BALTRUSAIT86	MRK3	$J/\psi ightarrow \eta_{C} \gamma$	

¹ The quoted branching ratios use B($J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)$) = 0.0127 \pm 0.0036.

$\Gamma(\rho \rho) / \Gamma_{\text{total}}$						Γ ₂ /Γ
VALUE (units 10^{-3})	CL% EVTS	DOCUMENT ID		TECN	COMMEN	T
18 ± 5 OUR	AVERAGE					
$12.6 \pm \ 3.8 \pm 5.1$	72	¹ ABLIKIM	05L	BES2	$J/\psi ightarrow$	$\pi^+\pi^-\pi^+\pi^-\gamma$
$26.0 \pm 2.4 \pm 8.8$	113	¹ BISELLO	91	DM2	$J/\psi \rightarrow$	$\gamma \rho^{0} \rho^{0}$
$23.6\!\pm\!10.6\!\pm\!8.2$	32	¹ BISELLO	91	DM2	$J/\psi \rightarrow$	$\gamma \rho^+ \rho^-$
• • • We do not	use the followin	ng data for average	es, fits	, limits,	etc. • •	•
<14	90	¹ BALTRUSAIT	86	MRK3	$J/\psi ightarrow$	$\eta_{c}\gamma$

¹ The quoted branching ratios use $B(J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)) = 0.0127 \pm 0.0036$. Where relevant, the error in this branching ratio is treated as a common systematic in computing averages.

$\Gamma(K^*(892)^0 K^- \pi^+ + \text{c.c.}) / \Gamma_{\text{total}}$					
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
0.02±0.007	63	1,2 BALTRUSAIT86	MRK3	$J/\psi \rightarrow \eta_{C} \gamma$	

¹BALTRUSAITIS 86 has an error according to Partridge. ²The quoted branching ratios use $B(J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)) = 0.0127 \pm 0.0036$.

https://pdg.lbl.gov

Г(<i>K</i> *(892) К *(8	892))/Γ _{tot}	al			Г ₄ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
69±13 OUR FIT 91±26 OUR AVE	RAGE				
$108 \!\pm\! 25 \!\pm\! 44$	60	¹ ABLIKIM	05L	BES2	$J/\psi \rightarrow K^+ K^- \pi^+ \pi^- \gamma$
$82 \pm 28 \pm 27$	14	^I BISELLO	91	DM2	$e^+e^- \rightarrow \gamma K^+ K^- \pi^+ \pi^-$
90 ± 50	9	BALTRUSAIT.	. 86	MRK3	$J/\psi \rightarrow \eta_{c} \gamma$
I he quoted bra relevant, the er averages.	ror in this br	os use B $(J/\psi(1S))$ ranching ratio is tr	ightarrow ightarroweated	$\gamma \eta_{C}(1S)$ as a com	$)=0.0127\pm0.0036$. Where mon systematic in computing
Γ(<i>K</i> *(892) ⁰ <i>K</i> *((892) ⁰ π^+	$\pi^{-})/\Gamma_{total}$			Г ₅ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
$113 \pm 47 \pm 24$	45	¹ ABLIKIM	06A	BES2	$J/\psi \rightarrow K^{*0}\overline{K}^{*0}\pi^+\pi^-\gamma$
¹ ABLIKIM 064	A reports	$[\Gamma(\eta_{c}(1S) \rightarrow$	<i>K</i> *	(892) ⁰ 7	$\overline{K}^*(892)^0 \pi^+ \pi^-)/\Gamma_{\text{total}}] \times$
$[B(J/\psi(1S) ightarrow]$	$\gamma \eta_{c}(1S)$	$] = (1.91 \pm 0.64)$	4 ± 0	.48) × 1	0^{-4} which we divide by our
best value B(J experiment's er	$\psi/\psi(1S) ightarrow \psi(1S)$ $ ightarrow$ fror and our	$\gamma \eta_{\mathcal{C}}(1S)) = (1 \text{ second error is the})$	$.7 \pm 0$ e syste	0.4) imes 1ematic e	0^{-2} . Our first error is their rror from using our best value.
$\Gamma(\phi K^+ K^-)/\Gamma_t$	otal				Г ₆ /Г
VALUE (units 10^{-3})	EVTS	DOCUMENT	' ID	TEC	N COMMENT
$2.9^{+0.9}_{-0.8}\pm1.1$	$14.1^{+4.4}_{-3.7}$	¹ HUANG	(03 BEL	L $B^+ \to (\phi K^+ K^-) K^+$
1 Using B(B^+ –	$\rightarrow \eta_{c} K^{+}$)	$=$ (1.25 \pm 0.12 $^+$	0.10 0.12)	$\times 10^{-3}$	from FANG 03 and $\mathrm{B}(\eta_{\textit{C}} \rightarrow$
$K\overline{K}\pi) = (5.5$	\pm 1.7) $ imes$ 10	$^{-2}$.			
$\Gammaig(\phi\phiig)/\Gamma_{ ext{total}}$					Γ ₇ /Γ
$\frac{VALUE \text{ (units } 10^{-4})}{17.4 \pm 1.9 \text{ OUR E}}$	EVTS	DOCUMENT ID		TECN	COMMENT
28 ± 4 OUR A	VERAGE				
$26 \begin{array}{rrr} + & 4 \\ - & 8 \end{array} \pm \ 5$	1.2k	¹ ABLIKIM	17P	BES3	$J/\psi \rightarrow K^+ K^- K^+ K^- \gamma$
$25.3 \pm \ 5.1 \pm \ 9.1$	72	² ABLIKIM	05L	BES2	$J/\psi \rightarrow K^+ K^- K^+ K^- \gamma$
26 ± 9	357	² BAI	04	BES	$J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$
$31 \pm 7 \pm 10$	19	² BISELLO	91	DM2	$J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$
$30 \begin{array}{c} + 10 \\ -12 \end{array} \pm 10$	5	² BISELLO	91	DM2	$J/\psi \rightarrow \gamma K^+ K^- K^0_S K^0_L$
74 ± 18 ± 24	80	² BAI	90 B	MRK3	$J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$
67 $\pm 21 \pm 24$		² BAI	90 B	MRK3	$J/\psi \rightarrow \gamma K^+ K^- K^0_S K^0_L$
• • We do not u	ise the follow	wing data for aver	ages,	fits, lim	ts, etc. ● ● ●
$18 \begin{array}{rrr} + & 8 \\ - & 6 \end{array} \pm \ 7$	7	³ HUANG	03	BELL	$B^+ ightarrow (\phi \phi) \ K^+$
¹ ABLIKIM 17P	reports [$\Gamma($	$\eta_{c}(1S) \rightarrow \phi \phi$	/Γ _{tota}] × [E	$B(J/\psi(1S) \rightarrow \gamma \eta_{c}(1S))] =$
$(4.3 \pm 0.5 {+0.1} {-1})$	$(5) \times 10^{-5}$	which we divide b	y our	best va	lue $B(J/\psi(1S) \rightarrow \gamma \eta_{c}(1S))$
$= (1.7 \pm 0.4)$	× 10 ⁻² . Οι	ır first error is thei	ir expe	eriment'	s error and our second error is
the systematic	error from u	using our best valu	ue.		
I he quoted brack relevant the er	anching rations for the second s	os use B $(J/\psi(1S))$	ightarrow ightarrow	$\gamma \eta_{c}(15)$	$) = 0.0127 \pm 0.0036$. Where mon systematic in computing
averages.			0 10		
³ Using B(B^+ –	$\rightarrow \eta_{c} K^{+}$)	$=(1.25\pm0.12^+)$	(0.10) (0.12)	$\times 10^{-3}$	from FANG 03 and ${\rm B}(\eta_{\it C}$ \rightarrow
$K\overline{K}\pi) = (5.5$	\pm 1.7) $ imes$ 10	$^{-2}$.			

https://pdg.lbl.gov Page 11

$\Gamma(\phi\phi)/\Gamma(K\overline{K}\pi)$						Γ ₇ /Γ ₂₇
VALUE 0.0240+0.0025 OUR FI	<u>EVTS</u>	DOCUMENT ID		TECN	<u>COMMEN</u>	T
0.044 + 0.012 OUR A	VERAGE					
			040	DVDD	в± 、	κ±m
$0.033 \pm 0.014 \pm 0.003$	7		040		$B \rightarrow B^+$	κ^{+}
$0.032 - 0.010 \pm 0.009$	1		05	DELL	$D \rightarrow$	$\kappa - \phi \phi$
¹ Using B($B^+ \rightarrow \eta_c$ $K\overline{K}\pi$) = (5.5 ± 1.7	$(K^+) =$ 7) × 10 ⁻	$(1.25 \pm 0.12 {+0.10} {-0.12} {2} {-0.12}$	$) \times 10$	0 ^{—3} froi	m FANG	03 and B($\eta_{C} \rightarrow$
$\Gamma(\phi\phi)/\Gamma(p\overline{p})$						Γ ₇ /Γ ₄₁
VALUE EV	<u>/TS</u>	DOCUMENT ID	TECN	COMM	IENT	_
1.79±0.14±0.32 6.	4k ¹	AAIJ 17BB	LHCB	$pp \rightarrow$	$b\overline{b}X =$	$\rightarrow 2(K^+K^-)X$
¹ Using inputs from A	AIJ 15AS	5 and AAIJ 15BI and	d Г(<i>b</i>	$\rightarrow J/\psi$	(1S)anyt	hing))/ $\Gamma_{total} =$
$(1.16\pm0.10)\%$ and	$\Gamma(J/\psi(1))$	$S) \rightarrow p \overline{p} / \Gamma_{\text{total}} =$	= (2.12	20 ± 0.02	29)×10	³ from PDG 16.
$\Gamma(\phi 2(\pi^+\pi^-))/\Gamma_{\rm tota}$	al					Г ₈ /Г
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMEN	T
<40	90	¹ ABLIKIM	06A	BES2	$J/\psi ightarrow$	$\phi 2(\pi^+\pi^-)\gamma$
< 0.603×10^{-4} where 10^{-2} .	hich we d	livide by our best v	alue B	$S(J/\psi(1S))$	$(5) \rightarrow \gamma \eta$	$F_c(1S)) = 1.7 \times$
$\Gamma(a_0(980)\pi)/\Gamma_{\text{total}}$	CI %	DOCUMENT ID		TECN	COMMEN	۲₉/۲
<0.02	<u>90</u>	^{1,2} BALTRUSAIT	86	MRK3	$\frac{CONNER}{J/\psi} \rightarrow$	$\frac{1}{n-\gamma}$
¹ The quoted branchin	ng ratios	use B($J/\psi(1S) ightarrow$	$\gamma \eta_{c}($	(15)) =	0.0127 ±	0.0036.
² We are assuming B(a ₀ (980)	$\rightarrow \eta \pi$) >0.5.				
$\Gamma(a_2(1320)\pi)/\Gamma_{total}$	1					Г ₁₀ /Г
VALUE		DOCUMENT ID		TECN	COMMEN	 T
<0.02	90	¹ BALTRUSAIT	86	MRK3	$J/\psi ightarrow$	$\eta_{\textit{C}}\gamma$
1 The quoted branching	ng ratios	use B($J/\psi(1S) ightarrow$	$\gamma \eta_{c}($	(15)) =	0.0127 \pm	0.0036.
$\Gamma(K^*(892)\overline{K}+c.c.)$	/Γ _{total}					Г ₁₁ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMEN	T
<0.0128	90	BISELLO	91	DM2	$J/\psi ightarrow$	$\gamma K^0_S K^{\pm} \pi^{\mp}$
<0.0132	90	¹ BISELLO	91	DM2	$J/\psi ightarrow$	$\gamma K^+ K^- \pi^0$
1 The quoted branchi	ng ratios	use B($J/\psi(1S)$ $ ightarrow$	$\gamma \eta_{c}($	(1S)) =	$0.0127 \pm$	0.0036.
$\Gamma(f_2(1270)\eta)/\Gamma_{total}$						Г ₁₂ /Г
VALUE	CL A/	DOCUMENT ID		TECN	COMMEN	-
	<u>CL%</u>	DOCOMENT ID		1201	COMMEN	1
<0.011	90	¹ BALTRUSAIT	86	MRK3	$J/\psi \rightarrow$	$\eta_{c}\gamma$
<0.011 ¹ The quoted branching	90 90 ng ratios	1 BALTRUSAIT use B($J/\psi(1S) \rightarrow$	86 γη _c ($\frac{1}{(1S)} =$	$J/\psi \rightarrow$ 0.0127 ±	η _c γ 0.0036.

$\Gamma(\omega\omega)/\Gamma_{total}$						Г ₁₃ /Г
VALUE (units 10^{-3})	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
$2.9 \pm 0.5 \pm 0.6$		1705	¹ ABLIKIM	19AV	BES3	$J/\psi \rightarrow \gamma \omega \omega$
$\bullet \bullet \bullet$ We do not	use tl	ne following	g data for average	s, fits	, limits,	etc. • • •
<6.3	90		² ABLIKIM	05L	BES2	$J/\psi \rightarrow 2(\pi^+\pi^-\pi^0)\gamma$
<6.3	90		² BISELLO	91	DM2	$J/\psi \rightarrow \gamma \omega \omega$
<3.1	90		² BALTRUSAIT	.86	MRK3	$J/\psi \rightarrow \eta_{c} \gamma$
¹ ABLIKIM 19/	AV rep	orts [$\Gamma(\eta_c$	$(1S) \rightarrow \omega \omega) / \Gamma_{\rm t}$	otal]	$\times [B(J)]$	$\psi(1S) \rightarrow \gamma \eta_{c}(1S))] =$
$(4.90\pm0.17$ =	± 0.77	$) \times 10^{-5}$ m	hich we divide by	our be	est value	$B(J/\psi(1S) \to \gamma \eta_{c}(1S))$
$= (1.7 \pm 0.4)$	$) \times 10^{-1}$	⁻² . Our fi	rst error is their e×	perim	ent's er	ror and our second error is
the systemati	c erro	r from usin	g our best value.,			
² The quoted b	ranch	ing ratios ι	use B($J/\psi(1S) ightarrow$	$\gamma \eta_{C}$	(1S)) =	0.0127 \pm 0.0036. Where

² The quoted branching ratios use $B(J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)) = 0.0127 \pm 0.0036$. Where relevant, the error in this branching ratio is treated as a common systematic in computing averages.

$\Gamma(\omega\phi)/\Gamma_{total}$					Γ _{14/}	/Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$< 2.5 \times 10^{-4}$	90	¹ ABLIKIM	17 P	BES3	$J/\psi \rightarrow \pi^+ \pi^- \pi^0 K^+ K^-$	γ
\bullet \bullet \bullet We do not	use the fo	llowing data for ave	erages	, fits, lin	nits, etc. • • •	
$< 17 \times 10^{-4}$	90	² ABLIKIM	05L	BES2	$J/\psi \rightarrow \pi^+ \pi^- \pi^0 K^+ K^-$	γ
¹ Using B(J/ψ	$\rightarrow \gamma \eta_{c})$	$= 0.017 \pm 0.004.$				

² The quoted branching ratios use B($J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)$) = 0.0127 ± 0.0036.

$\Gamma(f_2(1270) f_2(127))$	70))/Г _{total}				Г ₁₅ /Г
VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN	COMMENT	
0.98±0.25 OUR FI	т				
$0.77^{+0.25}_{-0.30}{\pm}0.17$	91.2 ± 19.8	¹ ABLIKIM	04M BES	$J/\psi ightarrow \gamma 2\pi$	$\tau^{+}2\pi^{-}$
¹ ABLIKIM 04M	reports $[\Gamma(\eta_{C}(1,$	$S) \rightarrow f_2(1270) f_2$	2(1270))/Γ _{to}	$_{\rm tal}] \times [{\rm B}(J/\eta)]$	$\psi(1S) \rightarrow$
$\gamma \eta_c(1S))] = (1$	$.3 \pm 0.3^{+0.3}_{0.4}) \times$	10^{-4} which we di	vide by our b	est value $B(J/$	$\psi(1S) \rightarrow$

 $\gamma \eta_c(15)) = (1.5 \pm 0.5 - 0.4) \times 10^{-10}$ Which we divide by our best value $B(J/\psi(15) \rightarrow \gamma \eta_c(15)) = (1.7 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(f_0(980)\eta)/\Gamma_{total}$	DOCUMENT ID		<u>TECN</u>	Г₁₇/Г
seen	LEES	14E	BABR	Dalitz anal. of $\eta_{\rm C} \rightarrow \ {\rm K}^+ {\rm K}^- \eta$
$\Gamma(f_0(1500)\eta)/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	Г₁₈/Г
seen	LEES	14E	BABR	Dalitz anal. of $\eta_c \rightarrow K^+ K^- \eta$
$\Gamma(f_0(2200)\eta)/\Gamma_{total}$	<u>DOCUMENT ID</u>	1/⊏	<u>TECN</u>	$\frac{\Gamma_{19}/\Gamma}{\Gamma_{19}}$
$\frac{\Gamma(a_0(980)\pi)}{\Gamma_{\text{total}}}$	DOCUMENT ID	14E F	<u>TECN</u>	Γ_{20}/Γ
https://pdg.lbl.gov	Page	13		Created: $6/1/2021$ 08:30

$\Gamma(a_0(1320)\pi)/\Gamma_{\text{total}}$		D	TECN	COMME	NT	Г ₂₁ /Г
seen	LEES	14E	BABR	Dalitz a	nal. of $\eta_{c} \rightarrow$	$K^+ K^- \pi^0$
$\Gamma(a_0(1450)\pi)/\Gamma_{total}$	I					Г ₂₂ /Г
VALUE	DOCUMENT I	D	TECN	<u>COMMEI</u>	VT	
seen	LEES	14E	BABR	Dalitz a	nal. of $\eta_{\rm C} \rightarrow$	$K^+ K^- \pi^0$
$\Gamma(a_0(1950)\pi)/\Gamma_{total}$	I					Г ₂₃ /Г
VALUE	<u>EVTS</u> <u>DO</u>	CUMENT	ID	TECN	COMMENT	
seen	12k ¹ LE	ES	16A	BABR	$\gamma \gamma \rightarrow \eta_{c} (13)$	$5) \rightarrow \overline{K}\overline{K}\pi$

 $^1\,\mathrm{From}$ a model-independant partial wave analysis.

Γ(<i>K</i> [*] ₀ (1430	$\overline{K}/\Gamma_{total}$				Г ₂₄ /Г
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
seen	12k	¹ LEES	16A	BABR	$\gamma \gamma \rightarrow \eta_{C}(1S) \rightarrow K \overline{K} \pi$
seen		LEES	14E	BABR	Dalitz anal. of $\eta_{c} \rightarrow$
					$\kappa^+ \kappa^- \eta/\pi^0$

 1 From a model-independant partial wave analysis.

$\Gamma(K_2^*(1430)\overline{K})$)/Г _{total}					Γ ₂₅ /Γ
VALUE		DOCUMENT ID		TEC	<u>V CO</u>	MMENT
seen		LEES	14E	BAE	3R Da	litz anal. of $\eta_{\rm C} \rightarrow \ {\rm K}^+ {\rm K}^- \pi^0$
$\Gamma(K_0^*(1950)\overline{K})$)/Г _{total}					Г ₂₆ /Г
VALUE	EVTS	DOCUMEN	T ID		TECN	COMMENT
seen	12k	¹ LEES		16A	BABR	$\gamma \gamma \rightarrow \eta_{C}(1S) \rightarrow K\overline{K}\pi$
seen		LEES		14E	BABR	Dalitz anal. of $\eta_{c} \rightarrow$
						$\kappa^+ \kappa^- \eta/\pi^0$

 1 From a Dalitz plot analysis using an isobar model.

$\Gamma(K\overline{K}\pi)/\Gamma_{total}$					Г ₂₇ /Г
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
7.3 \pm 0.4 OUR FI	Т				
6.9 \pm 0.5 OUR A	VERAGE				
$6.9 \ \pm 0.7 \ \pm 0.6$	146	¹ ABLIKIM	19 AP	BES3	$h_{c} \rightarrow \gamma \eta_{c}$
$7.8\ \pm 0.6\ \pm 0.6$	267	² ABLIKIM	19 AP	BES3	$h_c \rightarrow \gamma \eta_c$
$6.3\ \pm 1.3\ \pm 1.4$	55	^{3,4} ABLIKIM	12N	BES3	$\psi(2S) \rightarrow \pi^0 \gamma K^+ K^- \pi^0$
$7.9 \ \pm 1.4 \ \pm 1.8$	107	^{5,6} ABLIKIM	12N	BES3	$\psi(2S) \rightarrow \pi^0 \gamma K^0_S K^{\mp} \pi^{\pm}$
$8.5 \hspace{0.1in} \pm 1.8$		⁷ AUBERT	06e	BABR	$B^{\pm} \rightarrow K^{\pm} X_{c\overline{c}}$
5.1 ± 2.1	0.6k	⁸ BAI	04	BES	$J/\psi \rightarrow \gamma K^{\pm} \pi^{\mp} K^{0}_{S}$
$6.90 \!\pm\! 1.42 \!\pm\! 1.32$	33	⁸ BISELLO	91	DM2	$J/\psi \rightarrow \gamma K^+ K^- \pi^{0}$
$5.43\!\pm\!0.94\!\pm\!0.94$	68	⁸ BISELLO	91	DM2	$J/\psi \rightarrow \gamma K^{\pm} \pi^{\mp} K^0_S$
4.8 ±1.7	95	^{8,9} BALTRUSAIT.	.86	MRK3	$J/\psi \rightarrow \eta_{c} \gamma$
$16.1 \begin{array}{c} +9.2 \\ -7.3 \end{array}$	1	^{0,11} HIMEL	80 B	MRK2	$\psi(2S) \rightarrow \eta_C \gamma$
• • • We do not use	e the foll	owing data for avera	nges, f	its, limit	s, etc. ● ● ●
< 10.7 90% CL		^{8,12} PARTRIDGE	80 B	CBAL	$J/\psi \rightarrow \eta_{C} \gamma$

- ¹ABLIKIM 19AP quotes $B(\eta_c \rightarrow K^+ K^- \pi^0) = (1.15 \pm 0.12 \pm 0.10) \times 10^{-2}$ which we multiply by 6 to account for isospin symmetry.
- ²ABLIKIM 19AP quotes B($\eta_c \rightarrow K_S^0 K^{\pm} \pi^{\mp}$) = (2.60 ± 0.21 ± 0.20) × 10⁻² which we multiply by 3 to account for isospin symmetry. ³ABLIKIM 12N quotes B($\psi(2S) \rightarrow \pi^0 h_c$) · B($h_c \rightarrow \gamma \eta_c$) · B($\eta_c \rightarrow \kappa^+ \kappa^- \pi^0$) =
- $(4.54\pm0.76\pm0.48)\times10^{-6}$ which we multiply by 6 to account for isospin symmetry.
- ⁴ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow \kappa \overline{\kappa} \pi) / \Gamma_{total}] \times [B(\psi(2S) \rightarrow \pi^0 h_c(1P))] \times$ $[B(h_c(1P) \rightarrow \gamma \eta_c(1S))] = (27.24 \pm 4.56 \pm 2.88) \times 10^{-6}$ which we divide by our best values B($\psi(2S) \rightarrow \pi^0 h_c(1P)$) = (8.6 ± 1.3) × 10⁻⁴, B($h_c(1P) \rightarrow \gamma \eta_c(1S)$) = $(50 \pm 9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.
- ⁵ ABLIKIM 12N quotes $B(\psi(2S) \rightarrow \pi^0 h_c) \cdot B(h_c \rightarrow \gamma \eta_c) \cdot B(\eta_c \rightarrow K_S^0 K^{\pm} \pi^{\mp}) =$ $(11.35 \pm 1.25 \pm 1.50) imes 10^{-6}$ which we multiply by 3 to account for isospin symmetry.
- ⁶ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow \kappa \overline{\kappa} \pi)/\Gamma_{total}] \times [B(\psi(2S) \rightarrow \pi^0 h_c(1P))] \times$ $[B(h_c(1P) \rightarrow \gamma \eta_c(1S))] = (34.05 \pm 3.75 \pm 4.50) \times 10^{-6}$ which we divide by our best values B($\psi(2S) \rightarrow \pi^0 h_c(1P)$) = (8.6 ± 1.3) × 10⁻⁴, B($h_c(1P) \rightarrow \gamma \eta_c(1S)$) = $(50 \pm 9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.
- ⁷ Determined from the ratio of B($B^{\pm} \rightarrow K^{\pm}\eta_c$) B($\eta_c \rightarrow K\overline{K}\pi$) = (7.4 ± 0.5 ± 0.7) × 10^{-5} reported in AUBERT, B 04B and B($B^{\pm} \rightarrow K^{\pm}\eta_{c}$) = (8.7 ± 1.5) × 10^{-3} reported in AUBERT 06E. ⁸ The quoted branching ratios use B($J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)$) = 0.0127 \pm 0.0036. Where
- relevant, the error in this branching ratio is treated as a common systematic in computing averages.
- ⁹ Average from $K^+ K^- \pi^0$ and $K^{\pm} K^0_{\varsigma} \pi^{\mp}$ decay channels.
- ${}^{10} \kappa^{\pm} \kappa^{0}_{\varsigma} \pi^{\mp}$ corrected to $\kappa \overline{\kappa} \pi$ by factor 3. KS, MR.
- ¹¹Estimated using B($\psi(2S) \rightarrow \gamma \eta_{c}(1S)$) = 0.0028 \pm 0.0006.
- 12 K^+ $K^ \pi^0$ corrected to $K \overline{K} \pi$ by factor 6. KS, MR

 $\Gamma(\phi K^+ K^-) / \Gamma(K \overline{K} \pi)$

Γ_6/Γ_{27}

VALUE DOCUMENT ID _____<u>TECN</u>___COMMENT $0.052^{+0.016}_{-0.014}{\pm}0.014$ 03 BELL $B^{\pm} \rightarrow K^{\pm}\phi\phi$ 7 ¹ HUANG ¹Using B($B^+ \rightarrow \eta_c K^+$) = (1.25 $\pm 0.12 \substack{+0.10 \\ -0.12}$) × 10⁻³ from FANG 03 and B($\eta_c \rightarrow 0.12 \stackrel{-0.12}{-0.12}$) × 10⁻³ from FANG 03 and B($\eta_c \rightarrow 0.12 \stackrel{-0.12}{-0.12}$) $K\overline{K}\pi$) = (5.5 ± 1.7) × 10⁻².

 $\Gamma(K\overline{K}\eta)/\Gamma_{\text{total}}$

 Γ_{28}/Γ

VALUE (units 10^{-2}) CL% EVTS TECN COMMENT DOCUMENT ID 1.36 ± 0.15 OUR FIT ^{1,2} ABLIKIM 12N BES3 $\psi(2S) \rightarrow \pi^0 \gamma \eta K^+ K^-$ 7 $1.0 \pm 0.5 \pm 0.2$ • • • We do not use the following data for averages, fits, limits, etc. • • • ³ BALTRUSAIT...86 MRK3 $J/\psi \rightarrow \eta_c \gamma$ 90 < 3.1¹ABLIKIM 12N quotes $B(\psi(2S) \rightarrow \pi^0 h_c) \cdot B(h_c \rightarrow \gamma \eta_c) \cdot B(\eta_c \rightarrow \kappa^+ \kappa^- \eta) =$ $(2.11\pm1.01\pm0.32) imes10^{-6}$ which we multiply by 2 to account for isospin symmetry. ²ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow \kappa \overline{\kappa} \eta)/\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow \pi^0 h_c(1P))] \times [B(\psi(2S) \rightarrow$ $[B(h_c(1P) \rightarrow \gamma \eta_c(1S))] = (4.22 \pm 2.02 \pm 0.64) \times 10^{-6}$ which we divide by our best values $B(\psi(2S) \rightarrow \pi^0 h_c(1P)) = (8.6 \pm 1.3) \times 10^{-4}$, $B(h_c(1P) \rightarrow \gamma \eta_c(1S)) =$ $(50 \pm 9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. ³ The quoted branching ratios use B($J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)$) = 0.0127 \pm 0.0036.

https://pdg.lbl.gov

Created: 6/1/2021 08:30

$\Gamma(K\overline{K}\eta)/\Gamma(K\overline{K}\eta)$	(π)				Γ ₂₈ /Γ ₂₇
VALUE	EVT	<u>5 DOCUM</u>	ENT ID	TECN CC	MMENT
0.187±0.018 OUR 0.190±0.008±0.01	FIT . 7 5.4	¹ LEES	146	E BABR $\gamma\gamma$	$\gamma \rightarrow K^+ K^- \eta/\pi^0$
¹ LEES 14E report 0.051, which we $\eta ightarrow \pi^+\pi^-\pi^0$	ts B (η_c) 15 e divide by decays.	$(5) \rightarrow K^+ K^- \eta$ 3 to account for	$)/B(\eta_{C}(1S))$ or isospin sy	$ ightarrow K^+ K^- c$ mmetry. It us	$(\tau^0) = 0.571 \pm 0.025 \pm 0.025$ ses both $\eta o \gamma \gamma$ and
$\Gamma(\eta \pi^+ \pi^-)/\Gamma_{\rm tot}$	al				Г ₂₉ /Г
VALUE (units 10^{-2})	EVTS	DOCUME	NT ID	TECN CON	MMENT
1.7±0.4±0.4 • • • We do not us	33 se the follo	¹ ABLIKIN wing data for a	M 12N averages, fit	BES3 $\psi(2$ s, limits, etc.	$2S) \rightarrow \pi^0 \gamma \eta \pi^+ \pi^-$
5.4 ± 2.0	75	² BAI TRI	JSAIT 86	MRK3 J/a	$b \rightarrow n_{-} \gamma$
$3.7 \pm 1.3 \pm 2.0$	18	² PARTRI	DGE 80B	CBAL J/v	$b \rightarrow \eta \pi^+ \pi^- \gamma$
¹ ABLIKIM 12N	reports [Г	$(\eta_{c}(1S) \rightarrow \eta_{c})$	$(\pi^+\pi^-)/\Gamma_{to}$	$_{\rm otal}] \times [{\sf B}(\psi)]$	$(2S) \rightarrow \pi^0 h_c(1P))]$
$\times [B(h_{c}(1P) -$	$\rightarrow \gamma \eta_{c} (15)$	$(5))] = (7.22 \pm$	1.47 ± 1.1	$1) \times 10^{-6}$ w	hich we divide by our
best values $B(\psi$	$v(2S) \rightarrow \tau$	$\tau^0 h_c(1P)) = ($	$8.6\pm1.3)$ >	$(10^{-4}, B(h_c))$	$(1P) \rightarrow \gamma \eta_c(1S)) =$
$(50 \pm 9) \times 10^{-1}$ systematic error ² The quoted bra relevant, the err	⁻² . Our fir from usin nching rat or in this b	est error is their og our best valu ios use $B(J/\psi($ pranching ratio i	experiment les. $1S) ightarrow \gamma \eta$ s treated as	is error and c c(1S)) = 0.0 a common sy	our second error is the 127 ± 0.0036 . Where stematic in computing
$\Gamma(\eta 2(\pi^+\pi^-))/\Gamma$					Г ₃₀ /Г
VALUE (units 10^{-2})	EVTS	DOCUMENT	ד תו	FCN COMM	ENT GO,
4.4+1.2+1.0	39		12N F	$\frac{1}{2} \frac{1}{2} \frac{1}$	$\rightarrow \pi^0 \gamma n 2(\pi^+ \pi^-)$
1 ARI IKIM 12N -	oporte [[($n(1S) \rightarrow n2($	= 	$\varphi(=0)$	(2S) = -0 h (1P)
ADLINIM 12N I \sim		$\eta_{C}(13) \rightarrow \eta_{Z}(1)$		totall $\land [D]^{\psi}$	$(23) \rightarrow \pi n_{C}(17))$
$\times [B(n_C(1F) -$	(26)	$[0, 10] = (19.17 \pm 0.00)$	-3.11 ± 3.1	$(2) \times 10^{-4}$ P(4	(1D) $(1C)$
Dest values $D(\psi$	$7(23) \rightarrow 7$	$(n_c(1P)) \equiv (n_c(1P))$	0.0 ± 1.5) ×	с 10 ^{- с} , Б(<i>п_с</i>	$(1P) \rightarrow \gamma \eta_{c}(1S)) =$
$(50 \pm 9) \times 10$ systematic error	from usir	ig our best valu	experiment	s error and c	our second error is the
$\Gamma(K^+K^-\pi^+\pi^-$)/Γ _{total}				Г ₃₁ /Г
VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN		
6.6± 1.1 OUR FI	T				
11.8± 2.3 OUR A					0
$9.7\pm 2.2\pm 2.2$	38 1	ABLIKIM	12N BES	$\psi(2S) \rightarrow \psi(2S)$	$\pi^{\vee}\gamma K^{+}K^{-}\pi^{+}\pi^{-}$
12 ± 4	0.4k ²	RAI	04 BES	$J/\psi \rightarrow \gamma$	$K \ \ K \ \ \pi^{-} \pi^{-}$

9.1	\perp $2.2 \perp 2.2$		ADLIMIN		DL33	$\psi(23) \rightarrow \pi \gamma \kappa \kappa \pi \kappa$
12	\pm 4	0.4k	² BAI	04	BES	$J/\psi \rightarrow \gamma K^+ K^- \pi^+ \pi^-$
21	\pm 7	110	² BALTRUSAIT.	86	MRK3	$J/\psi \rightarrow \eta_{c} \gamma$
14	$^{+22}_{-9}$		³ HIMEL	80 B	MRK2	$\psi(2S) \rightarrow \eta_{C} \gamma$

¹ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow K^+ K^- \pi^+ \pi^-)/\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow \pi^0 h_c(1P))] \times [B(h_c(1P) \rightarrow \gamma \eta_c(1S))] = (4.16 \pm 0.76 \pm 0.59) \times 10^{-6}$ which we divide by our best values $B(\psi(2S) \rightarrow \pi^0 h_c(1P)) = (8.6 \pm 1.3) \times 10^{-4}$, $B(h_c(1P) \rightarrow \gamma \eta_c(1S)) = (50 \pm 9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

² The quoted branching ratios use $B(J/\psi(1S) \rightarrow \gamma \eta_c(1S)) = 0.0127 \pm 0.0036$. Where relevant, the error in this branching ratio is treated as a common systematic in computing averages.

³Estimated using B($\psi(2S) \rightarrow \gamma \eta_c(1S)$) = 0.0028 ± 0.0006.

$$\begin{array}{c} \Gamma(K^+ K^- \pi^+ \pi^- \pi^0) / \Gamma(K \overline{K} \pi) & \Gamma_{32} / \Gamma_{27} \\ \hline VALUE & EVTS & DOCUMENT ID & TECN & COMMENT \\ \hline 0.477 \pm 0.017 \pm 0.070 & 11k & ^1 DEL-AMO-SA..11M & BABR & \gamma \gamma \rightarrow K^+ K^- \pi^+ \pi^- \pi^0 \\ \hline ^1 We have multiplied the value of $\Gamma(K^+ K^- \pi^+ \pi^- \pi^0) / \Gamma(K_S^0 K^\pm \pi^\mp)$ reported in DEL-
AMO-SANCHEZ 11M by a factor 1/3 to obtain $\Gamma(K^+ K^- \pi^+ \pi^- \pi^0) / \Gamma(K \overline{K} \pi)$. Not independent from other measurements reported in DEL-AMO-SANCHEZ 11M.$$

$$\Gamma(\kappa^0 \kappa^- \pi^+ \pi^- \pi^+ + \text{c.c.}) / \Gamma_{\text{total}}$$

Г₃₃/Г

 $\begin{array}{c} \underline{VALUE\ (\text{units\ }10^{-2})}{\textbf{5.6}\pm\textbf{1.4}\pm\textbf{1.3}} & \underline{EVTS}\\ \textbf{43} & 1,2 \end{array} \underbrace{DOCUMENT\ ID}\\ ABLIKIM & 12N \end{array} \underbrace{\text{BES3}} & \underline{COMMENT}\\ \hline \psi(2S) \rightarrow \pi^0\gamma K_S^0 K^\mp \pi^\mp 2\pi^\pm 1 \\ \hline 1 \\ ABLIKIM\ 12N \ \text{quotes\ }B(\psi(2S) \rightarrow \pi^0h_c) \cdot B(h_c \rightarrow \gamma\eta_c) \cdot B(\eta_c \rightarrow K_S^0 K^\mp \pi^\mp 2\pi^\pm 1) \\ & = (12.01\pm2.22\pm2.04) \times 10^{-6} \ \text{which\ we\ multiply\ by\ 2\ to\ take\ c.c.\ into\ account.} \\ \hline ^2 \\ ABLIKIM\ 12N\ \text{reports\ }[\Gamma(\eta_c(1S) \rightarrow K^0 K^- \pi^+ \pi^- \pi^+ + \text{c.c.})/\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow \pi^0h_c(1P))] \\ & \times [B(h_c(1P) \rightarrow \gamma\eta_c(1S))] = (24.02\pm4.44\pm4.08) \times 10^{-6} \ \text{which\ we\ divide\ by\ our\ best\ values\ }B(\psi(2S) \rightarrow \pi^0h_c(1P)) = (8.6\pm1.3) \times 10^{-4}, \ B(h_c(1P) \rightarrow \gamma\eta_c(1S))] \\ & \qquad \gamma\eta_c(1S)) = (50\pm9) \times 10^{-2}. \ \text{Our\ first\ error\ is\ their\ experiment's\ error\ and\ our\ second\ error\ is\ the\ systematic\ error\ from\ using\ our\ best\ values.} \\ \hline \end{array}$

$\Gamma(K^+K^-2(\pi^+\pi^-))/\Gamma_{\text{total}}$

 Γ_{34}/Γ

 $\begin{array}{c} \underbrace{VALUE \ (\text{units } 10^{-3})}_{\textbf{7.5}\pm \textbf{2.4} \ \textbf{OUR AVERAGE}} \xrightarrow{EVTS} & \underbrace{DOCUMENT \ ID}_{\textbf{7.5}\pm \textbf{2.4} \ \textbf{OUR AVERAGE}} \xrightarrow{TECN} & \underbrace{COMMENT}_{\textbf{7.5}\pm \textbf{2.4} \ \textbf{OUR AVERAGE}} \\ 8 \ \pm 4 \ \pm 2 \ 10 \ 1 \ \text{ABLIKIM} \ 12\text{N} \ \text{BES3} \ \psi(2S) \rightarrow \ \pi^0 \ \gamma \ K^+ \ K^- \ 2(\pi^+ \ \pi^-)) \\ 7.2 \pm 2.4 \pm 1.5 \ 100 \ 2 \ \text{ABLIKIM} \ 06\text{A} \ \text{BES2} \ J/\psi \rightarrow \ K^+ \ K^- \ 2(\pi^+ \ \pi^-) \ \gamma \\ \xrightarrow{1} \ \text{ABLIKIM} \ 12\text{N} \ \text{reports} \ [\Gamma(\eta_c(1S) \rightarrow \ K^+ \ K^- \ 2(\pi^+ \ \pi^-))/\Gamma_{\text{total}}] \ \times \ [B(\psi(2S) \rightarrow \ \pi^0 \ h_c(1P))] \\ \xrightarrow{\pi^0 \ h_c(1P)} \xrightarrow{1} \ [B(h_c(1P) \rightarrow \ \gamma \ \eta_c(1S))] = (3.60 \ \pm \ 1.71 \ \pm \ 0.64) \ \times \ 10^{-6} \ \text{which we} \\ \text{divide by our best values} \ B(\psi(2S) \rightarrow \ \pi^0 \ h_c(1P)) = (8.6 \ \pm \ 1.3) \ \times \ 10^{-4}, \ B(h_c(1P) \rightarrow \ M^-) \\ \xrightarrow{\pi^0 \ h_c(1P)} \xrightarrow{1} \ (120 \ M^-) \ (120 \ M^-) \ M^-) \ (120 \ M^-) \ (120 \ M^-) \ (120 \ M^-) \ M^-) \ (120 \ M^-) \ (120$

 $\gamma \eta_c(1S) = (50 \pm 9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

²ABLIKIM 06A reports $[\Gamma(\eta_c(1S) \rightarrow K^+K^-2(\pi^+\pi^-))/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma\eta_c(1S))] = (1.21\pm0.32\pm0.24)\times10^{-4}$ which we divide by our best value $B(J/\psi(1S) \rightarrow \gamma\eta_c(1S)) = (1.7\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

TECN

COMMENT

$\Gamma(2(K^+K^-))/\Gamma_{total}$

EVTS

VALUE (units 10^{-3})

 Γ_{35}/Γ

1.43± 0.30 OUR FIT 2.2 ± 0.9 ±0.5 7 ¹ ABLIKIM 12N BES3 $\psi(2S) \rightarrow \pi^0 \gamma 2(K^+ K^-)$ • • We do not use the following data for averages, fits, limits, etc. • •

DOCUMENT ID

 2 Using B($B^{+} \rightarrow \eta_{c} K^{+}$) = (1.25 $\pm 0.12 \substack{+0.10 \\ -0.12}$) $\times 10^{-3}$ from FANG 03 and B($\eta_{c} \rightarrow 0.12 \stackrel{-0.10}{-0.12}$) $K\overline{K}\pi$) = (5.5 ± 1.7) × 10⁻². ³Normalized to the sum of $B(\eta_c \rightarrow K^{\pm}K_S^0\pi^{\mp})$, $B(\eta_c \rightarrow \phi\phi)$, $B(\eta_c \rightarrow$ $K^+ K^- \pi^+ \pi^-$), and $B(\eta_c \rightarrow 2\pi^+ 2\pi^-)$. $\Gamma(2(K^+K^-))/\Gamma(K\overline{K}\pi)$ Γ_{35}/Γ_{27} VALUE DOCUMENT ID TECN COMMENT 0.020 ± 0.004 OUR FIT 0.024±0.007 OUR AVERAGE AUBERT,B 04B BABR $B^{\pm} \rightarrow \kappa^{\pm} \eta_{r}$ $0.023 \pm 0.007 \pm 0.006$ $0.026^{+0.009}_{-0.007} \pm 0.007$ ¹ HUANG 03 BELL $B^{\pm} \rightarrow K^{\pm}(2K^+2K^-)$ 15 ¹Using B($B^+ \rightarrow \eta_c K^+$) = (1.25 $\pm 0.12 \substack{+0.10 \\ -0.12}$) $\times 10^{-3}$ from FANG 03 and B($\eta_c \rightarrow 0.12 \stackrel{-0.12}{-0.12}$) $K\overline{K}\pi) = (5.5 \pm 1.7) \times 10^{-2}.$ $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\rm total}$ Γ_{36}/Γ DOCUMENT ID TECN COMMENT VALUE CL% 17AJ BES3 $\psi(2S) \rightarrow \gamma \pi^+ \pi^- \pi^0$ $<5 \times 10^{-4}$ ¹ ABLIKIM 90 ¹ABLIKIM 17AJ reports $[\Gamma(\eta_c(1S) \rightarrow \pi^+ \pi^- \pi^0) / \Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow \gamma \eta_c(1S))]$ $< 1.6 \times 10^{-6}$ which we divide by our best value B($\psi(2S) \rightarrow \gamma \eta_c(1S)$) = 3.4×10^{-3} . $\Gamma(\pi^+\pi^-\pi^0\pi^0)/\Gamma_{\rm total}$ **[**37/**[** $\frac{DOCUMENT \ ID}{1 \ ABLIKIM} \qquad \frac{TECN}{12N} \quad \frac{COMMENT}{\psi(2S) \rightarrow \pi^{0} \gamma \pi^{+} \pi^{-} 2\pi^{0}}$ VALUE (units 10^{-2}) EVTS $4.7 \pm 0.9 \pm 1.1$ 118 ¹ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow \pi^+ \pi^- \pi^0 \pi^0) / \Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow \pi^0 h_c(1P))]$ × $[B(h_c(1P) \rightarrow \gamma \eta_c(1S))] = (20.31 \pm 2.20 \pm 3.33) \times 10^{-6}$ which we divide by our best values $B(\psi(2S) \rightarrow \pi^0 h_c(1P)) = (8.6 \pm 1.3) \times 10^{-4}$, $B(h_c(1P) \rightarrow \gamma \eta_c(1S)) =$ $(50 \pm 9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. $\Gamma(2(\pi^+\pi^-))/\Gamma_{\text{total}}$ Γ_{38}/Γ EVTS VALUE (units 10^{-2}) DOCUMENT ID TECN COMMENT 0.91 ± 0.12 OUR FIT 1.27 ± 0.23 OUR AVERAGE

$1.7 \ \pm 0.3 \ \pm 0.4$	100	¹ ABLIKIM	12N	BES3	$\psi(2S) \rightarrow \pi^0 \gamma 2(\pi^+ \pi^-)$
1.0 ± 0.5	542 ± 75	² BAI	04	BES	$J/\psi \rightarrow \gamma 2(\pi^+\pi^-)$
$1.05\!\pm\!0.17\!\pm\!0.34$	137	² BISELLO	91	DM2	$J/\psi \rightarrow \gamma 2\pi^+ 2\pi^-$
1.3 ± 0.6	25	² BALTRUSAIT.	86	MRK3	$J/\psi \rightarrow \eta_{c} \gamma$
$2.0 \ +1.5 \ -1.0$		³ HIMEL	80 B	MRK2	$\psi(2S) \rightarrow \eta_{C} \gamma$

¹ ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow 2(\pi^+\pi^-))/\Gamma_{total}] \times [B(\psi(2S) \rightarrow \pi^0 h_c(1P))] \times [B(h_c(1P) \rightarrow \gamma \eta_c(1S))] = (7.51 \pm 0.85 \pm 1.11) \times 10^{-6}$ which we divide by our best values $B(\psi(2S) \rightarrow \pi^0 h_c(1P)) = (8.6 \pm 1.3) \times 10^{-4}$, $B(h_c(1P) \rightarrow \gamma \eta_c(1S)) = (50 \pm 9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

² The quoted branching ratios use $B(J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)) = 0.0127 \pm 0.0036$. Where relevant, the error in this branching ratio is treated as a common systematic in computing averages.

³Estimated using B($\psi(2S) \rightarrow \gamma \eta_{c}(1S)$) = 0.0028 ± 0.0006.

https://pdg.lbl.gov

Page 18

Created: 6/1/2021 08:30

$\Gamma(2(\pi^+\pi^-\pi^0))$)/Γ _{total}				Г ₃₉ /Г
VALUE (units 10^{-2})	EVTS	DOCUMENT ID	TECN	COMMENT	
15.8±2.3 OUR A	VERAGE				
$15.3 \!\pm\! 1.8 \!\pm\! 1.8$	333	ABLIKIM	19AP BES3	$h_c \rightarrow \gamma \eta_c$	
$17 \pm 3 \pm 4$	175	¹ ABLIKIM	12N BES3	$\psi(2S) \rightarrow \pi^0 \gamma 2(2)$	$\pi^{+}\pi^{-}\pi^{0})$
1 ABLIKIM 12N	reports [$\Gamma(\eta_c(1S) \rightarrow 2(\pi^{-1}))$	$(+\pi^{-}\pi^{0}))/\Gamma_{tot}$	$_{tal}] \times [B(\psi(2S) \rightarrow$	$\pi^0 h_c(1P))]$
$\times [B(h_{c}(1P)$	$\rightarrow \gamma \eta_{c}$	$(1S))] = (75.13 \pm$	\pm 7.42 \pm 9.99)	$ imes 10^{-6}$ which we o	divide by our
best values B($(\psi(2S) \rightarrow$	$\pi^0 h_c(1P)) = ($	$8.6\pm1.3) imes10$	0^{-4} , B($h_c(1P) \rightarrow$	$\gamma \eta_{c}(1S)) =$
$(50\pm9) imes10$ systematic err) ^{—2} . Our or from u	first error is their sing our best valu	experiment's e	error and our second	d error is the
$\Gamma(2(\pi^{+}\pi^{-}))/\Gamma$	-	5			Γ/Γ

'(S(* *))/'to	tal				' 40/ '
VALUE (units 10^{-3})	EVTS	DOCUMENT ID)	TECN	COMMENT
17 \pm 4 OUR AVE	RAGE				
20 ± 5 ± 5	51	¹ ABLIKIM	12N	BES3	$\psi(2S) \rightarrow \pi^0 \gamma 3(\pi^+ \pi^-)$
$15.4\!\pm\!3.4\!\pm\!3.3$	479	² ABLIKIM	06A	BES2	$J/\psi \rightarrow 3(\pi^+\pi^-)\gamma$
$1_{\Delta RI}$ KIM 12N r	ports $[\Gamma(n)]$	$(1S) \rightarrow 3(\pi^+\pi)$)) / F.	l ×	$[B(\psi(2S) \rightarrow \pi^0 h (1P))]$

¹ ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow 3(\pi^+\pi^-))/\Gamma_{total}] \times [B(\psi(2S) \rightarrow \pi^0 h_c(1P))] \times [B(h_c(1P) \rightarrow \gamma \eta_c(1S))] = (8.82 \pm 1.57 \pm 1.59) \times 10^{-6}$ which we divide by our best values $B(\psi(2S) \rightarrow \pi^0 h_c(1P)) = (8.6 \pm 1.3) \times 10^{-4}$, $B(h_c(1P) \rightarrow \gamma \eta_c(1S)) = (50 \pm 9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

²ABLIKIM 06A reports $[\Gamma(\eta_c(1S) \rightarrow 3(\pi^+\pi^-))/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma\eta_c(1S))] =$ (2.59 ± 0.32 ± 0.47) × 10⁻⁴ which we divide by our best value $B(J/\psi(1S) \rightarrow \gamma\eta_c(1S))$ = (1.7 ± 0.4) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(p\overline{p})/\Gamma_{total}$				Г ₄₁ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
14.4 \pm 1.4 OUR F	Т			
12.6 \pm 2.1 OUR A	VERAGE			
$12.0 \pm \ 2.6 \pm 1.5$	34	ABLIKIM	19APBES3	$h_{c} \rightarrow \gamma \eta_{c}$
$15~\pm~5~\pm3$	15	¹ ABLIKIM	12N BES3	$\psi(2S) \rightarrow \pi^0 \gamma p \overline{p}$
$15~\pm~6$	213 ± 33	² BAI	04 BES	$J/\psi \rightarrow \gamma p \overline{p}$
$10~\pm~3~\pm4$	18	² BISELLO	91 DM2	$J/\psi \rightarrow \gamma \rho \overline{\rho}$
$11~\pm~6$	23	² BALTRUSAIT.	86 MRK3	$J/\psi \rightarrow \eta_{C} \gamma$
$\begin{array}{rr} 29 & +29 \\ -15 \end{array}$		³ HIMEL	80b MRK2	$\psi(2S) \rightarrow \eta_{C} \gamma$

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

$$13.1 + \frac{1.8}{2.1} \pm 0.9$$
 195 ⁴ WU 06 BELL $B^+ \to p \overline{p} K^+$

¹ ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow p\overline{p})/\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow \pi^0 h_c(1P))] \times [B(h_c(1P) \rightarrow \gamma \eta_c(1S))] = (0.65 \pm 0.19 \pm 0.10) \times 10^{-6}$ which we divide by our best values $B(\psi(2S) \rightarrow \pi^0 h_c(1P)) = (8.6 \pm 1.3) \times 10^{-4}$, $B(h_c(1P) \rightarrow \gamma \eta_c(1S)) = (50 \pm 9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

² The quoted branching ratios use $B(J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)) = 0.0127 \pm 0.0036$. Where relevant, the error in this branching ratio is treated as a common systematic in computing averages.

³Estimated using B($\psi(2S) \rightarrow \gamma \eta_{c}(1S)$) = 0.0028 ± 0.0006.

⁴ WU 06 reports $[\Gamma(\eta_c(1S) \rightarrow p\overline{p})/\Gamma_{\text{total}}] \times [B(B^+ \rightarrow \eta_c K^+)] = (1.42 \pm 0.11 \stackrel{+0.16}{-0.20}) \times (1.42 \pm 0.11 \stackrel{+0$ 10^{-6} which we divide by our best value B($B^+ \rightarrow \eta_c K^+$) = (1.09 ± 0.08) × 10^{-3}. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{p}\overline{p})/\Gamma(\overline{K}\overline{K}\pi)$						Γ_{41}/Γ_{27}
VALUE	<u>EVTS</u>	DOCUMENT	- ID	TECN	COMMENT	
0.0198 ± 0.0019 OUR FI	Т					
$0.021 \ \pm 0.002 \ \begin{array}{c} +0.004 \\ -0.006 \end{array}$	195	1 WU	06	BELL	$B^{\pm} \rightarrow K^{\pm}$	±p₽
1 Using B($B^+ ightarrow \eta_{ m c}$	<i>K</i> ⁺) =	$(1.25 \pm 0.12 + 0.12)$	$_{0.12}^{0.10}) \times 1$	10^{-3} fro	m FANG 03	and B($\eta_{C} \rightarrow$
$K\overline{K}\pi)=(5.5\pm1.7)$	$() \times 10^{-2}$	<u>2</u> .	-			
$\Gamma(\rho \overline{\rho}) / \Gamma_{\text{total}} \times \Gamma(\phi$	$\phi)/\Gamma_{tot}$	al			Γ ₄₁	_L /Γ × Γ ₇ /Γ
VALUE (units 10^{-5})		DOCUMENT		TECN	COMMENT	

0.25±0.04 OUR FIT					
4.0 $+3.5$ -3.2	BAGLIN	89	SPEC	$\overline{p}p ightarrow$	$\kappa^+ \kappa^- \kappa^+ \kappa^-$

$\Gamma(p\overline{p}\pi^0)/\Gamma_{\rm total}$

DOCUMENT ID TECN COMMENT VALUE (units 10^{-2}) EVTS 12N BES3 $\psi(2S) \rightarrow \pi^0 \gamma p \overline{p} \pi^0$ ¹ ABLIKIM $0.36 \pm 0.13 \pm 0.08$ 14 ¹ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow p\overline{p}\pi^0)/\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow \pi^0 h_c(1P))] \times [B(h_c(1P) \rightarrow \gamma \eta_c(1S))] = (1.53 \pm 0.49 \pm 0.23) \times 10^{-6}$ which we divide by our best values $B(\psi(2S) \rightarrow \pi^0 h_c(1P)) = (8.6 \pm 1.3) \times 10^{-4}$, $B(h_c(1P) \rightarrow \gamma \eta_c(1S)) =$ $(50 \pm 9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the

systematic error from using our best values.

$\Gamma(\Lambda\overline{\Lambda})/\Gamma_{\text{total}}$

Γ43/Γ VALUE (units 10^{-4}) <u>CL%</u> <u>EVTS</u> DOCUMENT ID TECN COMMENT 10.6±2.3 OUR FIT ¹ ABLIKIM $11.8 \pm 2.3 \pm 2.5$ 12B BES3 • • • We do not use the following data for averages, fits, limits, etc. • • • $8.7^{+2.4}_{-2.3}\pm0.6$ 06 BELL $B^+ \rightarrow \Lambda \overline{\Lambda} K^+$ 2 WU 20 91 DM2 $e^+e^- \rightarrow \gamma \Lambda \overline{\Lambda}$ ³ BISELLO <20 90

¹ABLIKIM 12B reports $[\Gamma(\eta_c(1S) \rightarrow \Lambda\overline{\Lambda})/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma\eta_c(1S))] =$ $(0.198 \pm 0.021 \pm 0.032) \times 10^{-4}$ which we divide by our best value $B(J/\psi(1S) \rightarrow$ $\gamma \eta_{c}(1S) = (1.7 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

²WU 06 reports $[\Gamma(\eta_c(1S) \rightarrow \Lambda\overline{\Lambda})/\Gamma_{\text{total}}] \times [B(B^+ \rightarrow \eta_c K^+)] = (0.95^{+}_{-0.22} + 0.08) \times 10^{-6}$ which we divide by our best value $B(B^+ \rightarrow \eta_c K^+) = (0.95^{+}_{-0.22} - 0.11) \times 10^{-6}$ $(1.09 \pm 0.08) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ The quoted branching ratios use B($J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)$) = 0.0127 \pm 0.0036.

 Γ_{42}/Γ

Γ(ΛΛ)/Γ(ρφ)					Γ ₄₃ /Γ ₄₁
VALUE	DOCUMENT	ID	TECN	COMMENT	
0.74 \pm 0.16 OUR FIT					
$0.67^{m+0.19}_{m-0.16}{\pm}0.12$	1 WU	06	BELL	$B^+ \rightarrow p \overline{p} K^-$	+, л <u>л</u> к+

¹Not independent from other $\eta_c \rightarrow \Lambda \overline{\Lambda}$, $p \overline{p}$ branching ratios reported by WU 06.

$\Gamma(K^+ \overline{p} \Lambda + \text{c.c.}) / \Gamma_{\text{to}}$	otal					Г44/Г
VALUE (units 10^{-3})	EVTS	DOCUME	NT ID	TECN	COMMENT	
$2.50^{+0.34}_{-0.32}^{+0.17}_{-0.18}$	157	1 LU	19	BELL	$B^+ \rightarrow \overline{p}/$	$1K^+K^+$
¹ LU 19 reports (2.8	$3^{+0.36}_{-0.34}$	\pm 0.35) \times 1	0^{-3} from	a meası	rement of [$\Gamma(\eta_c(1S) \rightarrow u^+)$
$\mathcal{K}^+ \overline{\rho} \mathcal{\Lambda} + \text{ c.c.}) / \Gamma_{\text{to}}$ (9.6 ± 1.1) × 10 ⁻¹ (1.09 ± 0.08) × 10 ror is the systematic	_{tal}] × [l ^{·4} , which ⁻³ . Our : error fro	$B(B^{-} \rightarrow we rescale)$ first error is musing our	$\eta_{C} K^{+})]$ a to our be their expenses their expenses value.	est value eriment's	$B(B^+ \rightarrow B(B^+ \rightarrow B(B^+ \rightarrow C^+))$ error and o	$\eta_c K^+) =$ $\eta_c K^+) =$ ur second er-
5		0				

$\Gamma(\Lambda(1520)\Lambda + c.c.)/\Gamma_{total}$

VALUE (units 10^{-3})	EVTS	DOCUMENT	T ID	TECN	COMMENT
3.1±1.3±0.2	43	1 LU	19	BELL	$B^+ \rightarrow \overline{p}\Lambda K^+ K^+$
1 LU 19 reports (3.4	$48~\pm~1.48$	\pm 0.46) $ imes$ 10	⁻³ from	a meası	urement of [Г $(\eta_{_{m C}}(1S)$ $ ightarrow$
$\overline{\Lambda}(1520)\Lambda + cc)/l$	l × [I	$B(B^+ \rightarrow n B)$	(K^+)] assuu	ning B($B^+ \rightarrow n K^+ = (9.6 +$

 $\overline{\Lambda}(1520)\Lambda + \text{c.c.})/\Gamma_{\text{total}} \times [B(B^+ \rightarrow \eta_c K^+)]$ assuming $B(B^+ \rightarrow \eta_c K^+) = (9.6 \pm 1.1) \times 10^{-4}$, which we rescale to our best value $B(B^+ \rightarrow \eta_c K^+) = (1.09 \pm 0.08) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\Sigma^+\overline{\Sigma}^-)/\Gamma_{total}$

Γ_{46}/Γ

 Γ_{45}/Γ

 $\begin{array}{c|c} \hline VALUE \ (\text{units } 10^{-3}) & EVTS \\ \hline \textbf{2.1\pm0.3\pm0.5} & 112 & 1 \\ \hline \textbf{ABLIKIM} & 13C & BES3 & \hline J/\psi \rightarrow \gamma p \overline{p} \pi^0 \pi^0 \\ \hline \textbf{1} \\ \textbf{ABLIKIM} & 13C \ \text{reports} \ [\Gamma(\eta_c(1S) \rightarrow \Sigma^+ \overline{\Sigma}^-)/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \rightarrow \gamma \eta_c(1S))] = \\ \hline (3.60 \pm 0.48 \pm 0.31) \times 10^{-5} \\ \textbf{which we divide by our best value} \ B(J/\psi(1S) \rightarrow \gamma \eta_c(1S))) \\ = (1.7 \pm 0.4) \times 10^{-2}. \\ \textbf{Our first error is their experiment's error and our second error is the systematic error from using our best value.} \end{array}$

$\begin{array}{c|c} \Gamma(\Xi^-\overline{\Xi^+})/\Gamma_{\text{total}} & & \Gamma_{47}/\Gamma \\ \hline \\ \hline \\ \underline{VALUE \ (\text{units } 10^{-3})}{0.90 \pm 0.18 \pm 0.19} & \underline{EVTS} & \underline{DOCUMENT \ ID} & \underline{TECN} & \underline{COMMENT} \\ \hline \\ 1 & \text{ABLIKIM} & 13C & \text{BES3} & J/\psi \rightarrow \gamma \Lambda \overline{\Lambda} \pi^+ \pi^- \end{array}$

¹ ABLIKIM 13C reports $[\Gamma(\eta_{c}(1S) \rightarrow \Xi^{-}\overline{\Xi}^{+})/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma \eta_{c}(1S))] = (1.51 \pm 0.27 \pm 0.14) \times 10^{-5}$ which we divide by our best value $B(J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)) = (1.7 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\pi^+\pi^-p\overline{p})/\Gamma$	total					Г ₄₈ /	Г
VALUE (units 10^{-3})	CL% EVTS	DOCUMENT ID		TECN	COMMENT		
5.3±1.7±1.2	19	^l ABLIKIM	12N	BES3	$\psi(2S) \rightarrow$	$\pi^0 \gamma \rho \overline{\rho} \pi^+ \pi^-$	-
\bullet \bullet \bullet We do not	use the following	g data for averag	es, fit	s, limits,	etc. • • •	•	
<12	90	HIMEL	80 B	MRK2	ψ (2 S) $ ightarrow$	$\eta_{\textit{C}} \gamma$	
https://pdg.lbl.	gov	Page 21		Cre	eated: 6/	1/2021 08:3	0

¹ABLIKIM 12N reports $[\Gamma(\eta_c(1S) \rightarrow \pi^+ \pi^- p\overline{p})/\Gamma_{total}] \times [B(\psi(2S) \rightarrow \pi^0 h_c(1P))] \times [B(h_c(1P) \rightarrow \gamma \eta_c(1S))] = (2.30 \pm 0.65 \pm 0.36) \times 10^{-6}$ which we divide by our best values $B(\psi(2S) \rightarrow \pi^0 h_c(1P)) = (8.6 \pm 1.3) \times 10^{-4}$, $B(h_c(1P) \rightarrow \gamma \eta_c(1S)) = (50 \pm 9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

$(\gamma\gamma)/ _{total}$					49/
VALUE (units 10^{-4})	<u>CL%</u> EVTS	DOCUMENT ID		TECN	COMMENT
1.61 ± 0.12 OUR	FIT				
$1.9 \ {}^{+0.7}_{-0.6}$ OUR	AVERAGE				
$2.7 \ \pm 0.8 \ \pm 0.6$		¹ ABLIKIM	131	BES3	
$1.4 \ {}^{+0.7}_{-0.5} \ \pm 0.3$	$1.2^{+2.8}_{-1.1}$	² ADAMS	08	CLEO	$\psi(2S) \rightarrow \pi^+ \pi^- J/\psi$
• • • We do not	use the following o	data for averages,	fits, l	imits, et	C. ● ● ●
$2.0 \ {}^{+0.9}_{-0.7} \ \pm 0.1$	13	³ WICHT	08	BELL	$B^{\pm} \rightarrow K^{\pm} \gamma \gamma$
$2.80^{+0.67}_{-0.58}{\pm}1.0$		⁴ ARMSTRONG	95F	E760	$\overline{p}p \rightarrow \gamma \gamma$
< 9	90	⁵ BISELLO	91	DM2	$J/\psi ightarrow \gamma \gamma \gamma$
$6 \begin{array}{c} +4 \\ -3 \end{array} \pm 4$		⁴ BAGLIN	87 B	SPEC	$\overline{p}p \rightarrow \gamma \gamma$
< 18	90	⁶ BLOOM	83	CBAL	$J/\psi ightarrow \ \eta_{C} \gamma$

¹ABLIKIM 13I reports $[\Gamma(\eta_c(1S) \rightarrow \gamma\gamma)/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \rightarrow \gamma\eta_c(1S))] = (4.5 \pm 1.2 \pm 0.6) \times 10^{-6}$ which we divide by our best value $B(J/\psi(1S) \rightarrow \gamma\eta_c(1S)) = (1.7 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² ADAMS 08 reports $[\Gamma(\eta_c(1S) \rightarrow \gamma\gamma)/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma\eta_c(1S))] = (2.4^{+1.1}_{-0.8} \pm 0.3) \times 10^{-6}$ which we divide by our best value $B(J/\psi(1S) \rightarrow \gamma\eta_c(1S)) = (1.7 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³WICHT 08 reports $[\Gamma(\eta_c(1S) \rightarrow \gamma\gamma)/\Gamma_{total}] \times [B(B^+ \rightarrow \eta_c K^+)] = (2.2^{+0.9}_{-0.7} + 0.2) \times 10^{-7}$ which we divide by our best value $B(B^+ \rightarrow \eta_c K^+) = (1.09 \pm 0.08) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ Not independent from the values of the total and two-photon width quoted by the same experiment.

⁵ The quoted branching ratios use $B(J/\psi(1S) \rightarrow \gamma \eta_c(1S)) = 0.0127 \pm 0.0036$. ⁶ Using $B(J/\psi(1S) \rightarrow \gamma \eta_c(1S)) = 0.0127 \pm 0.0036$.

https://pdg.lbl.gov

\ /

$\Gamma(p\overline{p})/\Gamma_{\text{total}} \times \Gamma(\gamma)$	$(\gamma)/\Gamma_{total}$			$\Gamma_{41}/\Gamma imes \Gamma_{49}/\Gamma$
VALUE (units 10 ⁻⁶)	EVTS	DOCUMENT ID	TECN	COMMENT
0.232 ± 0.022 OUR FIT		or includes cools fact	or of 1 1	
$0.224 \pm 0.038 \pm 0.020$	100	AMBROGIANI 03	E835	$\overline{\mathbf{n}}\mathbf{n} \rightarrow n \rightarrow \gamma \gamma$
-0.037 ± 0.020	190		- 5360	PP η_c η_r
0.336 - 0.070		ARMSTRONG 95F	= E760	$\overline{p} p \rightarrow \gamma \gamma$
$0.68 \begin{array}{c} +0.42 \\ -0.31 \end{array}$	12	BAGLIN 87E	3 SPEC	$\overline{p} p \rightarrow \gamma \gamma$
<u> </u>	Charge co	onjugation (C), Pa	arity (<i>P</i>)),
	oton family	number (<i>LF</i>) vio	lating m	nodes ———
$\Gamma(\pi^+\pi^-)/\Gamma_{total}$				Г ₅₀ /Г
VALUE (units 10^{-5})	CL%	DOCUMENT ID	TECN	COMMENT
<11	90	¹ ABLIKIM 110	G BES3	$J/\psi \rightarrow \gamma \pi^+ \pi^-$
• • • We do not use th	e following	data for averages, fit	s, limits,	etc. ● ● ●
<70	90	² ABLIKIM 06E	BES2	$J/\psi \rightarrow \pi^+ \pi^- \gamma$
¹ ABLIKIM 11G repo	rts [$\Gamma(\eta_{C}(15))$	$5) \rightarrow \pi^+ \pi^-) / \Gamma_{\rm tot}$	_{tal}] × [B	$(J/\psi(1S) \rightarrow \gamma \eta_{c}(1S)))$
$< 1.82 \times 10^{-6}$ whic	h we divide b	by our best value $B(J)$	$/\psi(1S) -$	$\rightarrow \gamma \eta_{c}(1S)) = 1.7 \times 10^{-2}.$
² ABLIKIM 06B repo	rts [$\Gamma(\eta_{c}(1))$	$(5) \rightarrow \pi^+ \pi^-) / \Gamma_{\text{tot}}$	_{tal}] × [B	$\gamma \eta_{c}(1S) \rightarrow \gamma \eta_{c}(1S))$
$< 1.1 imes 10^{-5}$ which	n we divide b	y our best value B($J/$	$\psi(1S) ightarrow$	$\gamma \eta_{c}(1S)) = 1.7 \times 10^{-2}.$
$\Gamma(\pi^0\pi^0)/\Gamma_{total}$				Г ₅₁ /Г
VALUE (units 10^{-5})	CL%	DOCUMENT ID	TECN	COMMENT
< 4	90	¹ ABLIKIM 110	G BES3	$J/\psi \rightarrow \gamma \pi^0 \pi^0$
• • • We do not use th	e following	data for averages, fit	s, limits,	etc. ● ● ●
<40	90	² ABLIKIM 06e	B BES2	$J/\psi \rightarrow \pi^0 \pi^0 \gamma$
1 ABLIKIM 11G repo	rts [$\Gamma(\eta_{c}(1S))$	$(5) \rightarrow \pi^0 \pi^0) / \Gamma_{\text{total}}$] × [B(J	$\gamma/\psi(1S) \rightarrow \gamma \eta_{c}(1S))] < 0$
$6.0 imes10^{-7}$ which w	ve divide by	our best value $B(J/\psi$	$\psi(1S) \rightarrow$	$\gamma \eta_{c}(1S)) = 1.7 \times 10^{-2}.$
² ABLIKIM 06B repo	rts [$\Gamma(\eta_{C}(1S))$	$5) \rightarrow \pi^0 \pi^0) / \Gamma_{total}$	$] \times [B(J$	$\gamma \psi(1S) \rightarrow \gamma \eta_{c}(1S))] < c$
$0.71 imes 10^{-5}$ which	we divide by	our best value $B(J/v)$	$\psi(1S) ightarrow$	$\gamma \eta_{c}(1S)) = 1.7 \times 10^{-2}.$
$\Gamma(K^+K^-)/\Gamma_{total}$				Г ₅₂ /Г
VALUE (units 10^{-5})	CL%	DOCUMENT ID	TECN	COMMENT
<60	90	¹ ABLIKIM 06E	BBES2	$J/\psi \rightarrow K^+ K^- \gamma$
1 ABLIKIM 06B repo	rts [$\Gamma(\eta_c)$ 15	$(5) \rightarrow K^+ K^-) / \Gamma_{tot}$	tal] × [E	$B(J/\psi(1S) \rightarrow \gamma \eta_c(1S))]$
$<~0.96{ imes}10^{-5}$ whic	h we divide l	by our best value $B(J)$	$/\psi(1S)$ –	$\gamma \eta_{c}(1S)) = 1.7 \times 10^{-2}.$
$\Gamma(K_S^0 K_S^0) / \Gamma_{\text{total}}$				Г ₅₃ /Г
VALUE (units 10^{-5})	CL%	DOCUMENT ID	TECN	COMMENT
<31	90	¹ ABLIKIM 06e	BES2	$J/\psi \rightarrow \kappa^0_{S} \kappa^0_{S} \gamma$
• • • We do not use th	e following	data for averages, fit	s, limits,	etc. ● ●
<32		211EUADA 12	DELL	$\kappa = \kappa 0 \kappa 0$
	90		DLLL	$\gamma\gamma \rightarrow \kappa_c \kappa_c$
< 5.6	90 90	³ UEHARA 13	BELL	$\gamma \gamma \rightarrow \kappa_{S} \kappa_{S}$ $\gamma \gamma \rightarrow \kappa_{S}^{0} \kappa_{S}^{0}$

https://pdg.lbl.gov

Created: 6/1/2021 08:30

¹ABLIKIM 06B reports $[\Gamma(\eta_c(1S) \rightarrow \kappa_S^0 \kappa_S^0) / \Gamma_{\text{total}}] \times [B(J/\psi(1S) \rightarrow \gamma \eta_c(1S))]$ < 0.53×10^{-5} which we divide by our best value $B(J/\psi(1S) \rightarrow \gamma \eta_c(1S)) = 1.7 \times 10^{-2}$. ²Taking into account interference with the non-resonant continuum.

³Neglecting interference with the non-resonant continuum.

$\eta_c(1S)$ REFERENCES

AAIJ	20H	EPJ C80 191	R. Aaii <i>et al.</i>	(LHCb_Collab.)
ABLIKIM	19AP	PR D100 012003	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	19AV	PR D100 052012	M Ablikim <i>et al</i>	(BESIII Collab.)
10	19	PR D99 032003	P-C Lu et al	(BELLE Collab.)
XU	18	PR D98 072001	O N X u et al	(BELLE Collab.)
	17AD	PI B769 305	R Aaii <i>et al</i>	(LHCh Collab.)
	17RR	EPI C77 600	R Apii et al	(LHCb Collab.)
	1760	PR D06 112008	M Ablikim at al	(BESIII Collab.)
	17D	DD D05 002004	M. Ablikim et al.	(DESIII Collab.)
	16.0	DD D02 012005	IP Loos at al	(DESIT Collab.)
	10A 16	CD C40 100001	J.F. Lees et al.	(DADAR Collab.)
PDG	10	CP C40 100001	C. Patrignani et al.	(PDG Collab.)
AAIJ	15A5	JHEP 1510 055	R. Aaij et al.	(LUCE Collab.)
	15DI 14	EPJ C/5 311	R. Aalj <i>et al.</i>	(KEDD Callab.)
	14	PL B/38 391	V.V. Anasnin <i>et al.</i>	(REDR Collab.)
LEES	14E	PR D89 112004	J.P. Lees <i>et al.</i>	(BABAR Collab.)
ABLIKIM	13C	PR D87 012003	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	131	PR D87 032003	M. Ablikim <i>et al.</i>	(BESIII Collab.)
UEHARA	13	PTEP 2013 123C01	S. Uehara <i>et al.</i>	(BELLE Collab.)
ABLIKIM	12B	PR D86 032008	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	12F	PRL 108 222002	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	12N	PR D86 092009	M. Ablikim <i>et al.</i>	(BESIII Collab.)
LIU	12B	PRL 108 232001	Z.Q. Liu <i>et al.</i>	(BELLE Collab.)
ZHANG	12A	PR D86 052002	C.C. Zhang <i>et al.</i>	(BELLE Collab.)
ABLIKIM	11G	PR D84 032006	M. Ablikim <i>et al.</i>	(BESIII Collab.)
DEL-AMO-SA	11M	PR D84 012004	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
VINOKUROVA	11	PL B706 139	A. Vinokurova <i>et al.</i>	(BELLE Collab.)
LEES	10	PR D81 052010	J.P. Lees <i>et al.</i>	(BABAR Collab.)
MITCHELL	09	PRL 102 011801	R.E. Mitchell <i>et al.</i>	(CLEO Collab.)
ADAMS	08	PRL 101 101801	G.S. Adams <i>et al.</i>	(CLEO Collab.)
AUBERT	08AB	PR D78 012006	B. Aubert <i>et al.</i>	(BABAR Collab.)
UEHARA	08	EPJ C53 1	S. Uehara <i>et al.</i>	(BELLE Collab.)
WICHT	08	PL B662 323	J. Wicht <i>et al.</i>	(BELLE Collab.)
ABE	07	PRL 98 082001	K. Abe <i>et al.</i>	(BELLE Collab.)
ABLIKIM	06A	PI B633 19	M Ablikim <i>et al</i>	(BES Collab.)
ABLIKIM	06B	FP1 C45 337	M Ablikim <i>et al</i>	(BES Collab.)
AUBERT	06E	PRI 96 052002	B Aubert <i>et al</i>	(BABAR Collab.)
PDG	06	IP G33 1	W-M Yao et al	(PDG Collab.)
WII	06	PRI 97 162003	C - H W + et al	(BELLE Collab.)
	051	PR D72 072005	M Ablikim et al	(BES Collab.)
	05	PL B621 /1	CC Kup et al	(BELLE Collab.)
ARE	0.0	PR D70 071102	K Abo at al	(BELLE Collab.)
	040	DD D70 112009	M Ablikim at al	(DELEE Collab.)
	04101	PR D70 112000	N. Adikini et al.	(CLEO Collab.)
	04	PRL 92 142001	D.IVI. Asher et al.	(CLEO Collab.)
	04D	PRL 92 142002	D. Aubert et al.	(DADAR Collab.)
AUBERT,B	04B	PR D/0 011101	B. Aubert <i>et al.</i>	(BABAR Collab.)
BAI	04	PL B5/8 10	J.Z. Bai <i>et al.</i>	(BES Collab.)
ABDALLAH	031	EPJ C31 481	J. Abdallan <i>et al.</i>	(DELPHI Collab.)
AMBROGIANI	03	PL B500 45	M. Ambrogiani <i>et al.</i>	(FNAL E835 Collab.)
BAI	03	PL B555 1/4	J.Z. Bai et al.	(BES Collab.)
FANG	03	PRL 90 071801	F. Fang <i>et al.</i>	(BELLE Collab.)
HUANG	03	PRL 91 241802	HC. Huang <i>et al.</i>	(BELLE Collab.)
ABE,K	02	PRL 89 142001	K. Abe <i>et al.</i>	(BELLE Collab.)
RAI	00F	PR D62 072001	J.Z. Bai <i>et al.</i>	(BES Collab.)
BRANDENB	00B	PRL 85 3095	G. Brandenburg <i>et al.</i>	(CLEO Collab.)
ACCIARRI	99 T	PL B461 155	M. Acciarri <i>et al.</i>	(L3 Collab.)
BAI	99B	PR D60 072001	J.Z. Bai <i>et al.</i>	(BES Collab.)
ABREU	98O	PL B441 479	P. Abreu <i>et al.</i>	(DELPHI Collab.)
SHIRAI	98	PL B424 405	M. Shirai <i>et al.</i>	(AMY Collab.)
ARMSTRONG	95F	PR D52 4839	T.A. Armstrong <i>et al.</i>	(FNAL, FERR, GENO+)
ALBRECHT	94H	PL B338 390	H. Albrecht <i>et al.</i>	(ARGUS Collab.)

https://pdg.lbl.gov

Created: 6/1/2021 08:30

ADRIANI	93N	PL B318 575	O. Adriani <i>et al.</i>	(L3 Collab.)
BISELLO	91	NP B350 1	D. Bisello et al.	(DM2 Collab.)
BAI	90B	PRL 65 1309	Z. Bai <i>et al.</i>	(Mark III Collab.)
CHEN	90B	PL B243 169	W.Y. Chen et al.	(CLEO Collab.)
BAGLIN	89	PL B231 557	C. Baglin, S. Baird, G. Bassomp	ierre (R704 Collab.)
BEHREND	89	ZPHY C42 367	H.J. Behrend et al.	(CELLO Collab.)
BRAUNSCH	89	ZPHY C41 533	W. Braunschweig et al.	(TASSO Collab.)
AIHARA	88D	PRL 60 2355	H. Aihara <i>et al.</i>	(TPC Collab.)
BAGLIN	87B	PL B187 191	C. Baglin <i>et al.</i>	(R704 Collab.)
BALTRUSAIT	86	PR D33 629	R.M. Baltrusaitis et al.	(Mark III Collab.)
BERGER	86	PL 167B 120	C. Berger et al.	(PLUTO Collab.)
GAISER	86	PR D34 711	J. Gaiser et al.	(Crystal Ball Collab.)
ALTHOFF	85B	ZPHY C29 189	M. Althoff <i>et al.</i>	(TASSO Collab.)
BALTRUSAIT	84	PRL 52 2126	R.M. Baltrusaitis et al.	(CIT, UCSC+) JP
BLOOM	83	ARNS 33 143	E.D. Bloom, C. Peck	(SLAC, CIT)
HIMEL	80B	PRL 45 1146	T.M. Himel <i>et al.</i>	(SLAC, LBL, UCB)
PARTRIDGE	80B	PRL 45 1150	R. Partridge <i>et al.</i>	(CIT, HARV, PRIN+)