$f_0(1500)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See the reviews on "Scalar Mesons below 2 GeV" and on "Non- $q\overline{q}$ Mesons".

f₀(1500) MASS

VALUE	(MeV)			EVTS		DOCUMENT ID		TECN	COMMENT
1506	± 6	0	ur av	/ERAG	E Er	ror includes sca	le fac	tor of 1.4	4. See the ideogram below.
1515	± 12				1	BARBERIS	00A		450 $pp \rightarrow p_f \eta \eta p_s$
1511	\pm 9				1,2	BARBERIS	00C		450 $pp \rightarrow p_f 4\pi p_s$
1510	\pm 8				1	BARBERIS	00e		450 $pp \rightarrow p_f \eta \eta p_s$
1522	± 25				1	BERTIN	98	OBLX	$0.05-0.405 \overline{n}p \rightarrow$
					1				$\pi^{+}\pi^{+}\pi^{-}$
1449	± 20				2	BERTIN	97C	OBLX	$0.0 \ \overline{p} p \rightarrow \pi^+ \pi^- \pi^0$
1500	± 10				3	AMSLER	95 D	CBAR	$0.0 \ \overline{p} p \rightarrow \pi^0 \pi^0 \pi^0,$
	14/ 1						<i>c</i> .,		$\pi^{0}\eta\eta, \pi^{0}\pi^{0}\eta$
• • •	vve do	o nc	ot use 1	the foll	owing	data for averag	ges, fit	s, limits	, etc. ● ● ●
1496	\pm 1.2	2+	4.4		4	ALBRECHT	20	RVUE	$0.9 \overline{p} p \rightarrow \pi^0 \pi^0 \eta,$
		_	20.4						$\pi^{0}\eta\eta, \pi^{0}K^{+}K^{-}$
1465	± 18				5	ROPERTZ	18	RVUE	$\overline{B}_{s}^{0} \rightarrow$
									$J/\psi(\pi^{+}\pi^{-}/K^{+}K^{-})$
1447	± 16	\pm	13	163	6,7	DOBBS	15		$J/\psi \rightarrow \gamma \pi^+ \pi^-$
1442	\pm 9	\pm	4	261	6,7	DOBBS	15		$\psi(2S) \rightarrow \gamma \pi^+ \pi^-$
1460.9	9± 2.9)			8	AAIJ	14br	LHCB	$\overline{B}_{c}^{0} \rightarrow J/\psi \pi^{+} \pi^{-}$
1468	$^{+14}_{-15}$	+	23 74	5.5k	9	ABLIKIM	13N	BES3	$e^+e^- \rightarrow J/\psi \rightarrow \gamma \eta \eta$
1486	+10		14		1	ANISOVICH	09	RVUF	$0.0 \overline{\rho} \rho \pi N$
1470	+60			568	10	KIEMPT	08	F791	$D^+ \rightarrow \pi^- \pi^+ \pi^+$
1110	± 6	+	72	500	11		00		s / / / /
1470	- 7	-:	255		11	UEHARA	08A	BELL	$10.6 \ e^+ e^- \rightarrow \\ e^+ e^- \pi^0 \pi^0$
1466	± 6	\pm	20		12	ABLIKIM	06V	BES2	$e^+e^- \rightarrow J/\psi \rightarrow$
									$\gamma \pi^+ \pi^-$
1495	\pm 4					AMSLER	06	CBAR	$0.9 \overline{p} p \rightarrow K^+ K^- \pi^0$
1539	± 20			9.9k		AUBERT	060	BABR	$B^+ \rightarrow K^+ K^+ K^-$
1473	\pm 5			80k	12,13	UMAN	06	E835	5.2 $\overline{p}p \rightarrow \eta \eta \pi^0$
1478	\pm 6					VLADIMIRSK.	.06	SPEC	40 $\pi^- p \rightarrow K^0_S K^0_S n$
1493	\pm 7				12	BINON	05	GAMS	$33 \pi^- p \rightarrow \eta \eta n$
1524	± 14			1400	14	GARMASH	05	BELL	$B^+ \rightarrow K^+ K^+ K^-$
1489	$^{+ 8}_{- 4}$				15	ANISOVICH	03	RVUE	
1490	± 30				12	ABELE	01	CBAR	$0.0 \overline{p} d \rightarrow \pi^- 4 \pi^0 p$
1497	± 10				12	BARBERIS	99	OMEG	450 $pp \rightarrow p_c p_f K^+ K^-$
1502	+10				12	BARBERIS	99B	OMEG	450 $pp \rightarrow p_{2}p_{4}\pi^{+}\pi^{-}$
1502	+12	+	10		16	BARBERIS	99D	OMEG	$450 \ pp \rightarrow K^+ K^-$
		-							$\pi^+\pi^-$
1530	± 45				12	BELLAZZINI	99	GAM4	$450 \ pp \rightarrow \ pp \pi^0 \pi^0$
1505	± 18				12	FRENCH	99		$300 pp \rightarrow$
									$p_f(K^+K^-)p_s$
https	·//nd	പി	ما مصر	,		Page 1		Cr	ested: 6/1/2021 08:21
nups	·//pu	g.11	JI.guv			гавст			cated. $0/1/2021$ 00.31

1447 1580 1499 ~ 152	${\pm 27} {\pm 80} {\pm 8} {}_{0}$				17 12 1	KAMINSKI ALDE ANISOVICH REYES	99 98 98B 98	RVUE GAM4 RVUE SPEC	$\pi \pi \to \pi \pi, \ K \overline{K}, \ \sigma \sigma$ $100 \ \pi^{-} p \to \pi^{0} \pi^{0} n$ Compilation $800 \ p p \to p_{\sigma} p_{\sigma} K_{\sigma}^{0} K_{\sigma}^{0}$
1510	+20				1	BARBERIS	97 B	OMEG	450 pp \rightarrow pp2($\pi^+\pi^-$)
~ 147	5					FRABETTI	97D	F687	$D^{\pm} \rightarrow \pi^{\mp} \pi^{\pm} \pi^{\pm}$
~ 150	5						96	CBAR	$0 \overline{n} \overline{n} \rightarrow 5\pi^0$
1515	+20					ABELE	96B	CBAR	$0.0 \ \overline{p}p \rightarrow \pi^0 K^0 K^0$
1500	+ 8				1	ABELE	96C	RVUF	Compilation
1460	+20			120	12		96B	VES	$37 \pi^- A \rightarrow nn\pi^- A$
1500	+ 8			120		BUGG	96	RVUE	
1500	+15				18	AMSLER	95B	CBAR	$0.0 \overline{p} p \rightarrow 3\pi^0$
1505	± 15				19	AMSLER	95C	CBAR	$0.0 \overline{p} p \rightarrow nn\pi^0$
1445	± 5				20	ANTINORI	95	OMEG	300,450 pp \rightarrow
									$pp2(\pi^{+}\pi^{-})$
1497	± 30				12	ANTINORI	95	OMEG	$300,450 pp \rightarrow$
									$pp\pi^+\pi^-$
~ 150	5					BUGG	95	MRK3	$J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-$
1446	\pm 5				12	ABATZIS	94	OMEG	450 $pp \rightarrow pp2(\pi^+\pi^-)$
1545	± 25				12	AMSLER	94E	CBAR	$0.0 \ \overline{p} p \rightarrow \pi^0 \eta \eta'$
1520	± 25				1,21	ANISOVICH	94	CBAR	$0.0 \ \overline{p} p \rightarrow 3\pi^0, \pi^0 \eta \eta$
1505	± 20				1,22	BUGG	94	RVUE	$\overline{p}p \rightarrow 3\pi^0, \eta\eta\pi^0,$
					10				$\eta \pi^0 \pi^0$
1560	± 25				12	AMSLER	92	CBAR	$0.0 \ \overline{p} p \rightarrow \pi^0 \eta \eta$
1550	± 45	±	30		12	BELADIDZE	92C	VES	36 π^- Be $\rightarrow \pi^- \eta' \eta$ Be
1449	\pm 4				12	ARMSTRONG	89E	OMEG	$300 pp \rightarrow pp2(\pi^+\pi^-)$
1610	± 20				12	ALDE	88	GAM4	$300 \pi^- N \rightarrow \pi^- N 2\eta$
~ 152	5					ASTON	88 D	LASS	$11 K^{-} p \rightarrow K^{0}_{S} K^{0}_{S} \Lambda$
1570	± 20			600	12	ALDE	87	GAM4	$100 \ \pi^- p \rightarrow \ 4\pi^0 n$
1575	± 45				23	ALDE	86 D	GAM4	$100 \ \pi^- p \rightarrow 2\eta n$
1568	± 33				12	BINON	84C	GAM2	38 $\pi^- p \rightarrow \eta \eta' n$
1592	± 25				12	BINON	83	GAM2	$38 \pi^- p \rightarrow 2\eta n$
1525	\pm 5				12	GRAY	83	DBC	$0.0 \overline{p} N \rightarrow 3\pi$
1.									

¹T-matrix pole.

²Average between $\pi^+\pi^-2\pi^0$ and $2(\pi^+\pi^-)$.

³T-matrix pole. Coupled-channel analysis of AMSLER 95B, AMSLER 95C, and AM-SLER 94D.

⁴T-matrix pole, 5 poles, 5 channels, including scattering data from HYAMS 75 $(\pi \pi)$, LONGACRE 86 ($\overline{K}\overline{K}$), BINON 83 ($\eta\eta$), and BINON 84C ($\eta\eta'$).

⁵ T-matrix pole of 3 channel unitary model fit to data from AAIJ 14BR and AAIJ 17V extracted using Pade approximants.

⁶ Using CLEO-c data but not authored by the CLEO Collaboration.

 7 From a fit to a Breit-Wigner line shape with fixed $\Gamma=109$ MeV. 8 Solution I, statistical error only.

⁹ From partial wave analysis including all possible combinations of 0^{++} , 2^{++} , and 4^{++} resonances.

¹⁰ Reanalysis of AITALA 01A data. This state could also be $f_0(1370)$.

¹¹ Breit-Wigner mass. May also be the $f_0(1370)$.

¹² Breit-Wigner mass.

¹³Statistical error only.

¹⁴ Breit-Wigner, solution 1, PWA ambiguous.

- ¹⁵ K-matrix pole from combined analysis of $\pi^- p \rightarrow \pi^0 \pi^0 n$, $\pi^- p \rightarrow K\overline{K}n$, $\pi^+ \pi^- \rightarrow \pi^+ \pi^-, \overline{p}p \rightarrow \pi^0 \pi^0 \pi^0, \pi^0 \eta\eta, \pi^0 \pi^0 \eta, \pi^+ \pi^- \pi^0, K^+ K^- \pi^0, K^0_S K^0_S \pi^0$, $K^+ K^0_S \pi^-$ at rest, $\overline{p}n \rightarrow \pi^- \pi^- \pi^+$, $K^0_S K^- \pi^0$, $K^0_S K^0_S \pi^-$ at rest.
- ¹⁶ Supersedes BARBERIS 99 and BARBERIS 99B.

¹⁷ T-matrix pole on sheet --+.

¹⁸ T-matrix pole, supersedes ANISOVICH 94.

 $^{19}\,\text{T-matrix}$ pole, supersedes ANISOVICH 94 and AMSLER 92.

²⁰ Supersedes ABATZIS 94, ARMSTRONG 89E. Breit-Wigner mass. ²¹ From a simultaneous analysis of the annihilations $\overline{p}p \rightarrow 3\pi^0$, $\pi^0\eta\eta$.

²² Reanalysis of ANISOVICH 94 data.

²³ From central value and spread of two solutions. Breit-Wigner mass.

f₀(1500) WIDTH

VALU	E (N	leV)	EVTS	DOCUMENT ID		TECN	COMMENT
112	±	9	OUR AVERAGE				
110	\pm	24		¹ BARBERIS	00A		450 $pp \rightarrow p_f \eta \eta p_s$
102	\pm	18		^{1,2} BARBERIS	00C		450 $pp \rightarrow p_f 4\pi p_s$
110	\pm	16		¹ BARBERIS	00E		450 $pp \rightarrow p_f \eta \eta p_s$
108	\pm	33		¹ BERTIN	98	OBLX	0.05–0.405 $\overline{n}p ightarrow$
114 154	± ±	30 30		¹ BERTIN ³ AMSLER	97C 95D	OBLX CBAR	$ \begin{array}{c} \pi^{+}\pi^{+}\pi^{-}\\ 0.0 \ \overline{p}p \rightarrow \pi^{+}\pi^{-}\pi^{0}\\ 0.0 \ \overline{p}p \rightarrow \pi^{0}\pi^{0}\pi^{0},\\ \pi^{0}\eta\eta, \pi^{0}\pi^{0}\eta \end{array} $

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

80.8	3±	0.6	5^+_{-} 20.0 - 5.0		⁴ ALBI	RECHT	20	RVUE	$0.9 \overline{p} p \rightarrow \pi^0 \pi^0 \eta, \qquad 0 \kappa^+ \kappa^-$
100	±	18			⁵ ROP	ERTZ	18	RVUE	$ \frac{\pi^{0}\eta\eta, \pi^{0}K+K}{\overline{B}_{s}^{0}} \rightarrow $
124	±	7			⁶ AAIJ		14br	LHCB	$\frac{J/\psi(\pi^+\pi^-/K^+K^-)}{\overline{B}^0_c} \rightarrow J/\psi\pi^+\pi^-$
136	+	41	+ 28	5.5k	⁷ ABLI	KIM	13N	BES3	$e^+e^- \rightarrow J/\psi \rightarrow \gamma nn$
114	-+	26 10	- 100		¹ ANIS	OVICH	09	RVUE	$0.0 \overline{p} p. \pi N$
90	+	2	+ 50		8 UFH	ARA	08A	BELL	$10.6 e^+e^- \rightarrow$
	_	1	- 22		0		00/1	5	$e^+e^-\pi^0\pi^0$
108	+ -	$\frac{14}{11}$	± 25		⁹ ABLI	KIM	06∨	BES2	$e^+e^- \rightarrow J/\psi \rightarrow \gamma \pi^+ \pi^-$
121	±	8			AMS	LER	06	CBAR	$0.9 \overline{p} p \rightarrow K^+ K^- \pi^0$
257	\pm	33		9.9k	AUB	ERT	060	BABR	$B^+ \rightarrow K^+ K^+ K^-$
108	±	9		80k	^{9,10} UMA	N	06	E835	$5.2 \overline{p} p \rightarrow \eta \eta \pi^0$
119	±	10			VLAI	DIMIRSK	.06	SPEC	$40 \pi^- p \rightarrow K^0_S K^0_S n$
90	±	15			⁹ BINC)N	05	GAMS	$33 \pi^{-} p \rightarrow \eta \eta n$
136	±	23		1400		MASH	05	BELL	$B^+ \rightarrow K^+ K^+ K^-$
102	±	10					03	CDAD	0.0 = 4, $-4 = 0$
140 104	工 十	40 25			9 RAR		00		$0.0 \ \mu u \rightarrow \pi \ 4\pi \ \rho$
131	 +	25 15			⁹ BAR	BERIS	99 99	OMEG	450 $pp \rightarrow p_s p_f \pi^+ \pi^-$
98	 +	18	+ 16		13 _{BAR}	BERIS	99D	OMEG	$450 \ pp \rightarrow K^+K^-$
50	<u> </u>	10	± 10		2, 11	BEING	550	011120	$\pi^+\pi^-$
160	\pm	50			⁹ BELI	AZZINI	99	GAM4	450 $pp \rightarrow pp \pi^0 \pi^0$
100	±	33			⁹ FREI	NCH	99		$300 pp \rightarrow$
100		10			14		00		$p_f(K^+K^-)p_s$
200	± + -	40					99 00	CAMA	$\pi \pi \rightarrow \pi \pi, \kappa \kappa, \sigma \sigma$ 100 - $\pi \pi, \kappa \kappa, \sigma \sigma$
200 130	工. 十	20					90 088	GAM4 RVHF	$\begin{array}{ccc} 100 & p \rightarrow & \pi^{-} & \pi^{-} \\ \text{Compilation} \end{array}$
120	+	20 35				RERIS	97B	OMEG	450 $pp \rightarrow pp2(\pi^+\pi^-)$
~ 10	0	00			FRAI	3FTTI	97D	F687	$D^{\pm} \rightarrow \pi^{\mp} \pi^{\pm} \pi^{\pm}$
~ 16	9				ARF	F	96	CBAR	$0 0 \overline{n} n \rightarrow 5\pi^0$
105	±	15			ABE	LE	96B	CBAR	$0.0 \ \overline{p} p \rightarrow \pi^0 K^0_1 K^0_1$
100	\pm	30		120	⁹ AME	LIN	96 B	VES	$37 \pi^- A \rightarrow nn\pi^- A$
132	\pm	15			BUG	G	96	RVUE	
120	\pm	25			¹⁵ AMS	LER	95 B	CBAR	$0.0 \overline{p} p \rightarrow 3\pi^0$
120	\pm	30			¹⁶ AMS	LER	95 C	CBAR	$0.0 \overline{p} p \rightarrow \eta \eta \pi^0$
65	±	10			¹⁷ ANT	INORI	95	OMEG	300,450 $pp \rightarrow (p + -)$
199	±	30			⁹ ANT	INORI	95	OMEG	$p \rho 2(\pi + \pi)$ $300,450 \ p p \rightarrow$ $p \rho \pi^+ \pi^-$
56	\pm	12			⁹ ABA	TZIS	94	OMEG	450 $pp \rightarrow pp2(\pi^+\pi^-)$
100	\pm	40			⁹ AMS	LER	94E	CBAR	$0.0 \ \overline{p} p \rightarrow \pi^{0} \eta \eta'$
148	$^+$	20 25			1,18 ANIS	OVICH	94	CBAR	$0.0 \ \overline{p} p ightarrow 3\pi^0$, $\pi^0 \eta \eta$
150	±	20			^{1,19} BUG	G	94	RVUE	$\overline{p} p ightarrow 3\pi^{0}, \ \eta \eta \pi^{0}, \ \eta \eta \pi^{0}, \ \eta \eta \pi^{0},$

https://pdg.lbl.gov

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	±	50	600	 ⁹ AMSLER ⁹ BELADIDZE ⁹ ARMSTRONG ⁹ ALDE ⁹ ALDE ²⁰ ALDE ⁹ BINON ⁹ BINON ⁹ GRAY 	92 92C 89E 88 87 86D 84C 83 83	CBAR VES OMEG GAM4 GAM4 GAM2 GAM2 DBC	$\begin{array}{l} 0.0 \ \overline{p}p \rightarrow \ \pi^{0}\eta\eta \\ 36 \ \pi^{-} \operatorname{Be} \rightarrow \ \pi^{-}\eta'\eta\operatorname{Be} \\ 300 \ pp \rightarrow \ pp2(\pi^{+}\pi^{-}) \\ 300 \ \pi^{-} N \rightarrow \ \pi^{-} N2\eta \\ 100 \ \pi^{-} p \rightarrow \ 4\pi^{0}n \\ 100 \ \pi^{-} p \rightarrow \ 2\etan \\ 38 \ \pi^{-} p \rightarrow \ 2\etan \\ 38 \ \pi^{-} p \rightarrow \ 2\etan \\ 0.0 \ \overline{p}N \rightarrow \ 3\pi \end{array}$
¹ T-matr	ix po	le.					
² Average	e bet	ween π^-	$+\pi^{-}2\pi^{-}$	0 and $2(\pi^{+}\pi^{-})$.			
³ T-matr	ix po	ole. Co	upled-ch	annel analysis of	AMSI	ER 958	, AMSLER 95C, and AM
SLER 9	94D. ix na	lo 5 pr	olos 5 c	hannols including	scatt	oring da	the free HVAMS 75 $(\pi\pi)$
		: 86 (K	\overline{K} RIN	ON 83 (nn) and F		A = 8AC (n)	(n,n)
⁵ T-matr	ix no	ble of 3	channel	unitary model fit	to da	ta from	AALL 14BR and AALL 17
extracte	ed us	ing Pad	le approx	imants.	10 41		
⁶ Solutio	n I, s	tatistica	al error o	nly.			
⁷ From p	artia	l wave a	inalysis i	ncluding all possibl	e con	nbinatior	is of 0 $^{++}$, 2 $^{++}$, and 4 $^{++}$
resonan ⁸ Breit-W	ices. /igne	r width.	Mav als	so be the $f_0(1370)$			
9 _{Breit-W}	/igne	r width	5	0()			
¹⁰ Statisti	cal e	rror only	/.				
¹¹ Breit-W	/igne	r. soluti	, on 1, PV	VA ambiguous.			
¹² K-matr	ix p	ole fror	n comb	ined analysis of	$\pi^- p$	$\rightarrow \pi$	$^{.0}\pi^0 n$, $\pi^- p \rightarrow K\overline{K}n$
$\pi^+\pi^-$	$\rightarrow \tau$	$\pi^{+}\pi^{-}$,	$\overline{p}p \rightarrow \pi$	$0_{\pi}0_{\pi}0_{,\pi}0_{,\pi}0_{\eta\eta,\pi}0$	$\pi^0 \eta$	$\pi^+\pi^-$	$\pi^{0}, K^{+}K^{-}\pi^{0}, K^{0}_{S}K^{0}_{S}\pi^{0}$
$\kappa^+\kappa_c^0$	π^{-}	at rest,	$\overline{p}n \rightarrow \gamma$	$\pi^{-}\pi^{-}\pi^{+}, K^{0}_{c}K^{-}$	$-\pi^{0}$,	$K^0_{\epsilon}K^0_{\epsilon}$	π^- at rest.
13 Superse	des	BARBE	RIS 99 a	nd BARBERIS 99	3.	5 5	
¹⁴ T-matr	ix po	le on sh	ieet — —	+.			
¹⁵ T-matr	ix po	le, supe	rsedes A	NISOVICH 94.			
¹⁶ T-matr	ix po	le, supe	rsedes A	NISOVICH 94 and	AMS	LER 92.	
¹⁷ Superse	edes	ABATZ	IS 94, AI	RMSTRONG 89E.	Breit-	Wigner	mass.
¹⁸ From a	simu	ultaneou	is analysi	s of the annihilation	ons p	$p \rightarrow 3\pi$	$0, \pi^0 \eta \eta$.
¹⁹ Reanaly	/sis c	of ANISC	OVICH 9	4 data.			
²⁰ From c	entra	I value	and spre	ad of two solutions	s. Bre	it-Wigne	er mass.

f₀(1500) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor
Γ_1	$\pi\pi$	(34.5±2.2) %	1.2
Γ2	$\pi^+\pi^-$	seen	
Γ ₃	$2\pi^0$	seen	
Γ4	4π	(48.9±3.3) %	1.2
Γ ₅	$4\pi^0$	seen	
Г ₆	$2\pi^+2\pi^-$	seen	
Γ ₇	$2(\pi\pi)_{S-wave}$	seen	
Г ₈	ho ho	seen	
Γ9	$\pi(1300)\pi$	seen	

Γ ₁₀	$a_1(1260)\pi$	seen	
Γ_{11}	$\eta \eta$	(6.0±0.9) %	1.1
Γ ₁₂	$\eta \eta'$ (958)	(2.2±0.8) %	1.4
Γ_{13}	KK	(8.5±1.0) %	1.1
Γ_{14}	$\gamma \gamma$	not seen	

CONSTRAINED FIT INFORMATION

An overall fit to 6 branching ratios uses 10 measurements and one constraint to determine 5 parameters. The overall fit has a $\chi^2 = 5.6$ for 6 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

<i>x</i> 4	-88			
<i>x</i> ₁₁	27	-56		
<i>x</i> ₁₂	3	-32	26	
<i>x</i> ₁₃	43	-64	20	2
	<i>x</i> ₁	<i>x</i> ₄	×11	<i>x</i> ₁₂

$f_0(1500) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(\pi\pi) \times \Gamma(\gamma\gamma)$	/Γ _{total}					$\Gamma_1\Gamma_{14}/\Gamma$			
VALUE (eV)	<u>CL%</u>	DOCUMENT ID	TE	CN	COMMENT				
$\bullet \bullet \bullet$ We do not us	e the followi	ng data for av	verages, fi	its, lim	nits, etc. • • •				
$33^{+12}_{-6}^{+1809}_{-21}$	¹ ເ	JEHARA	08A BI	ELL	10.6 $e^+e^- \rightarrow$	$e^{+}e^{-}\pi^{0}\pi^{0}$			
not seen	ļ	ACCIARRI	01H L3	3	$\gamma \gamma \rightarrow K^0_S K^0_S,$	$E_{\rm cm}^{ee} = 91,$			
<460	95 E	BARATE	00e Al	LEP	$\gamma \gamma \rightarrow \pi^+ \pi^-$				
1 May also be the	<i>f</i> ₀ (1370). N	Iultiplied by ι	ıs by 3 to	obtai	n the $\pi\pi$ value.				
	f ₀ (1500) BRANCHING RATIOS								
$\Gamma(\pi\pi)/\Gamma_{\text{total}}$		DOCUME	NT ID	<u>TE</u>	<u>CN</u>	Γ_1/Γ			
• • • We do not us	e the followi	ng data for av	verages, fi	its, lim	nits, etc. • • •				
0.454 ± 0.104		BUGG	96	5 R\	/UE				
$\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$	DOC	IMENT ID	TECN	<i>c</i> 01	AMENIT	Γ_2/Γ			
<u>VALUL</u>	BED			<u> </u>					
• • • We do not us	e the followi	ng data for av	/erages. fi	its. lim	$\frac{1}{1} = 0.403 \text{ mp} \rightarrow 0.403 \text{ mp}$	πεπεπ			
possibly seen	FRA	BETTI 97	'D E687	D_s^{\pm}	$\rightarrow \pi^{\mp}\pi^{\pm}\pi^{\pm}$				
https://pdg.lbl.ge	ov	Page 6)		Created: 6/1	/2021 08:31			

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

$\Gamma(4\pi)/\Gamma(\pi\pi)$					Γ_4/Γ_1
VALUE	DOCUMENT ID		TECN	COMMENT	
1.42±0.18 OUR FIT Error includ	les scale factor of	1.2.			
1.42±0.18 OUR AVERAGE Erro	r includes scale fa	ictor c	of 1.2.		
1.37 ± 0.16		00D		450 $pp \rightarrow$	p _f 4π p _s
2.1 \pm 0.6	+ AMSLER	98	RVUE		
• • • we do not use the following	data for average	s, nts,	limits, e		
2.1 ± 0.2		02D	SPEC	Combined	fit
3.4 ± 0.8	* ABELE	96	CBAR	$0.0 \ \overline{p} p \rightarrow$	$5\pi^0$
¹ Excluding $\rho\rho$ contribution to 4 ² From a combined K-matrix a $\pi^{0}\pi^{0}\eta$), GAMS ($\pi p \rightarrow \pi^{0}\pi^{0}$	π. nalysis of Crysta ⁾ n, ηηn, ηη' n),	Barr and B	el (0.) NL (π <i>p</i>	$p \overline{p} \rightarrow \pi^0 \tau$ $\rightarrow K \overline{K} n) q$	$_{T}0_{\pi}0_{,\pi}0_{\eta\eta,}$ data.
$\Gamma(2(\pi\pi)_{S-wave})/\Gamma(\pi\pi)$					Γ_7/Γ_1
VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>	
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •	
0.42 ± 0.26	¹ ABELE	01	CBAR	$0.0 \ \overline{p} d \rightarrow$	$\pi^{-}4\pi^{0}p$
1 From the combined data of AE	BELE 96 and ABE	ELE 96	6C.		
$\Gamma(2(\pi\pi)_{S-\text{wave}})/\Gamma(4\pi)$	DOCUMENT ID		TECN	<u>COMMENT</u>	Γ ₇ /Γ ₄
• • • We do not use the following	data for average	s. fits.	limits, o	etc. • • •	
0.26±0.07	ABELE	01 B	CBAR	$0.0 \ \overline{p} d \rightarrow$	5π p
$\Gamma(ho ho)/\Gamma(4\pi)$					Г ₈ /Г ₄
VALUE	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •	
$0.13 {\pm} 0.08$	ABELE	01 B	CBAR	$0.0 \ \overline{p}d \rightarrow$	5π p
$\Gamma(\rho\rho)/\Gamma(2(\pi\pi)_{S-wave})$					Г ₈ /Г ₇
	<u>DOCUMENT ID</u>	ctor c	<u>COMME</u>	IN I	
3 3 + 0 5	RARRERIS		450 <i>pr</i>	$p \rightarrow p_c \pi^+$	$\pi - 2\pi^0 n$
2.6 ± 0.4	BARBERIS	00C	450 pp	$p \rightarrow p_f 2(\pi)$	$(\pi^{-2\pi})p_s$
$\Gamma(\pi(1300)\pi)/\Gamma(4\pi)$					Γ9/Γ4
VALUE	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •	
0.50 ± 0.25	ABELE	01 B	CBAR	$0.0 \ \overline{p}d \rightarrow$	5π p
Γ(a₁(1260)π)/Γ(4π) VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>	Γ ₁₀ /Γ ₄
• • • We do not use the following	data for average	s, fits.	limits, e	etc. • • •	
0.12±0.05	ABELE	01 B	CBAR	$0.0 \ \overline{p} d \rightarrow$	5π p

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

Γ(ηη)/Γ _{total} _{VALUE}		<u>DOCUME</u>	NT ID		<u>TECN</u>	<u>COMMENT</u>	Г ₁₁ /Г
• • • We do not u	se the following d	lata for a	verages	, fits,	limits, e	etc. • • •	
large		ALDE		88	GAM4	$300 \pi^- N$	$\rightarrow \eta \eta \pi^- N$
large		BINON		83	GAM2	38 $\pi^{-}p$ –	→ 2η n
$\Gamma(\eta\eta)/\Gamma(\pi\pi)$		_					Γ_{11}/Γ_1
<u>VALUE</u> 0 173+0 024 OUR	<u>EIT</u> Error inclu	<u>D</u> des scale	<u>TECN</u>	<u>COM</u> of 1 1	IMENT		
0.175±0.027 OUR	AVERAGE	ues scale		51 1.1			
0.18 ±0.03	BARBERIS	00E		450	$pp \rightarrow$	p _f ηηp _s	
0.157 ± 0.060	¹ AMSLER	95 D	CBAR	0.0	$\overline{p}p \rightarrow \pi$	$\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	$0_{\eta\eta, \pi}0_{\pi}0_{\eta}$
• • • We do not u	se the following d	lata for a	verages	, fits,	limits, e	etc. • • •	
0.080 ± 0.033	AMSLER	02	CBAR	0.9	$\overline{p}p \rightarrow \pi$	$\pi^{0}_{\eta\eta,\pi^{0}\pi^{0}}$	$0_{\pi}0$
0.11 ± 0.03	² ANISOVICH	02D	SPEC	Com	nbined fi	t	
0.078 ± 0.013	³ ABELE	96 C	RVUE	Com	pilation		
0.230 ± 0.097	⁴ AMSLER	95 C	CBAR	0.0	$\overline{p}p \rightarrow r$	$\eta\eta\pi^0$	
¹ Coupled-channe ² From a combin $\pi^0 \pi^0 \eta$), GAM ³ 2π width detern ⁴ Using AMSLEF	el analysis of AMS ned K-matrix ana S $(\pi p \rightarrow \pi^0 \pi^0 r)$ mined to be 60 \pm R 95B $(3\pi^0)$.	SLER 958 alysis of (n, ηηn, η 12 MeV.	s, AMSI Crystal η ['] n), a	LER 9 Barre nd Bl	95C, and el (0. μ NL (π <i>p</i>	$\begin{array}{r} \text{AMSLER 9} \\ p \overline{p} \rightarrow \pi^0 \tau \\ \rightarrow K \overline{K} n \end{array}$	$^{\rm 4D.}_{\rm r}$ 0 $_{\pi}$ 0 $_{\pi}$ 0 $_{\eta\eta,}$ data.
Γ(4π⁰)/Γ(ηη)		DOCUME	NT ID		TECN	COMMENT	Γ_5/Γ_{11}
• • • We do not u	 se the following d	lata for a	verages	fits	limits e		
0.8±0.3		ALDE		87	GAM4	$100 \ \pi^{-} p$	$\rightarrow 4\pi^0 n$
Γ(ηη'(958))/Γ($\pi\pi)$	DOCUME			TECN	COMMENT	Γ_{12}/Γ_1
0.064±0.022 OUR	FIT Error inclu	des scale	factor (of 1.4	<u>TECN</u>		
0.095±0.026		BARBEI	RIS	00A		450 pp \rightarrow	$p_f \eta \eta p_c$
• • • We do not u	se the following d	lata for a	verages	, fits,	limits, e	etc. • • •	
0.005 ± 0.003	1	ANISOV	/ICH	02 D	SPEC	Combined	fit
1 From a combin $\pi^{0}\pi^{0}\eta$), GAM	ned K-matrix and S $(\pi p o \pi^0 \pi^0 r$	alysis of (η, ηηη, η	Crystal η' n), a	Barre nd Bl	el (0. μ NL (πρ	$p \overline{p} \rightarrow \pi^0 \pi $ $\rightarrow K \overline{K} n) e^{-\pi m \pi^0 \pi}$	$_{\tau}$ 0 $_{\pi}$ 0 $_{,\pi}$ 0 $_{\eta\eta}$, data.
$\Gamma(nn'(958))/\Gamma(nn')$	nn)						F12/F11
VALUE	11)	DOCUME	NT ID		TECN	COMMENT	12, 11
0.37±0.13 OUR F	T Error include	s scale fa	ctor of	1.5.			
0.29±0.10	1	^L AMSLEI	R	95 C	CBAR	$0.0 \ \overline{p} p \rightarrow$	$\eta \eta \pi^0$
• • • We do not u	se the following d	lata for a	verages	, fits,	limits, e	etc. • • •	
0.05 ± 0.03	2	2 ANISOV	/ICH	0 2D	SPEC	Combined	fit
0.84 ± 0.23		ABELE		96 C	RVUE	Compilatio	n
2.7 ± 0.8		BINON		84C	GAM2	38 $\pi^{-}p$ –	→ ηη′ n
¹ Using AMSLEF	$394 \text{E} (\eta \eta' \pi^0).$						
² From a combin $\pi^0 \pi^0 \eta$), GAM	red K-matrix ana S $(\pi p \rightarrow \pi^0 \pi^0 r)$	alysis of (n, ηηn, η	Crystal η' n), a	Barre nd Bl	el (0. μ NL (πρ	$p \overline{p} \rightarrow \pi^0 \pi $ $\rightarrow K \overline{K} n)$	$_{\rm r}$ 0 $_{\pi}$ 0 $_{,}$ $_{\pi}$ 0 $_{\eta\eta}$, data.

https://pdg.lbl.gov

Created: $6/1/2021 \ 08:31$

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

$\Gamma(K\overline{K})/\Gamma_{\text{total}}$		I	Γ ₁₃ /Γ
VALUE	DOCUMENT ID	TECN	
\bullet \bullet We do not use the fol	lowing data for average	s, fits, limits, etc. • • •	
0.044 ± 0.021	BUGG	96 RVUE	
$\Gamma(\overline{K}\overline{K})/\Gamma(\pi\pi)$		Г	₁₃ /Γ ₁
VALUE	DOCUMENT ID	TECN COMMENT	
0.246±0.025 OUR FIT	_		
0.236±0.026 OUR AVERAG			
0.25 ± 0.03	¹ BARGIOTTI 03	OBLX $\overline{p}p$	
0.19 ± 0.07	² ABELE 98	CBAR 0.0 $\overline{p}p \rightarrow K_{L}^{\circ}K^{+}\pi^{+}$	
0.20 ± 0.08	³ ABELE 96E	B CBAR 0.0 $\overline{p}p \rightarrow \pi^0 K^0_L K^0_L$	
• • • We do not use the fol	lowing data for average	s, fits, limits, etc. • • •	
0.16 ± 0.05	⁴ ANISOVICH 020	SPEC Combined fit	
$0.33 \pm 0.03 \pm 0.07$	BARBERIS 990) OMEG 450 pp $ ightarrow~{K^+K^-}$, π	$+\pi^{-}$
1 Coupled channel analysis	s of $\pi^+\pi^-\pi^0$. $\kappa^+\kappa^-$	π^0 , and $K^{\pm}K^0_c\pi^{\mp}$.	
³ Using AMSLER 95B ($3\pi^{4}$ From a combined K-ma $\pi^{0}\pi^{0}\eta$), GAMS ($\pi p \rightarrow$	⁰), AMSLER 94C ($2\pi^0$) htrix analysis of Crysta $\pi^0\pi^0$ n, $\eta\eta$ n, $\eta\eta'$ n),	η) and SU(3). I Barrel (0. $p\overline{p} \rightarrow \pi^0 \pi^0 \pi^0$, and BNL ($\pi p \rightarrow K\overline{K}n$) data.	$\pi^0\eta\eta$,
$\Gamma(\overline{K}K)/\Gamma(\eta\eta)$		Γ ₁₃	₃ /Γ ₁₁
VALUE CL	<u>%</u> <u>DOCUMENT ID</u>	TECN COMMENT	
1.43±0.24 OUR FIT Er	ror includes scale factor	r of 1.1.	
1.85 ± 0.41	BARBERIS	$00E \qquad 450 \ pp \rightarrow \ p_f \eta \eta$	p _s
• • • We do not use the fol	lowing data for average	s, fits, limits, etc. • • •	
1.5 ± 0.6	¹ ANISOVICH	02D SPEC Combined fit	
<0.4 90	² PROKOSHKII	N 91 GAM4 300 $\pi^- p \rightarrow \pi^-$	$p\eta\eta$
<0.6	³ BINON	83 GAM2 38 $\pi^- p \rightarrow 2\eta n$	
¹ From a combined K-ma $\pi^{0}\pi^{0}\eta$), GAMS ($\pi p \rightarrow$ ² Combining results of GA ³ Using ETKIN 82B and C	trix analysis of Crysta $\pi^0 \pi^0 n, \eta \eta n, \eta \eta' n),$ M4 with those of WA7 OHEN 80.	I Barrel (0. $p\overline{p} \rightarrow \pi^0 \pi^0 \pi^0$, and BNL ($\pi p \rightarrow K\overline{K}n$) data. 6 on $K\overline{K}$ central production.	π ⁰ ηη,
	f ₀ (1500) REFER	ENCES	

ALBRECHT	20	EPJ C80 453	M. Albrecht <i>et al.</i>	(Crystal Barrel Collab.)
ROPERTZ	18	EPJ C78 1000	S. Ropertz, C. Hanhart,	B. Kubis (BONN, JULI)
AAIJ	17V	JHEP 1708 037	R. Aaij <i>et al.</i>	(LHCb Collab.)
DOBBS	15	PR D91 052006	S. Dobbs et al.	(NWES)
AAIJ	14BR	PR D89 092006	R. Aaij <i>et al.</i>	(LHCb Collab.)
ABLIKIM	13N	PR D87 092009	Ablikim M. <i>et al.</i>	(BESIII Collab.)
ANISOVICH	09	IJMP A24 2481	V.V. Anisovich, A.V. Sar	antsev
KLEMPT	08	EPJ C55 39	E. Klempt, M. Matveev,	A.V. Sarantsev (BONN+)
UEHARA	08A	PR D78 052004	S. Uehara <i>et al.</i>	(BELLE Collab.)
ABLIKIM	06V	PL B642 441	M. Ablikim et al.	(BES Collab.)
AMSLER	06	PL B639 165	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
AUBERT	06O	PR D74 032003	B. Aubert <i>et al.</i>	(BABAR Collab.)
UMAN	06	PR D73 052009	I. Uman <i>et al.</i>	(FNAL E835)
VLADIMIRSK	06	PAN 69 493	V.V. Vladimirsky et al.	(ITEP, Moscow)
		Translated from YAF 69	515.	
BINON	05	PAN 68 960	F. Binon <i>et al.</i>	
		Translated from YAF 68	998.	

GARMASH	05	PR D71 092003		/	A. Garmash <i>et al.</i>		(BELLE	Collab.)
BARGIOTTI	03 03 02	EPJ C26 371 EPJ C23 20		I	M. Bargiotti <i>et al.</i> M. Bargiotti <i>et al.</i>		(OBELIX	Collab.)
ANISOVICH	02 02D	PAN 65 1545 Translated from	YAF 6	، ۲۰ ۲۰	V.V. Anisovich <i>et al.</i>			
ABELE ABELE	01 01B	EPJ C19 667 FPI C21 261	1741 0	00 I.	A. Abele <i>et al.</i> A. Abele <i>et al.</i>		(Crystal Barrel (Crystal Barrel	Collab.) Collab.)
ACCIARRI	01H	PL B501 173		Ì	M. Acciarri <i>et al.</i>		(ENAL E701	Collab.)
BARATE	00E	PL B472 189		l	R. Barate <i>et al.</i>		(ALEPH	Collab.)
BARBERIS BARBERIS	00A 00C	PL B471 429 PL B471 440		[[D. Barberis <i>et al.</i> D. Barberis <i>et al.</i>		(WA 102 (WA 102	Collab.) Collab.)
BARBERIS	00D	PL B474 423		l	D. Barberis <i>et al.</i>		WA 102	Collab.)
BARBERIS	99	PL B479 59 PL B453 305		ĺ	D. Barberis <i>et al.</i>		(WA 102 (Omeg	;a Expt.)
BARBERIS BARBERIS	99B 99D	PL B453 316 PL B462 462		[[D. Barberis <i>et al.</i> D. Barberis <i>et al.</i>		(Omeg (Omeg	;a Expt.) (a Expt.)
BELLAZZINI	99	PL B467 296		I	R. Bellazzini <i>et al.</i>		(1)// 76	
KAMINSKI	99 99	EPJ C9 141		l	3. French <i>et al.</i> R. Kaminski, L. Lesn	iak, B. Loise	au (CRAC,	PARIN)
ABELE ALDE	98 98	PR D57 3860 FPI A3 361		/	A. Abele <i>et al.</i> D. Alde <i>et al</i>		(Crystal Barrel (GAM4	Collab.) Collab.)
Also	50	PAN 62 405			D. Alde <i>et al.</i>		(GAMS	Collab.)
AMSLER	98	RMP 70 1293	YAF C	02 44	to. C. Amsler			
ANISOVICH	98B	SPU 41 419 Translated from	UFN :	168	V.V. Anisovich <i>et al.</i> 481.			
BERTIN	98 08	PR D57 55		/	A. Bertin <i>et al.</i>		(OBELIX	Collab.)
BARBERIS	97B	PL B413 217		ĺ	D. Barberis <i>et al.</i>		(WA 102	Collab.)
FRABETTI	97C 97D	PL B408 476 PL B407 79		/	A. Bertin <i>et al.</i> P.L. Frabetti <i>et al.</i>		(OBELIX (FNAL E687	Collab.) Collab.)
ABELE	96 96B	PL B380 453 PL B385 425		/	A. Abele <i>et al.</i>		(Crystal Barrel	Collab.)
ABELE	96C	NP A609 562		,	A. Abele <i>et al.</i>		(Crystal Barrel	Collab.)
AMELIN	96B	PAN 59 976 Translated from	YAF 5	ו 59 10	D.V. Amelin <i>et al.</i> 021.		(SERI	P, TBIL)
BUGG AMSLER	96 95B	NP B471 59 PL B342 433		l	D.V. Bugg, A.V. Sar C. Amsler <i>et al.</i>	antsev, B.S.	Zou (LOQN (Crvstal Barrel	I, PNPI) Collab.)
AMSLER	95C	PL B353 571		(C. Amsler <i>et al.</i>		(Crystal Barrel	Collab.)
ANTINORI	95D 95	PL B355 425 PL B353 589		I	. Amsier <i>et al.</i> Antinori <i>et al.</i>		(ATHU, BARI,	BIRM+)
BUGG ABATZIS	95 94	PL B353 378 PL B324 509			D.V. Bugg <i>et al.</i> 5 Abatzis <i>et al</i>		(LOQM, PNPI, (ATHU BARI	WASH) BIRM+)
AMSLER	94C	PL B327 425		(C. Amsler <i>et al.</i>		(Crystal Barrel	Collab.)
AMSLER	94D 94E	PL B333 277 PL B340 259		(C. Amsler <i>et al.</i> C. Amsler <i>et al.</i>		(Crystal Barrel (Crystal Barrel	Collab.) Collab.)
ANISOVICH	94 94	PL B323 233 PR D50 4412		\ ا	V.V. Anisovich <i>et al.</i>		(Crystal Barrel	Collab.) (LOOM)
AMSLER	92	PL B291 347		(C. Amsler <i>et al.</i>		(Crystal Barrel	Collab.)
BELADIDZE	92C	Translated from	YAF 5	55 27	3.M. Beladidze, S.I. 748.	Bityukov, G.	V. Borisov (SERP+)
PROKOSHKIN	91	SPD 36 155 Translated from	DANS	316	Y.D. Prokoshkin 900.	- (GA	M2 and GAM4	Collab.)
ARMSTRONG ALDE	89E 88	PL B228 536 PL B201 160		[T.A. Armstrong, M. D.M. Alde <i>et al.</i>	Benayoun (SERP,	(ATHU, BARI, BELG, LANL,	BIRM+) LAPP+)
ASTON	88D 87	NP B301 525		[D. Aston <i>et al.</i>) (SLA	C, NAGO, CINC	, INUS)
ALDE	86D	NP B269 485		[D.M. Alde <i>et al.</i>	(BELG,	LAPP, SERP,	CERN+)
LONGACRE BINON	86 84C	PL B177 223 NC 80A 363		I	R.S. Longacre <i>et al.</i> F.G. Binon <i>et al.</i>		(BNL, BRAN, (BELG, LAPP,	LUNY+) SERP+)
BINON	83	NC 78A 313 SIND 38 561		l	F.G. Binon <i>et al.</i>		(BELG, LAPP,	SERP+)́ SERP⊥)
	02	Translated from	YAF 3	38 93	34. Crov. et al.		ULLO, LAIF,	
ETKIN	82B	PR D27 307			A. Etkin <i>et al.</i>	(BNL,	CUNY, TUFTS	, VAND)
COHEN HYAMS	80 75	PR D22 2595 NP B100 205		l	D. Cohen <i>et al.</i> 3.D. Hyams <i>et al.</i>		(CERN	(ANL) , MPIM)
							,	,