$f_0(1370)$

$$I^{G}(J^{PC}) = 0^{+}(0^{++})$$

See the review on "Scalar Mesons below 2 $\mbox{GeV}"$ and a note on "Non- $q\overline{q}$ Candidates" in PDG 06, Journal of Physics **G33** 1 (2006).

f₀(1370) T-MATRIX POLE POSITION

Note that $\Gamma\approx 2~\text{Im}(\sqrt{s_{\text{pole}}}).$

DOCUMENT ID		TECN	COMMENT
ESTIMATE			
ing data for averages	s, fits,	limits, e	etc. • • •
¹ ALBRECHT	20	RVUE	$\begin{array}{rcl} 0.9 \overline{p} p \rightarrow & \pi^0 \pi^0 \eta, \\ \pi^0 \eta \eta, & \pi^0 K^+ K^- \end{array}$
² ANISOVICH	09	RVUE	0.0 <u>p</u> p, πN
³ BARGIOTTI	03	OBLX	<u>p</u> p
⁴ BARBERIS	00 C		450 $pp \rightarrow p_f 4\pi p_s$
BARBERIS	99 D	OMEG	$\begin{array}{ccc} 450 \ p p \rightarrow & K^+ K^-, \\ \pi^+ \pi^- & \end{array}$
⁵ KAMINSKI	99	RVUE	$\pi \pi \rightarrow \pi \pi$, $K \overline{K}$, $\sigma \sigma$
ANISOVICH	98 B	RVUE	Compilation
BARBERIS	97 B	OMEG	450 $pp \rightarrow$
DEDTIN	076		$pp2(\pi^+\pi^-)$
BERTIN	970	OBLX	$0.0 \ pp \rightarrow \pi^{+}\pi^{-}\pi^{0}$
ABELE	96B	CBAR	$0.0 \ pp \rightarrow \pi^{\circ} K_{L}^{\circ} K_{L}^{\circ}$
BUGG	96	RVUE	0
^o AMSLER	95B	CBAR	$\overline{p}p \rightarrow 3\pi^0$
^o AMSLER	95C	CBAR	$\overline{p}p \rightarrow \pi^{0}\eta\eta$
' AMSLER	95 D	CBAR	$\overline{p} p \rightarrow 3\pi^{0}, \pi^{0} \eta \eta, $ $\pi^{0} \pi^{0} n$
^{8,9} JANSSEN	95	RVUE	$\pi \pi \to \pi \pi, K\overline{K}$
^{9,10} TORNQVIST	95	RVUE	$\pi \pi ightarrow \pi \pi$, $K \overline{K}$, $K \pi$,
AMSLER	94 D	CBAR	$\frac{\eta \pi}{\overline{p} p \rightarrow} \pi^0 \pi^0 \eta$
ANISOVICH	94	CBAR	$\overline{p}p \rightarrow 3\pi^0, \pi^0\eta\eta$
¹¹ BUGG	94	RVUF	$\overline{p}p \rightarrow 3\pi^0 nn\pi^0$
2000	5.		$\eta_{\pi}^{0} 0_{\pi}^{0} 0$
¹² KAMINSKI	94	RVUE	$\pi \pi \to \pi \pi$, $K \overline{K}$
¹³ AU	87	RVUE	$\pi \pi ightarrow \pi \pi$, K \overline{K}
	ESTIMATE ing data for averages ¹ ALBRECHT ² ANISOVICH ³ BARGIOTTI ⁴ BARBERIS BARBERIS ⁵ KAMINSKI ANISOVICH BARBERIS ⁵ KAMINSKI ANISOVICH BUGG ⁶ AMSLER ⁶ AMSLER ⁷ AMSLER ^{8,9} JANSSEN 9,10 TORNQVIST AMSLER ANISOVICH 11 BUGG ¹² KAMINSKI ¹³ AU	ESTIMATE ing data for averages. fits, ¹ ALBRECHT 20 ² ANISOVICH 09 ³ BARGIOTTI 03 ⁴ BARBERIS 00C BARBERIS 99D ⁵ KAMINSKI 99 ANISOVICH 988 BARBERIS 97B ⁵ KAMINSKI 99 ⁶ AMSLER 966 ⁶ AMSLER 95B ⁶ AMSLER 95C 95D ^{8,9} JANSSEN 95 ^{8,9} JANSSEN 95 ^{9,10} CORNQVIST 95 ^{8,9} JANSSEN 94 ¹¹ BUGG 94	DOCUMENT ID TECN ESTIMATE ing data for averages, fits, limits, etcl 1 ALBRECHT 20 RVUE 2 ANISOVICH 09 RVUE 3 BARGIOTTI 03 OBLX 4 BARBERIS 00C BARBERIS 5 KAMINSKI 99 OMEG 5 KAMINSKI 99 RVUE ANISOVICH 98B RVUE BARBERIS 90D OMEG 5 KAMINSKI 99 88B BERTIN 97C OBLX ABELE 96B CBAR BUGG 96 RVUE BUGG 96 RVUE 6 AMSLER 95B CBAR 95D CBAR 95D 9,10 JANSSEN 95 RVUE AMSLER 94D CBAR 11 BUGG 94 RVUE 13 AU 87 RVUE

 1 T-matrix pole, 5 poles, 5 channels, including scattering data from HYAMS 75 $(\pi\pi)$, LONGACRE 86 ($K\overline{K}$), BINON 83 ($\eta\eta$), and BINON 84C ($\eta\eta'$). ² Another pole is found at (1510 ± 130) - *i* (800 + 100) _ -150) MeV. ³ Coupled channel analysis of $\pi^+\pi^-\pi^0$, $K^+K^-\pi^0$, and $K^\pm K_S^0\pi^\mp$.

⁴ Average between $\pi^+\pi^-2\pi^0$ and $2(\pi^+\pi^-)$.

 5 T-matrix pole on sheet - - -. 6 Supersedes ANISOVICH 94.

⁷ Coupled-channel analysis of $\overline{p}p \rightarrow 3\pi^0$, $\pi^0\eta\eta$, and $\pi^0\pi^0\eta$ on sheet IV. Demonstrates explicitly that $f_0(500)$ and $f_0(1370)$ are two different poles.

https://pdg.lbl.gov

Created: 6/1/2021 08:31

⁸ Analysis of data from FALVARD 88.

⁹ The pole is on Sheet III. Demonstrates explicitly that $f_0(500)$ and $f_0(1370)$ are two different poles.

¹⁰Uses data from BEIER 72B, OCHS 73, HYAMS 73, GRAYER 74, ROSSELET 77, CA-SON 83, ASTON 88, and ARMSTRONG 91B. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems.

¹¹ Reanalysis of ANISOVICH 94 data.
 ¹² T-matrix pole on sheet III.

1200 to 1500 OUR ESTIMATE

¹³ Analysis of data from OCHS 73, GRAYER 74, BECKER 79, and CASON 83.

f₀(1370) BREIT-WIGNER MASS

DOCUMENT ID

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
$\bullet \bullet \bullet$ We do not use	e the foll	owing data for avera	ages,	fits, limi	ts, etc. ● ● ●
$1400\!\pm\!40$		¹ AUBERT	09L	BABR	$B^{\pm} \rightarrow \pi^{\pm} \pi^{\pm} \pi^{\mp}$
$1470 {+}\ {6} {+}\ {7}{-}255$		² UEHARA	08A	BELL	$10.6 \ e^+ e^{\pi^0 \pi^0} \xrightarrow{\rightarrow} 0 $
$1259\!\pm\!55$	2.6k	BONVICINI	07	CLEO	$D^+ \rightarrow \pi^- \pi^+ \pi^+$
$1309\pm~1\pm~15$		³ BUGG	07A	RVUE	$0.0 \ p \overline{p} \rightarrow 3\pi^0$
1449 ± 13	4.3k	⁴ GARMASH	06	BELL	$B^+ \rightarrow K^+ \pi^+ \pi^-$
$1350\!\pm\!50$		ABLIKIM	05	BES2	$J/\psi \rightarrow \phi \pi^+ \pi^-$
$1265\!\pm\!30\!+\!$		ABLIKIM	05Q	BES2	$\psi(2S) \rightarrow \gamma \pi^+ \pi^- K^+ K^-$
$1434 \pm 18 \pm 9$	848	AITALA	01A	E791	$D_{\rm s}^+ \rightarrow \pi^- \pi^+ \pi^+$
1308 ± 10		BARBERIS	99 B	OMEG	$450 \ pp \rightarrow \ p_s p_f \pi^+ \pi^-$
1315 ± 50		BELLAZZINI	99	GAM4	$450 \ pp \rightarrow \ pp \pi^0 \pi^0$
1315 ± 30		ALDE	98	GAM4	$100 \ \pi^- p \rightarrow \ \pi^0 \pi^0 n$
$1280\!\pm\!55$		BERTIN	98	OBLX	0.05–0.405 $\overline{n}p \rightarrow$
1186		^{5,6} TORNQVIST	95	RVUE	$\pi^+ \pi^+ \pi^-$ $\pi\pi \to \pi\pi, K\overline{K}, K\pi, \eta\pi$
1472 ± 12		ARMSTRONG	91	OMEG	300 $pp \rightarrow pp\pi\pi$, $ppK\overline{K}$
1275 ± 20		BREAKSTONE	90	SFM	62 $pp \rightarrow pp\pi^+\pi^-$
$1420\!\pm\!20$		AKESSON	86	SPEC	63 $pp \rightarrow pp\pi^+\pi^-$
1256		FROGGATT	77	RVUE	$\pi^+\pi^-$ channel

¹Breit-Wigner mass.

²Breit-Wigner mass. May also be the $f_0(1500)$.

³Reanalysis of ABELE 96C data. ⁴ Also observed by GARMASH 07 in $B^0 \rightarrow \kappa^0_S \pi^+ \pi^-$ decays. Supersedes GARMASH 05. 5 Uses data from BEIER 72B, OCHS 73, HYAMS 73, GRAYER 74, ROSSELET 77, CA-SON 83, ASTON 88, and ARMSTRONG 91B. Coupled channel analysis with flavor

symmetry and all light two-pseudoscalars systems. ⁶ Also observed by ASNER 00 in $\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_{\tau}$ decays

K K MODE					
VALUE (MeV)	<i>EVTS</i>	DOCUME	NT ID	TECN	COMMENT
• • • We do not us	e the fol	owing data	for averages,	fits, lim	its, etc. • • •
$1422\!\pm\!15\!\pm\!28$		1 AAIJ	19н	LHCB	$pp \rightarrow D^{\pm}X$
$1360 \pm 31 \pm 28$	430	^{2,3} DOBBS	15		$J/\psi \rightarrow \gamma K^+ K^-$
$1350\!\pm\!48\!\pm\!15$	168	^{2,3} DOBBS	15		$\psi(2S) \rightarrow \gamma K^+ K^-$
$1440\pm~6$		VLADIN	1IRSK06	SPEC	40 $\pi^- p \rightarrow K^0_S K^0_S n$
$1391\!\pm\!10$		TIKHO	MIROV 03	SPEC	$40.0 \ \pi^- C \rightarrow \ \kappa^0_S \ \kappa^0_S \ \kappa^0_I X$
$1440\!\pm\!50$		BOLON	KIN 88	SPEC	$40 \pi^- p \rightarrow K^0_S K^0_S n$
$1463\pm~9$		ETKIN	82 B	MPS	$23 \pi^- p \rightarrow n2K_S^0$
1425 ± 15		WICKLU	JND 80	SPEC	$6 \pi N \rightarrow K^+ K^- N$
\sim 1300		POLYC	HRO 79	STRC	$7 \pi^- p \rightarrow n2K_S^0$

¹ From the $D^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ Dalitz plot fit with the isobar model A. ² Using CLEO-c data but not authored by the CLEO Collaboration.

 3 From a fit to a Breit-Wigner line shape with fixed $\Gamma=346$ MeV.

4π MODE $2(\pi\pi)_S + \rho\rho$

$\eta\eta$ MODE					
$^1 ho ho$ dominant.					
\sim 1410	5751	¹ BETTINI	66	DBC	$0.0 \overline{p} n \rightarrow 2\pi^+ 3\pi^-$
$1386\!\pm\!30$		GASPERO	93	DBC	$0.0 \overline{p} n \rightarrow 2\pi^+ 3\pi^-$
1345 ± 12		ADAMO	93	OBLX	$\overline{n}p \rightarrow 3\pi^+ 2\pi^-$
1374 ± 38		AMSLER	94	CBAR	$0.0 \ \overline{p} p \rightarrow \pi^+ \pi^- 3\pi^0$
$1395\!\pm\!40$		ABELE	01	CBAR	$0.0 \overline{p}d \rightarrow \pi^- 4\pi^0 p$
$\bullet \bullet \bullet$ We do not use	the followir	ng data for averag	es, fits,	limits, e	etc. • • •
VALUE (MeV)	EVTS	DOCUMENT ID)	TECN	COMMENT

VALUE (MeV)	DOCUMENT ID	TE	COMMENT
• • • We do not use the	following data for aver	ages, fits,	limits, etc. • • •
$1262^{+51}_{-78}{}^{+82}_{-103}$	¹ UEHARA	10A BE	ELL 10.6 $e^+e^- \rightarrow e^+e^-\eta\eta$
1430	AMSLER	92 CB	BAR 0.0 $\overline{p}p \rightarrow \pi^0 \eta \eta$
1220 ± 40	ALDE	86D GA	AM4 100 $\pi^- p ightarrow n2\eta$
-			

¹Breit-Wigner mass. May also be the $f_0(1500)$.

COUPLED CHANNEL MODE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following	data for averages	, fits,	limits, e	etc. • • •
1330.2^+_{-} ${}^{5.9}_{6.5}{\pm}5.1$	¹ AAIJ	19 H	LHCB	$pp \rightarrow D^{\pm}X$
1306 ±20	² ANISOVICH	03	RVUE	
¹ From the $D^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ meson model of AOUDE 18. ² K-matrix pole from combine $\pi^{+}\pi^{-} \rightarrow \pi^{+}\pi^{-}, \overline{p}p \rightarrow \pi^{0}\pi$ $K^{+}K^{0}_{S}\pi^{-}$ at rest, $\overline{p}n \rightarrow \pi^{-}$	Dalitz plot fit with d analysis of π^{-} $0 \pi^{0}, \pi^{0}\eta\eta, \pi^{0}\pi^{0}$ $\pi^{-}\pi^{+}, K_{S}^{0}K^{-}\eta$	th the p - p - q $0 \eta, \pi^{-1}$ π^{0}, K_{1}^{0}	$\begin{array}{c} Triple-N\\ & \pi^{0}\\ & \pi^{-}\\ & \pi^{-}\\ & \kappa^{0}\\ & \kappa^{0}\\ & \kappa^{0}\\ & \kappa^{-} \end{array}$	M amplitude in the multi- $\pi^{0}n, \pi^{-}p \rightarrow K\overline{K}n,$ $\mu, K^{+}K^{-}\pi^{0}, K^{0}_{S}K^{0}_{S}\pi^{0},$ π^{-} at rest.

https://pdg.lbl.gov

f₀(1370) BREIT-WIGNER WIDTH

VALUE (MeV)			DOCUMEN	IT ID		
200 to 500 OUR I	ESTIMAT	Ε				
$\pi\pi$ MODE VALUE (MeV)	EVTS		DOCUMENT ID		TECN	COMMENT
• • • We do not	use the fo	llov	wing data for av	erage	s, fits, li	mits, etc. • • •
300± 80		1	AUBERT	09L	BABR	$B^{\pm} \rightarrow \pi^{\pm} \pi^{\pm} \pi^{\mp}$
90^+ $\begin{array}{c}2+&50\\1-&22\end{array}$		2	UEHARA	08A	BELL	10.6 $e^+e^- \rightarrow e^+e^-\pi^0\pi^0$
$\begin{array}{rrrr} 298\pm & 21 \\ 126\pm & 25 \\ 265\pm & 40 \end{array}$	2.6k 4286	3	BONVICINI GARMASH ABLIKIM	07 06 05	CLEO BELL BES2	$D^+ \rightarrow \pi^- \pi^+ \pi^+ B^+ \rightarrow K^+ \pi^+ \pi^- J/\psi \rightarrow \phi \pi^+ \pi^-$
$350 \pm 100 {+} {105 \atop -} {60}$			ABLIKIM	05Q	BES2	$\psi(2S) \rightarrow \gamma \pi^+ \pi^- K^+ K^-$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	848	4,5	AITALA BARBERIS BELLAZZINI ALDE BERTIN TORNQVIST ARMSTRONG BREAKSTONE AKESSON FROGGATT	01A 99B 98 98 95 91 90 86 77	E791 OMEG GAM4 OBLX RVUE OMEG SFM SPEC RVUE	$D_{s}^{+} \rightarrow \pi^{-}\pi^{+}\pi^{+}$ $450 \ pp \rightarrow p_{s}p_{f}\pi^{+}\pi^{-}$ $450 \ pp \rightarrow pp\pi^{0}\pi^{0}$ $100 \ \pi^{-}p \rightarrow \pi^{0}\pi^{0}n$ $0.05-0.405 \ \overline{n}p \rightarrow \pi^{+}\pi^{+}\pi^{-}$ $\pi\pi \rightarrow \pi\pi, \ K\overline{K}, \ K\pi, \ \eta\pi$ $300 \ pp \rightarrow pp\pi\pi, \ ppK\overline{K}$ $62 \ pp \rightarrow pp\pi^{+}\pi^{-}$ $63 \ pp \rightarrow pp\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-} \text{ channel}$
¹ The systemati	c errors ar	re r	not reported			

¹ The systematic errors are not reported. ² Breit-Wigner width. May also be the $f_0(1500)$. ³ Also observed by GARMASH 07 in $B^0 \rightarrow \kappa_S^0 \pi^+ \pi^-$ decays. Supersedes GARMASH 05.

⁴ Uses data from BEIER 72B, OCHS 73, HYAMS 73, GRAYER 74, ROSSELET 77, CA-SON 83, ASTON 88, and ARMSTRONG 91B. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems. ⁵ Also observed by ASNER 00 in $\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_{\tau}$ decays ⁶ Width defined as distance between 45 and 135° phase shift.

KK MODE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follo	owing data for av	erage	s, fits, lir	nits, etc. • • •
$324\pm$ 38 ± 42	¹ AAIJ	19H	LHCB	$pp \rightarrow D^{\pm}X$
$121\pm~15$	VLADIMIRSK.	.06	SPEC	$40 \pi^- p \rightarrow K^0_S K^0_S n$
$55\pm~26$	TIKHOMIROV	03	SPEC	$40.0 \ \pi^- C \rightarrow \ \kappa^0_S \ \kappa^0_S \ \kappa^0_I X$
$250\pm$ 80	BOLONKIN	88	SPEC	$40 \pi^- p \rightarrow K^0_S K^0_S n$
$118 {+} {138 \atop -16}$	ETKIN	82 B	MPS	$23 \pi^{-} p \rightarrow n2K_{S}^{0}$
$160\pm~30$	WICKLUND	80	SPEC	$6 \pi N \rightarrow K^+ K^- N$
~ 150	POLYCHRO	79	STRC	$7 \pi^- p \rightarrow n2K_S^0$

¹From the $D^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ Dalitz plot fit with the isobar model A.

https://pdg.lbl.gov

4π MODE $2(\pi\pi)_S +$	ρρ				
VALUE (MeV)	EVTS	DOCUMENT	ID	TECN	COMMENT
$\bullet \bullet \bullet$ We do not use th	e followin	g data for avera	ages, fits,	limits, e	etc. • • •
275 ± 55		ABELE	01	CBAR	$0.0 \overline{p} d \rightarrow \pi^- 4 \pi^0 p$
375 ± 61		AMSLER	94	CBAR	$0.0 \ \overline{p} p \rightarrow \pi^+ \pi^- 3 \pi^0$
398 ± 26		ADAMO	93	OBLX	$\overline{n}p \rightarrow 3\pi^+ 2\pi^-$
$310\!\pm\!50$		GASPERO	93	DBC	$0.0 \ \overline{p} n \rightarrow 2\pi^+ 3\pi^-$
\sim 90	5751	¹ BETTINI	66	DBC	$0.0 \ \overline{p} n \rightarrow 2\pi^+ 3\pi^-$
$^{1} ho ho$ dominant.					
$\eta\eta$ MODE					
VALUE (MeV)		DOCUMENT ID	TE	CN CC	OMMENT
\bullet \bullet \bullet We do not use th	e followin	g data for avera	ages, fits,	limits, e	etc. • • •
$484 \substack{+246 + 246 \\ -170 - 263}$	1	UEHARA	10A BE	ELL 10	$0.6 e^+e^- \rightarrow e^+e^-\eta\eta$
250		AMSLER	92 CE	3AR 0.	$0 \overline{p} p \rightarrow \pi^0 \eta \eta$
$320\pm$ 40		ALDE	86D GA	AM4 10	$00 \pi^- p \rightarrow n2\eta$
1 Breit-Wigner width. May also be the $f_0(1500)$.					
COUPLED CHANNEL MODE					
$\bullet \bullet \bullet$ We do not use th	e followin	g data for avera	ages, fits,	limits, e	etc. • • •
147^{+30}_{-50}		¹ ANISOVICI	H 03	RVUE	
¹ K-matrix pole from combined analysis of $\pi^- p \rightarrow \pi^0 \pi^0 n$, $\pi^- p \rightarrow K\overline{K}n$, $\pi^+ \pi^- \rightarrow \pi^+ \pi^-, \overline{p}p \rightarrow \pi^0 \pi^0 \pi^0, \pi^0 \eta \eta, \pi^0 \pi^0 \eta, \pi^+ \pi^- \pi^0, K^+ K^- \pi^0, K^0_S K^0_S \pi^0, K^+ K^0_S \pi^-$ at rest, $\overline{p}n \rightarrow \pi^- \pi^- \pi^+, K^0_S K^- \pi^0, K^0_S K^0_S \pi^-$ at rest.					

f₀(1370) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$\pi\pi$	seen
Г2	4π	seen
Γ ₃	$4\pi^0$	seen
Γ ₄	$2\pi^+2\pi^-$	seen
Γ ₅	$\pi^+\pi^-2\pi^0$	seen
Г ₆	ho ho	seen
Γ ₇	$2(\pi\pi)_{S-wave}$	seen
Г ₈	$\pi(1300)\pi$	seen
Г9	$a_1(1260)\pi$	seen
Γ ₁₀	$\eta \eta_{-}$	seen
Γ_{11}	K <u>K</u>	seen
Г ₁₂	$K\overline{K}n\pi$	not seen
Γ ₁₃	6π	not seen
Γ ₁₄	$\omega \omega$	not seen

https://pdg.lbl.gov

Γ ₁₅	$\gamma \gamma$	seen
Г ₁₆	e^+e^-	not seen

f₀(1370) PARTIAL WIDTHS

 $\Gamma(\gamma \gamma)$ See $\gamma \gamma$ widths under $f_0(500)$ and MORGAN 90.

Γ(e ⁺ e ⁻)						Г ₁₆
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT	
<20	90	VOROBYEV	88	ND	$e^+e^- ightarrow \pi^0\pi^0$	

$f_0(1370) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(\eta\eta) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$				Γ ₁₀ Γ ₁₅ /Γ
VALUE (eV)	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the fol	lowing data for aver	ages, fits, limit	ts, etc. • • •	
$121 {+} {133 + 169 \atop - 53 - 106}$	¹ UEHARA	10A BELL	10.6 e ⁺ e ⁻ -	$\rightarrow e^+e^-\eta\eta$
-				

¹ Including interference with the $f'_{2}(1525)$ (parameters fixed to the values from the 2008 edition of this review, PDG 08) and $f_{2}(1270)$. May also be the $f_{0}(1500)$.

f₀(1370) BRANCHING RATIOS

$\Gamma(\pi\pi)/\Gamma_{total}$						Γ_1/Γ
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	<u>COMMENT</u>	
$\bullet \bullet \bullet$ We do not use	e the following	g data for average	es, fits,	limits, e	etc. • • •	
<0.10	95	OCHS	13	RVUE		
0.26 ± 0.09		BUGG	96	RVUE		
<0.15		¹ AMSLER	94	CBAR	$\overline{p}p \rightarrow \pi^+$	$\pi^{-}\pi^{-}3\pi^{0}$
<0.06		GASPERO	93	DBC	$0.0 \ \overline{p} n \rightarrow$	hadrons
¹ Using AMSLER 9	95в (3π ⁰).					
$\Gamma(4\pi)/\Gamma_{total}$				Г	$_2/\Gamma = (\Gamma_3)$	+Γ₄+Γ₅)/Γ
VALUE		DOCUMENT ID		TECN	<u>COMMENT</u>	
$\bullet \bullet \bullet$ We do not use	e the following	g data for averag	es, fits,	limits, e	etc. • • •	
>0.72		GASPERO	93	DBC	$0.0 \ \overline{p} n \rightarrow$	hadrons
$\Gamma(4\pi^0)/\Gamma(4\pi)$						Γ_3/Γ_2
VALUE		<u>DOCUMENT ID</u>		TECN	<u>COMMENT</u>	
$\bullet \bullet \bullet$ We do not use	e the following	g data for average	es, fits,	limits, e	etc. • • •	
seen		ABELE	96	CBAR	$0.0 \ \overline{p} p \rightarrow$	$5\pi^{0}$
$0.068 \!\pm\! 0.005$		¹ GASPERO	93	DBC	$0.0 \ \overline{p} n \rightarrow$	hadrons
¹ Model-dependent	t evaluation.					

https://pdg.lbl.gov

Γ₁₅

 $\Gamma(2\pi^+2\pi^-)/\Gamma(4\pi)$ $\Gamma_4/\Gamma_2 = \Gamma_4/(\Gamma_3 + \Gamma_4 + \Gamma_5)$ VALUE TECN COMMENT DOCUMENT ID • • We do not use the following data for averages, fits, limits, etc. • • • ¹ GASPERO 0.420 ± 0.014 93 DBC $0.0 \overline{p} n \rightarrow 2\pi^+ 3\pi^-$ ¹ Model-dependent evaluation. $\Gamma(\pi^+\pi^-2\pi^0)/\Gamma(4\pi)$ $\Gamma_5/\Gamma_2 = \Gamma_5/(\Gamma_3 + \Gamma_4 + \Gamma_5)$ VALUE TECN <u>COMMENT</u> DOCUMENT ID • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ GASPERO 93 DBC $0.0 \overline{p} n \rightarrow \text{hadrons}$ $0.512 \!\pm\! 0.019$ ¹ Model-dependent evaluation. $\Gamma(\rho\rho)/\Gamma(4\pi)$ Γ_6/Γ_2 DOCUMENT ID _____ TECN COMMENT VALUE • • • We do not use the following data for averages, fits, limits, etc. • • • 0.26 ± 0.07 ABELE 01B CBAR $0.0 \ \overline{p} d \rightarrow 5 \pi p$ $\Gamma(2(\pi\pi)_{S-\text{wave}})/\Gamma(\pi\pi)$ Γ_7/Γ_1 DOCUMENT ID TECN COMMENT VALUE • • We do not use the following data for averages, fits, limits, etc. • • • ¹ ABELE 01 CBAR 0.0 $\overline{p}d \rightarrow \pi^- 4\pi^0 p$ 5.6 ± 2.6 ¹ From the combined data of ABELE 96 and ABELE 96C. $\Gamma(2(\pi\pi)_{S-wave})/\Gamma(4\pi)$ Γ_7/Γ_2 DOCUMENT ID VALUE TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 0.51 ± 0.09 ABELE 01B CBAR $0.0 \ \overline{p} d \rightarrow 5\pi p$ $\Gamma(\rho\rho)/\Gamma(2(\pi\pi)_{S-\text{wave}})$ Γ_6/Γ_7 DOCUMENT ID _____ TECN _____ COMMENT VALUE • • We do not use the following data for averages, fits, limits, etc. • • • 450 $pp \rightarrow p_f 4\pi p_s$ large BARBERIS 00C CBAR $\overline{p}p \rightarrow \pi^+\pi^- 3\pi^0$ 1.6 ± 0.2 AMSLER 94 GASPERO DBC 0.0 $\overline{p}n \rightarrow \text{hadrons}$ ~ 0.65 93 $\Gamma(\pi(1300)\pi)/\Gamma(4\pi)$ Γ_8/Γ_2 DOCUMENT ID VALUE TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 0.17 ± 0.06 ABELE 01B CBAR $0.0 \ \overline{p} d \rightarrow 5\pi p$ $\Gamma(a_1(1260)\pi)/\Gamma(4\pi)$ Γ_9/Γ_2 VALUE DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 0.06 ± 0.02 ABELE 01B CBAR $0.0 \ \overline{p} d \rightarrow 5\pi p$

https://pdg.lbl.gov

Γ(ηη)/Γ(4π) VALUE	DOCUMENT ID		$\Gamma_{10}/\Gamma_2 = \Gamma_{10}/(\Gamma_3 + \Gamma_4 + \Gamma_5)$ <u>TECN</u> <u>COMMENT</u>
$\bullet \bullet \bullet$ We do not use the follow	ing data for averages	s, fits,	limits, etc. • • •
$\begin{array}{ccc} (28 \ \pm 11 \) \times 10^{-3} \\ (\ 4.7 \pm \ 2.0) \times 10^{-3} \end{array}$	¹ ANISOVICH BARBERIS	02d 00e	$\begin{array}{llllllllllllllllllllllllllllllllllll$
1 From a combined K-matrix $\pi^{0}\pi^{0}\eta$), GAMS ($\pi p ightarrow \pi^{0}$	analysis of Crystal) π ⁰ n, ηηn, ηη' n), a	Barre and B	el (0. $p\overline{p} \rightarrow \pi^0 \pi^0 \pi^0, \pi^0 \eta \eta,$ NL $(\pi p \rightarrow K \overline{K} n)$ data.
$\Gamma(\overline{K}\overline{K})/\Gamma_{\text{total}}$	DOCUMENT ID		Γ₁₁/Γ
• • • We do not use the follow	ing data for averages	. fits.	limits, etc. $\bullet \bullet \bullet$
0.35±0.13	BUGG	96	RVUE
$\Gamma(\overline{K}\overline{K})/\Gamma(\pi\pi)$	DOCUMENT ID	TECI	Γ₁₁/Γ₁
• • • We do not use the follow	ing data for averages	, fits,	limits, etc. • • •
$\begin{array}{ccccc} 0.08 \pm 0.08 \\ 0.91 \pm 0.20 & 1 \\ 0.12 \pm 0.06 & 2 \\ 0.46 \pm 0.15 \pm 0.11 \\ {}^{1} \text{ Coupled channel analysis of } \\ {}^{2} \text{ From a combined K-matrix} \\ \pi^{0} \pi^{0} \eta \text{), GAMS } (\pi p \to \pi^{0} \eta) \end{array}$	ABLIKIM 05 BARGIOTTI 03 ANISOVICH 02D BARBERIS 99D $\pi^{+}\pi^{-}\pi^{0}, K^{+}K^{-}$ analysis of Crystal $\pi^{0}n, \eta\eta n, \eta\eta' n$), a	BES OBL SPE OM π^0 , an Barre	2 $J/\psi \rightarrow \phi \pi^+ \pi^-, \phi K^+ K^-$ X $\overline{p}p$ C Combined fit EG 450 $pp \rightarrow K^+ K^-, \pi^+ \pi^-$ and $K^{\pm} K_S^0 \pi^{\mp}$. El (0. $p\overline{p} \rightarrow \pi^0 \pi^0 \pi^0, \pi^0 \eta \eta$, NL $(\pi p \rightarrow K \overline{K} n)$ data.
$\Gamma(K\overline{K}n\pi)/\Gamma_{\text{total}}$	DOCUMENT ID		Γ₁₂/Γ
• • • We do not use the follow	ing data for averages	. fits.	limits. etc. $\bullet \bullet \bullet$
<0.03	GASPERO	93	DBC $0.0 \ \overline{p} n \rightarrow \text{hadrons}$
$\Gamma(6\pi)/\Gamma_{total}$	DOCUMENT ID		Г13/Г <u>тесл</u> <u>соммент</u>
• • • We do not use the follow	ing data for averages	s, fits,	limits, etc. • • •
<0.22	GASPERO	93	DBC $0.0 \overline{p} n \rightarrow \text{hadrons}$
$\Gamma(\omega\omega)/\Gamma_{total}$	DOCUMENT ID		Г₁₄/Г <i>тесл соммент</i>
• • • We do not use the follow	ing data for averages	s, fits,	limits, etc. • •
<0.13	GASPERO	93	DBC $0.0 \ \overline{p} n \rightarrow \text{hadrons}$

f₀(1370) REFERENCES

ALBRECHT	20	EPJ C80 453	M. Albrecht <i>et al.</i>	(Crystal Barrel Collab.)
AAIJ	19H	JHEP 1904 063	R. Aaij <i>et al.</i>	(LHCb Collab.)
AOUDE	18	PR D98 056021	R.T. Aoude <i>et al.</i>	
DOBBS	15	PR D91 052006	S. Dobbs <i>et al.</i>	(NWES)
OCHS	13	JP G40 043001	W. Ochs	
UEHARA	10A	PR D82 114031	S. Uehara <i>et al.</i>	(BELLE Collab.)
ANISOVICH	09	IJMP A24 2481	V.V. Anisovich, A.V. Sarantsev	
AUBERT	09L	PR D79 072006	B. Aubert <i>et al.</i>	(BABAR Collab.)
PDG	08	PL B667 1	C. Amsler <i>et al.</i>	(PDG Collab.)
UEHARA	08A	PR D78 052004	S. Uehara <i>et al.</i>	(BELLE Collab.)
BONVICINI	07	PR D76 012001	G. Bonvicini et al.	(CLEO Collab.)
BUGG	07A	JP G34 151	D.V. Bugg et al.	
GARMASH	07	PR D75 012006	A. Garmash et al.	(BELLE Collab.)
GARMASH	06	PRL 96 251803	A. Garmash <i>et al.</i>	(BELLE Collab.)
PDG	06	JP G33 1	WM. Yao <i>et al.</i>	(PDG_Collab.)
VLADIMIRSK	06	PAN 69 493	V.V. Vladimirsky <i>et al.</i>	(ITEP, Moscow)
		Translated from YAF 69 5	515.	
ABLIKIM	05	PL B607 243	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	05Q	PR D72 092002	M. Ablikim <i>et al.</i>	(BES Collab.)
GARMASH	05	PR D71 092003	A. Garmash <i>et al.</i>	(BÈLLE Collab.)
ANISOVICH	03	EPJ A16 229	V.V. Anisovich et al.	. ,
BARGIOTTI	03	EPJ C26 371	M. Bargiotti <i>et al.</i>	(OBELIX Collab.)
TIKHOMIROV	03	PAN 66 828	G.D. Tikhomirov et al.	
		Translated from YAF 66 8	360.	
ANISOVICH	02D	PAN 65 1545	V.V. Anisovich et al.	
		Translated from YAF 65 1	1583.	
ABELE	01	EPJ C19 667	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ABELE	01B	EPJ C21 261	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
AITALA	01A	PRL 86 765	E.M. Aitala <i>et al.</i>	(FNAL E791 Collab.)
ASNER	00	PR D61 012002	D.M. Asner et al.	(CLEO Collab.)
BARBERIS	00C	PL B471 440	D. Barberis <i>et al.</i>	(WA 102 Collab.)
BARBERIS	00E	PL B479 59	D. Barberis <i>et al.</i>	(WA 102 Collab.)
BARBERIS	99B	PL B453 316	D. Barberis <i>et al.</i>	(Omega Expt.)
BARBERIS	99D	PL B462 462	D. Barberis <i>et al.</i>	(Omega Expt.)
BELLAZZINI	99	PL B467 296	R. Bellazzini <i>et al.</i>	
KAMINSKI	99	EPJ C9 141	R. Kaminski, L. Lesniak, B. Loise	au (CRAC, PARIN)
ALDE	98	EPJ A3 361	D. Alde <i>et al.</i>	(GAM4 Collab.)
Also		PAN 62 405	D. Alde <i>et al.</i>	(GAMS_Collab.)
		Translated from YAF 62 4	146.	· · · · · · · · · · · · · · · · · · ·
ANISOVICH	98B	SPU 41 419	V.V. Anisovich et al.	
		Translated from UFN 168	481.	
BERTIN	98	PR D57 55	A. Bertin <i>et al.</i>	(OBELIX Collab.)
BARBERIS	97B	PL B413 217	D. Barberis <i>et al.</i>	(WA 102 Collab.)
BERTIN	97C	PL B408 476	A. Bertin <i>et al.</i>	(OBELIX Collab.)
ABELE	96	PL B380 453	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ABELE	96B	PL B385 425	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ABELE	96C	NP A609 562	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
BUGG	96	NP B471 59	D.V. Bugg, A.V. Sarantsev, B.S.	Zou (LOQM, PNPI)
AMSLER	95B	PL B342 433	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
AMSLER	95C	PL B353 571	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
AMSLER	95D	PL B355 425	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
JANSSEN	95	PR D52 2690	G. Janssen <i>et al.</i>	(STON, ADLD, JULI)
TORNQVIST	95	ZPHY C68 647	N.A. Tornqvist	` (HELS)
AMSLER	94	PL B322 431	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.) JPC
AMSLER	94D	PL B333 277	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
ANISOVICH	94	PL B323 233	V.V. Anisovich et al.	(Crystal Barrel Collab.) JPC
BUGG	94	PR D50 4412	D.V. Bugg et al.	(LOQM)
KAMINSKI	94	PR D50 3145	R. Kaminski, L. Lesniak, J.P. Ma	illet (ČRAČ+)
ADAMO	93	NP A558 13C	A. Adamo <i>et al.</i>	(OBELIX Collab.) JPC
GASPERO	93	NP A562 407	M. Gaspero	(ROMAI) JPC
AMSI FR	92	PL B291 347	C Amsler <i>et al</i>	(Crystal Barrel Collab)
ARMSTRONG	91	7PHY C51 351	T A Armstrong et al	(ATHU BARI BIRM+)
ARMSTRONG	91B	ZPHY C52 389	T A Armstrong et al	(ATHU BARI BIRM+)
BREAKSTONE	90	ZPHY C48 569	A.M. Breakstone <i>et al</i>	(ISU, BGNA (FRN+))
MORGAN	90	ZPHY C48 623	D Morgan M R Pennington	(RAL DURH)
ASTON	88	NP B296 493	D Aston <i>et al</i> (SI Δt	
BOLONKIN	88	NP B309 426	BV Bolonkin et al	(ITEP SERP)
FALVARD	88	PR D38 2706	A Falvard et al	(CLER ERAS IALOL)
VOROBYEV	88	SINP 48 273	PV Vorobiev et al	(NOVO)
, SHODIEV	50	Translated from YAF 48 4	136.	(10000)

https://pdg.lbl.gov

Created: 6/1/2021 08:31

AU	87	PR D35 1633	K.L. Au, D. Morgan, M.F	R. Pennington (DURH, RAL)
AKESSON	86	NP B264 154	T. Akesson <i>et al.</i>	(Axial Field Spec. Collab.)
ALDE	86D	NP B269 485	D.M. Alde <i>et al.</i>	(BELG, LAPP, SERP, CERN+)
LONGACRE	86	PL B177 223	R.S. Longacre <i>et al.</i>) (BNL, BRAN, CUNY+)
BINON	84C	NC 80A 363	F.G. Binon et al.	(BELG, LAPP, SERP+)
BINON	83	NC 78A 313	F.G. Binon <i>et al.</i>	(BELG, LAPP, SERP+)
CASON	83	PR D28 1586	N.M. Cason <i>et al.</i>	(NDAM, ANL)
ETKIN	82B	PR D25 1786	A. Etkin <i>et al.</i>	(BNL, CUNY, TUFTS, VAND)
WICKLUND	80	PRL 45 1469	A.B. Wicklund et al.	` (ANL)
BECKER	79	NP B151 46	H. Becker <i>et al.</i>	(MPIM, CERN, ZEEM, CRAC)
POLYCHRO	79	PR D19 1317	V.A. Polychronakos et al.	(NDAM, ANL)
FROGGATT	77	NP B129 89	C.D. Froggatt, J.L. Peters	sen (GLAS, NORD)
ROSSELET	77	PR D15 574	L. Rosselet et al.	(GEVA, SACL)
HYAMS	75	NP B100 205	B.D. Hyams <i>et al.</i>	(ČERN, MPIM)
GRAYER	74	NP B75 189	G. Grayer et al.	(CERN, MPIM)
HYAMS	73	NP B64 134	B.D. Hyams <i>et al.</i>	(CERN, MPIM)
OCHS	73	Thesis	W. Ochs	(MPIM, MUNI)
BEIER	72B	PRL 29 511	E.W. Beier <i>et al.</i>	(PENN)
BETTINI	66	NC 42A 695	A. Bettini <i>et al.</i>	(PADO, PISA)
				· · · · · · · · · · · · · · · · · · ·