$f_0(500)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

also known as σ ; was $f_0(600)$ See the related review(s): Scalar Mesons below 2 GeV

$f_0(500)$ T-MATRIX POLE \sqrt{s}

Note that $\Gamma\approx 2~\text{Im}(\sqrt{s_{\text{pole}}}).$

VALUE (MeV)		DOCUMENT ID		TECN	COMMENT		
(400-550)-i(200-350) OUR EST	IMA	TE					
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
$(512 \pm 15){-i}(188 \pm 12)$	1	ABLIKIM	17	BES3	$J/\psi \rightarrow \gamma 3\pi$		
$(440 \pm 10) - i(238 \pm 10)$	2	ALBALADEJO	12	RVUE	Compilation		
$(445 \pm 25) - i(278 + 22) - 18$	3,4	GARCIA-MAR.	.11	RVUE	Compilation		
$(457^{+14}_{-13}) - i(279^{+11}_{-7})$	3,5	GARCIA-MAR.	.11	RVUE	Compilation		
(442 + 5) - i(274 + 6)	6	MOUSSALLAM	111	RVUE	Compilation		
$(452 \pm 13) - i(259 \pm 16)$	7	MENNESSIER	10	RVUE	Compilation		
$(448 \pm 43) {-}i(266 \pm 43)$	8	MENNESSIER	10	RVUE	Compilation		
$(455\pm 6^{+31}_{-13})-i(278\pm 6^{+34}_{-43})$	9	CAPRINI	08	RVUE	Compilation		
$(463\pm 6^{+31}_{-17})-i(259\pm 6^{+33}_{-34})$	10	CAPRINI	08	RVUE	Compilation		
(552 + 84 - i(232 + 81 - 72))	11	ABLIKIM	07A	BES2	$\psi(2S) \rightarrow \pi^+ \pi^- J/\psi$		
$(466 \pm 18) {-}i(223 \pm 28)$	12	BONVICINI	07	CLEO	$D^+ \rightarrow \pi^- \pi^+ \pi^+$		
$(472 \pm 30) {-}i(271 \pm 30)$	13	BUGG	07A	RVUE	Compilation		
$(484 \pm 17){-}i(255 \pm 10)$		GARCIA-MAR.	.07	RVUE	Compilation		
(430)-i(325)	14	ANISOVICH	06	RVUE	Compilation		
(441 + 16) - i(272 + 9) - i(272 - 12.5)	15	CAPRINI	06	RVUE	$\pi\pi \rightarrow \pi\pi$		
$(470 \pm 50) {-}i(285 \pm 25)$	16	ZHOU	05	RVUE			
$(541 \pm 39){-}i(252 \pm 42)$	17	ABLIKIM	04A	BES2	$J/\psi \rightarrow \omega \pi^+ \pi^-$		
$(528 \pm 32){-}i(207 \pm 23)$	18	GALLEGOS	04	RVUE	Compilation		
$(533 \pm 25){-i}(249 \pm 25)$	19	BUGG	03	RVUE			
517 - i240		BLACK	01	RVUE	$\pi\pi \rightarrow \pi\pi$		
$(470 \pm 30) - i(295 \pm 20)$	15	COLANGELO	01	RVUE	$\pi\pi \rightarrow \pi\pi$		
$(535^{+48}_{-36}) - i(155^{+76}_{-53})$	20	ISHIDA	01		$\Upsilon(3S) ightarrow ~\Upsilon \pi \pi$		
$610 \pm 14 - i(310 \pm 13)$	21	SUROVTSEV	01	RVUE	$\pi \pi ightarrow \pi \pi$, $K \overline{K}$		
$(540^{+36}_{-29}) - i(193^{+32}_{-40})$		ISHIDA	00 B		$p \overline{p} \rightarrow \pi^0 \pi^0 \pi^0$		
445 - i235		HANNAH	99	RVUE	π scalar form factor		
$(523 \pm 12) {-}i(259 \pm 7)$		KAMINSKI	99	RVUE	$\pi \pi ightarrow \pi \pi$, $K \overline{K}$, $\sigma \sigma$		
$442 - i \ 227$		OLLER	99	RVUE	$\pi \pi ightarrow \pi \pi$, $K \overline{K}$		
469 <i>- i</i> 203		OLLER	99 B	RVUE	$\pi \pi ightarrow \pi \pi$, $K \overline{K}$		
445 - i221		OLLER	99C	RVUE	$\pi \pi ightarrow \pi \pi$, $K \overline{K}$, $\eta \eta$		
420 <i>- i</i> 212		LOCHER	98	RVUE	$\pi\pi ightarrow~\pi\pi$, $K\overline{K}$		
440 - i245	22	DOBADO	97	RVUE	Compilation		
$(602 \pm 26) {-}i(196 \pm 27)$	23	ISHIDA	97		$\pi\pi \rightarrow \pi\pi$		

https://pdg.lbl.gov

$(537 \pm 20){-i}(250 \pm 17)$ 470 $-i250$	²⁴ KAMINSKI ^{25,26} TORNQVIST	97в 96	RVUE RVUE	$\pi\pi ightarrow \pi\pi ightarrow$	$\pi\pi, K\overline{K}, 4\pi$ $\pi\pi, K\overline{K}, K\pi,$
387 - <i>i</i> 305	^{26,27} JANSSEN	95	RVUE	$\begin{array}{c} \eta \pi \\ \pi \pi \rightarrow \end{array}$	$\pi\pi, K\overline{K}$
$(506 \pm 10) - i(247 \pm 3)$	KAMINSKI	94 94	RVUE	$\pi \pi \rightarrow \pi \pi \rightarrow$	$\pi\pi$ $\pi\pi, K\overline{K}$
370 - i356 408 - i342	²⁹ ZOU ^{26,29} ZOU	94B 93	RVUE RVUE	$\pi \pi \rightarrow \pi \pi \rightarrow$	ππ, ΚΚ ππ, Κ <u>Κ</u>
470 – <i>i</i> 208	³⁰ VANBEVEREN	86	RVUE	$\pi \pi \rightarrow \dots$	$\pi\pi, K\overline{K}, \eta\eta,$
$(750 \pm 50) - i(450 \pm 50)$ $(660 \pm 100) - i(320 \pm 70)$	PROTOPOP	79 73	RVUE HBC	$\pi \pi \rightarrow \pi \pi \rightarrow$	ππ, Κ <u>Κ</u> ππ, Κ Κ
650 - i370	³² BASDEVANT	72	RVUE	$\pi\pi\rightarrow$	$\pi\pi$

¹S-matrix pole; 8595 events.

² Applying the chiral unitary approach at NLO to the K_{e4} data of BATLEY 10 and $\pi N \rightarrow \pi\pi N$ data of HYAMS 73, GRAYER 74, and PROTOPOPESCU 73. ³ Uses the K_{e4} data of BATLEY 10c and the $\pi N \rightarrow \pi\pi N$ data of HYAMS 73, GRAYER 74, and PROTOPOPESCU 73. ⁴ Analytic continuation using Roy equations. ⁵ Analytic continuation using ROY equations.

⁵ Analytic continuation using GKPY equations.

⁶ Using Roy equations.

⁷ Average of three variants of the analytic K-matrix model. Uses the K_{e4} data of BAT-LEY 08A and the $\pi N \rightarrow \pi \pi N$ data of HYAMS 73 and GRAYER 74. ⁸ Average of the analyses of three data sets in the K-matrix model. Uses the data of

BATLEY 08A, HYAMS 73, and GRAYER 74, partially of COHEN 80 or ETKIN 82B.

⁹ From the $K_{\rho A}$ data of BATLEY 08A and $\pi N \rightarrow \pi \pi N$ data of HYAMS 73.

¹⁰ From the K_{e4} data of BATLEY 08A and $\pi N \rightarrow \pi \pi N$ data of PROTOPOPESCU 73, GRAYER 74, and ESTABROOKS 74.

¹¹ From a mean of three different $f_0(500)$ parametrizations. Uses 40k events.

¹² From an isobar model using 2.6k events.

¹³ Reanalysis of ABLIKIM 04A, PISLAK 01, and HYAMS 73 data.

¹⁴ Using the N/D method.

 15 From the solution of the Roy equation (ROY 71) for the isoscalar S-wave and using a phase-shift analysis of HYAMS 73 and PROTOPOPESCU 73 data.

¹⁶Reanalysis of the data from PROTOPOPESCU 73, ESTABROOKS 74, GRAYER 74, ROSSELET 77, PISLAK 03, and AKHMETSHIN 04.

¹⁷ From a mean of six different analyses and $f_{0}(500)$ parameterizations.

 18 Using data on $\psi(2S)$ \rightarrow $J/\psi\,\pi\,\pi$ from BAI 00E and on $\Upsilon({\sf nS})$ \rightarrow $\Upsilon(mS)\pi\pi$ from BUTLER 94B and ALEXANDER 98.

¹⁹ From a combined analysis of HYAMS 73, AUGUSTIN 89, AITALA 01B, and PISLAK 01. ²⁰ A similar analysis (KOMADA 01) finds (580 + 79 - i(190 + 107 - 49)) MeV.

²¹Coupled channel reanalysis of BATON 70, BENSINGER 71, BAILLON 72, HYAMS 73, HYAMS 75, ROSSELET 77, COHEN 80, and ETKIN 82B using the uniformizing variable.

 22 Using the inverse amplitude method and data of ESTABROOKS 73, GRAYER 74, and PROTOPOPESCU 73.

²³ Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77 using the interfering amplitude method.

²⁴ Average and spread of 4 variants ("up" and "down") of KAMINSKI 97B 3-channel model.

²⁵ Uses data from BEIER 72B, OCHS 73, HYAMS 73, GRAYER 74, ROSSELET 77, CA-SON 83, ASTON 88, and ARMSTRONG 91B. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems.

²⁶ Demonstrates explicitly that $f_0(500)$ and $f_0(1370)$ are two different poles.

²⁷ Analysis of data from FALVARD 88.

²⁸ Analysis of data from OCHS 73, ESTABROOKS 75, ROSSELET 77, and MUKHIN 80.

https://pdg.lbl.gov

Created: 6/1/2021 08:30

²⁹ Analysis of data from OCHS 73, GRAYER 74, and ROSSELET 77.

- ³⁰ Coupled-channel analysis using data from PROTOPOPESCU 73, HYAMS 73, HYAMS 75, GRAYER 74, ESTABROOKS 74, ESTABROOKS 75, FROGGATT 77, COR-DEN 79, BISWAS 81.
- ³¹ Analysis of data from APEL 72C, GRAYER 74, CASON 76, PAWLICKI 77. Includes spread and errors of 4 solutions.
- ³² Analysis of data from BATON 70, BENSINGER 71, COLTON 71, BAILLON 72, PRO-TOPOPESCU 73, and WALKER 67.

	DOCUMENT ID		TECN	COMMENT
	DOCOMENT ID		TLCN	COMMENT
				ing the internation of the
• • • vve do not u	ise the following data i	or av	erages, r	its, limits, etc. ● ● ●
513 ± 32	³³ MURAMATSU	02	CLEO	e^+e^-pprox 10 GeV
$478^{+24}_{-23}{\pm}17$	AITALA	01 B	E791	$D^+ \rightarrow \pi^- \pi^+ \pi^+$
563^{+58}_{-29}	³⁴ ISHIDA	01		$\Upsilon(3S) ightarrow \Upsilon \pi \pi$
555	³⁵ ASNER	00	CLE2	$\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_{\tau}$
$540\!\pm\!36$	ISHIDA	00 B		$p \overline{p} \rightarrow \pi^0 \pi^0 \pi^0$
$750\pm$ 4	ALEKSEEV	99	SPEC	1.78 $\pi^- p_{\text{polar}} \rightarrow \pi^- \pi^+ n$
$744\pm$ 5	ALEKSEEV	98	SPEC	1.78 $\pi^- p_{\text{polar}} \rightarrow \pi^- \pi^+ n$
$759\pm$ 5	³⁶ TROYAN	98		5.2 $np \rightarrow np\pi^+\pi^-$
$780\!\pm\!30$	ALDE	97	GAM2	$450 \ pp \rightarrow \ pp \pi^0 \pi^0$
$585\!\pm\!20$	³⁷ ISHIDA	97		$\pi \pi \rightarrow \pi \pi$
$761\!\pm\!12$	³⁸ SVEC	96	RVUE	6-17 $\pi N_{\text{polar}} \rightarrow \pi^+ \pi^- N$
\sim 860	^{39,40} TORNQVIST	96	RVUE	$\pi \pi \rightarrow \pi \pi, K \overline{K}, K \pi, \eta \pi$
$1165\!\pm\!50$	^{41,42} ANISOVICH	95	RVUE	$\pi^- p \rightarrow \pi^0 \pi^0 n$
414±20	³⁸ AUGUSTIN	89	DM2	$\overline{p} p \rightarrow \pi^0 \pi^0 \pi^0, \pi^0 \pi^0 \eta, \pi^0 \eta \eta$

f₀(500) BREIT-WIGNER MASS

³³ Statistical uncertainty only.

 34 A similar analysis (KOMADA 01) finds 526^{+48}_{-37} MeV.

 35 From the best fit of the Dalitz plot.

 $^{36}6\sigma$ effect, no PWA.

³⁷ Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77 using the interfering amplitude method.

³⁸ Breit-Wigner fit to S-wave intensity measured in $\pi N \rightarrow \pi^- \pi^+ N$ on polarized targets. The fit does not include $f_0(980)$.

³⁹ Uses data from ASTON 88, OCHS 73, HYAMS 73, ARMSTRONG 91B, GRAYER 74, CASON 83, ROSSELET 77, and BEIER 72B. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems.

⁴⁰ Also observed by ASNER 00 in $\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_{\tau}$ decays.

⁴¹ Uses $\pi^0 \pi^0$ data from ANISOVICH 94, AMSLER 94D, and ALDE 95B, $\pi^+ \pi^-$ data from OCHS 73, GRAYER 74 and ROSSELET 77, and $\eta\eta$ data from ANISOVICH 94.

 42 The pole is on Sheet III. Demonstrates explicitly that $f_0(500)$ and $f_0(1370)$ are two different poles.

$f_0(500)$ BREIT-WIGNER WIDTH

VALUE (M	eV)	DOCUMENT ID		TECN	COMMENT
100 to	800 OUR EST	IMATE			
• • • We	e do not use the	e following data f	for av	erages, f	its, limits, etc. • • •
$335\pm$	67 4	³ MURAMATSU	02	CLEO	e^+e^-pprox 10 GeV
324_	$\frac{42}{40}\pm21$	AITALA	01 B	E791	$D^+ \rightarrow \pi^- \pi^+ \pi^+$
372_2	229 4 95	⁴ ISHIDA	01		$\Upsilon(3S) ightarrow \Upsilon \pi \pi$
540	4	⁵ ASNER	00	CLE2	$\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_{\tau}$
$372\pm$	80	ISHIDA	00 B		$p \overline{p} \rightarrow \pi^0 \pi^0 \pi^0$
$119\pm$	13	ALEKSEEV	99	SPEC	1.78 $\pi^- p_{polar} \rightarrow \pi^- \pi^+ n$
$77\pm$	22	ALEKSEEV	98	SPEC	1.78 $\pi^- p_{\text{polar}} \rightarrow \pi^- \pi^+ n$
$35\pm$	12 4	⁶ TROYAN	98		5.2 $np \rightarrow np \pi^+ \pi^-$
$780\pm$	60	ALDE	97	GAM2	450 $pp \rightarrow pp \pi^0 \pi^0$
$385\pm$	70 4	⁷ ISHIDA	97		$\pi \pi \rightarrow \pi \pi$
$290\pm$	54 4	⁸ SVEC	96	RVUE	6-17 $\pi N_{\text{polar}} \rightarrow \pi^+ \pi^- N$
~ 880	49,5	⁰ TORNQVIST	96	RVUE	$\pi \pi \rightarrow \pi \pi, K \overline{K}, K \pi, \eta \pi$
$460\pm$	40 51,5	² ANISOVICH	95	RVUE	$\pi^- p \rightarrow \pi^0 \pi^0 n$
494±	58 4	⁸ AUGUSTIN	89	DM2	$\overline{\rho}\rho \rightarrow \pi^0 \pi^0 \pi^0, \pi^0 \pi^0 \eta, \pi^0 \eta \eta$
⁴³ Statis	stical uncertaint	y only.			
⁴⁴ A sim	nilar analysis (K	OMADA 01) find	ls 301	$^{+145}_{-100}$ N	ЛеV.

 45 From the best fit of the Dalitz plot.

- $^{46}6\sigma$ effect, no PWA.
- ⁴⁷ Reanalysis of data from HYAMS 73, GRAYER 74, SRINIVASAN 75, and ROSSELET 77
 using the interfering amplitude method.
- ⁴⁸ Breit-Wigner fit to S-wave intensity measured in $\pi N \rightarrow \pi^- \pi^+ N$ on polarized targets. The fit does not include $f_0(980)$.
- ⁴⁹ Uses data from ASTON 88, OCHS 73, HYAMS 73, ARMSTRONG 91B, GRAYER 74, CASON 83, ROSSELET 77, and BEIER 72B. Coupled channel analysis with flavor symmetry and all light two-pseudoscalars systems.
- $^{50}\,{\rm Also}$ observed by ASNER 00 in $\tau^- \to \ \pi^- \ \pi^0 \ \pi^0 \ \nu_\tau$ decays.
- ⁵¹ Uses $\pi^0 \pi^0$ data from ANISOVICH 94, AMSLER 94D, and ALDE 95B, $\pi^+ \pi^-$ data from OCHS 73, GRAYER 74 and ROSSELET 77, and $\eta\eta$ data from ANISOVICH 94.
- 52 The pole is on Sheet III. Demonstrates explicitly that $f_0(500)$ and $f_0(1370)$ are two different poles.

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$\pi \pi$	seen
I 2	$\gamma \gamma$	seen

f₀(500) DECAY MODES

https://pdg.lbl.gov

$f_0(500)$ PARTIAL WIDTHS

$\Gamma(\gamma)$	γ)					Г2
VALU	E (keV)		DOCUMENT ID		TECN	COMMENT
• • •	• We do not use the fol	lowing	data for averag	es, fit	s, limits	, etc. ● ● ●
2.05	5±0.21	53	DAI	14A	RVUE	Compilation
1.7	± 0.4	54	HOFERICHT	11	RVUE	Compilation
3.08	3±0.82	55	MENNESSIER	11	RVUE	Compilation
2.08	$3 \pm 0.2 \ +0.07 \ -0.04$	56	MOUSSALLAN	111	RVUE	Compilation
2.08	}	57	MAO	09	RVUE	Compilation
1.2	± 0.4	58	BERNABEU	08	RVUE	
3.9	± 0.6	55	MENNESSIER	80	RVUE	$\gamma \gamma \rightarrow \pi^+ \pi^-, \pi^0 \pi^0$
1.8	± 0.4	59	OLLER	08	RVUE	Compilation
1.68	3 ± 0.15	59,60	OLLER	08A	RVUE	Compilation
3.1	± 0.5	61,62	PENNINGTON	80	RVUE	Compilation
2.4	± 0.4	62,63	PENNINGTON	80	RVUE	Compilation
4.1	± 0.3	64	PENNINGTON	06	RVUE	$\gamma \gamma \rightarrow \pi^0 \pi^0$
3.8	± 1.5	65,66	BOGLIONE	99	RVUE	$\gamma \gamma \rightarrow \pi^+ \pi^-, \pi^0 \pi^0$
5.4	±2.3	65	MORGAN	90	RVUE	$\gamma \gamma \rightarrow \pi^+ \pi^-$, $\pi^0 \pi^0$
10	± 6		COURAU	86	DM1	$e^+e^- \rightarrow \pi^+\pi^-e^+e^-$
53.		•. 1				

 53 Using dispersive analysis with phases from GARCIA-MARTIN 11A and BUETTIKER 04 as input.

⁵⁴ Using Roy-Steiner equations with $\pi\pi$ phase shifts from an update of COLANGELO 01 and from GARCIA-MARTIN 11A. 55 Using an analytic K-matrix model.

⁵⁶ Using dispersion integral with phase input from Roy equations and data from MAR-SISKE 90, BOYER 90, BEHREND 92, UEHARA 08A, and MORI 07. ⁵⁷ Used dispersion theory. The value quoted used the $f_0(500)$ pole position of 457 -i276

MeV.

⁵⁸ Using *p*, *n* polarizabilities from PDG 06 and fitting to $\pi\pi$ phase motion from GARCIA-MARTIN 07 and σ -poles from GARCIA-MARTIN 07 and CAPRINI 06.

 $^{59}\ensuremath{\mathsf{Using}}$ twice-subtracted dispersion integrals.

⁶⁰ Supersedes OLLER 08.

⁶¹ Solution A (preferred solution based on χ^2 -analysis).

⁶² Dispersion theory based amplitude analysis of BOYER 90, MARSISKE 90, BEHREND 92, and MORI 07.

⁶³Solution B (worse than solution A; still acceptable when systematic uncertainties are included).

 64 Using unitarity and the σ pole position from CAPRINI 06.

⁶⁵ This width could equally well be assigned to the $f_0(1370)$. The authors analyse data from BOYER 90 and MARSISKE 90 and report strong correlation with $\gamma\gamma$ width of $f_2(1270)$.

⁶⁶ Supersedes MORGAN 90.

f₀(500) REFERENCES

ABLIKIM	17	PRL 118 012001	M. Ablikim <i>et al.</i>	(BESIII Collab.)
	14A 12	PR D90 036004	LY. Dai, M.R. Pennington	(CEBAF)
	12	PR D80 034003	M. Albaladejo, J.A. Oller	(MADR CRAC)
	11 1	PRL 107 072001	R. Garcia-Martin et al.	(MADR, CRAC)
HOFFRICHT	11	FPI C71 1743	M Hoferichter D.R. Phillips C. Schat	(MADIX, CIXAC) (BONN+)
MENNESSIER	11	PL B696 40	G. Mennessier, S. Narison, XG. Wang	(201111)
MOUSSALLAM	11	EPJ C71 1814	B. Moussallam	
BATLEY	10	PL B686 101	J.R. Batley <i>et al.</i> (CERN	NA48/2 Collab.)
BATLEY	10C	EPJ C70 635	J.R. Batley <i>et al.</i> (CERN	NA48/2 Collab.)
MENNESSIER	10	PL B688 59	G. Mennessier, S. Narison, XG. Wang	
MAO	09	PR D79 116008	Y. Mao et al.	
BATLEY	08A	EPJ C54 411	J.R. Batley <i>et al.</i> (CERN	NA48/2 Collab.)
BERNABEU	80	PRL 100 241804	J. Bernabeu, J. Prades	(IFIC, GRAN)
	08	PR D77 114019 DL R665 205	I. Caprini C. Monnessier, S. Narison, W. Ochs	
	00	PL D003 203 PL B650 201	G. Mennessier, S. Marison, W. Ochs	
OLLER	084	FPI Δ37 15	LA Oller L Roca	(MURC)
PENNINGTON	08	EP C56 1	M R Pennington <i>et al</i>	(Morce)
UEHARA	08A	PR D78 052004	S. Uehara <i>et al.</i>	(BELLE Collab.)
ABLIKIM	07A	PL B645 19	M. Ablikim <i>et al.</i>	(BES Collab.)
BONVICINI	07	PR D76 012001	G. Bonvicini <i>et al.</i>	(CLEO Collab.)
BUGG	07A	JP G34 151	D.V. Bugg <i>et al.</i>	
GARCIA-MAR	. 07	PR D76 074034	R. Garcia-Martin, J.R. Pelaez, F.J. Yndu	rain
MORI	07	PR D75 051101	T. Mori <i>et al.</i>	(BELLE Collab.)
ANISOVICH	06	IJMP A21 3615	V.V. Anisovich	
	06	PRL 96 132001	I. Caprini, G. Colangelo, H. Leutwyler	(BCIP+)
	00	JP G33 I DDI 07 011601	VVIVI. Yao et al.	(PDG Collab.)
	00	IHED 0502 043	7×7 bou at al	
ABLIKIM	04A	PI B598 149	M Ablikim <i>et al</i>	(BES_Collab_)
AKHMETSHIN	04	PL B578 285	R.R. Akhmetshin <i>et al.</i> (Novosibirsk	CMD-2 Collab.)
BUETTIKER	04	EPJ C33 409	P. Buettiker, S. Descotes-Genon, B. Mou	issallam
GALLEGOS	04	PR D69 074033	A. Gallegos et al.	
BUGG	03	PL B572 1	D.V. Bugg	
PISLAK	03	PR D67 072004	S. Pislak <i>et al.</i> (BI	NL E865 Collab.)
Also		PR D81 119903E	S. Pislak <i>et al.</i> (BI	NL E865 Collab.)
MURAMATSU	02	PRL 89 251802	H. Muramatsu <i>et al.</i>	(CLEO Collab.)
Also	01 D	PRL 90 059901 (errat.)	H. Muramatsu <i>et al.</i>	(CLEO Collab.)
RIACK	01B 01	PRL 80 770 PR D64 014031	E.M. Altala et al. (FIM	AL E/91 Collab.)
	01	NP B603 125	G Colongelo I Gasser H Levtwyler	
ISHIDA	01	PI B518 47	M Ishida <i>et al</i>	
KOMADA	01	PL B508 31	T. Komada <i>et al.</i>	
PISLAK	01	PRL 87 221801	S. Pislak et al. (BI	NL E865 Collab.)
Also		PR D67 072004	S. Pislak et al. (BI	NL E865 Collab.)
Also		PRL 105 019901E	S. Pislak et al. (Bl	NL E865 Collab.)
SUROVTSEV	01	PR D63 054024	Y.S. Surovtsev, D. Krupa, M. Nagy	
ASNER	00	PR D61 012002	D.M. Asner <i>et al.</i>	(CLEO Collab.)
BAI	00E	PR D62 032002	J. Bai et al.	(BES Collab.)
	00B	PTP 104 203	M. Ishida et al.	
ROCLIONE	99	NP B341 3 EDI CO 11	I.G. Alekseev et al. M. Bogliono, M.B. Donnington	
HANNAH	99	PR D60 017502	T Hannah	
KAMINSKI	99	FPI C9 141	R Kaminski I Lesniak B Loiseau	(CRAC PARIN)
OLLER	99	PR D60 099906 (erratum	J.A. Oller <i>et al.</i>	()
OLLER	99B	NP A652 407 (erratum)	J.A. Oller, E. Oset	
OLLER	99C	PR D60 074023	J.A. Oller, E. Oset	
ALEKSEEV	98	PAN 61 174	I.G. Alekseev <i>et al.</i>	
ALEXANDER	98	PR D58 052004	J.P. Alexander <i>et al.</i>	(CLEO Collab.)
LOCHER	98	EPJ C4 317	M.P. Locher <i>et al.</i>	(PSI)
	98 07	JINKKC 5-91 33	Yu. Iroyan <i>et al.</i>	(CAMS Callet)
	91 07	PR D56 3057	A Dobado IR Palaoz	(GAINS COLLAD.)
ISHIDA	97	PTP 98 1005	S Ishida et al $(T \cap V)$	Y MIYA KEKI
KAMINSKI	97B	PL B413 130	R. Kaminski, L. Lesniak. B. Loiseau	(CRAC. IPN)
Also		PTP 95 745	S. Ishida <i>et al.</i> (TOP	(Y, MIYA, KEK)
SVEC	96	PR D53 2343	M. Svec	(MCGI)

https://pdg.lbl.gov

TORNQVIST ALDE ANISOVICH JANSSEN ACHASOV AMSLER ANISOVICH BUTLER KAMINSKI ZOU	96 95B 95 94 94D 94D 94B 94B 94B	PRL 76 1575 ZPHY C66 375 PL B355 363 PR D52 2690 PR D49 5779 PL B333 277 PL B323 233 PR D49 40 PR D50 3145 PR D50 591	N.A. Tornqvist, M. Roos D.M. Alde <i>et al.</i> V.V. Anisovich <i>et al.</i> G. Janssen <i>et al.</i> N.N. Achasov, G.N. Shestakov C. Amsler <i>et al.</i> V.V. Anisovich <i>et al.</i> F. Butler <i>et al.</i> R. Kaminski, L. Lesniak, J.P. Maillet B.S. Zou, D.V. Bugg	(HELS) (GAMS Collab.) (PNPI, SERP) DN, ADLD, JULI) (NOVM) tal Barrel Collab.) tal Barrel Collab.) (CLEO Collab.) (CRAC+) (LOQM)
ZOU	93	PR D48 3948	B.S. Zou, D.V. Bugg	(LOQM)
BEHREND	92	ZPHY C56 381	H.J. Behrend	(CELLO Collab.)
ARMSTRONG	91B	ZPHY C52 389	T.A. Armstrong <i>et al.</i> (ATHU	J, BARI, BIRM+)
BOYER	90	PR D42 1350	J. Boyer <i>et al.</i>	(Mark II Collab.)
MARSISKE	90	PR D41 3324	H. Marsiske <i>et al.</i> (Cr	ystal Ball Collab.)
MORGAN	90	ZPHY C48 623	D. Morgan, M.R. Pennington	(RAL, DURH)
AUGUSTIN	89	NP B320 1	J.E. Augustin, G. Cosme	(DM2 Collab.)
ASTON	88	NP B296 493	D. Aston <i>et al.</i> (SLAC. NA	GO. CINC. INUS)
FALVARD	88	PR D38 2706	A. Falvard <i>et al.</i> (CLEF	R, FRAS, LALO+)
COURAU	86	NP B271 1	A. Courau <i>et al.</i>	(CLER, LALO)
VANBEVEREN	86	ZPHY C30 615	E. van Beveren <i>et al.</i>	(NIJM, BIEL)
CASON	83	PR D28 1586	N.M. Cason <i>et al.</i>	(NDAM ANI)
ETKIN BISWAS COHEN MUKHIN	82B 81 80 80	PR D25 1786 PRL 47 1378 PR D22 2595	A. Etkin <i>et al.</i> (BNL, CUNY N.N. Biswas <i>et al.</i> D. Cohen <i>et al.</i> K.N. Mukhin <i>et al.</i>	(NDAM, ANL) (NDAM, ANL) (ANL) IJP (KIAE)
CORDEN ESTABROOKS	79 79 79 77	Translated from NP B157 250 PR D19 2678	ZETFP 32 616. M.J. Corden <i>et al.</i> (BIRM P. Estabrooks	(RHEL, TELA+) JP (CARL)
PAWLICKI ROSSELET CASON	77 77 76	PR D15 3196 PR D15 574 PRL 36 1485	A.J. Pawlicki <i>et al.</i> L. Rosselet <i>et al.</i> N.M. Cason <i>et al.</i>	(GEAS, NORD) (ANL) IJ (GEVA, SACL) (NDAM, ANL) IJ
ESTABROOKS	75	NP B95 322	P.G. Estabrooks, A.D. Martin	(DURH)
HYAMS	75	NP B100 205	B.D. Hyams <i>et al.</i>	(CERN, MPIM)
SRINIVASAN	75	PR D12 681	V. Srinivasan <i>et al.</i>	(NDAM, ANL)
ESTABROOKS	74	NP B79 301	P.G. Estabrooks, A.D. Martin	(DURH)
GRAYER	74	NP B75 189	G. Grayer <i>et al.</i>	(CERN, MPIM)
ESTABROOKS	73	Tallahassee	P.G. Estabrooks <i>et al.</i>	(CERN, MPIM)
HYAMS	73	NP B64 134	B.D. Hyams <i>et al.</i>	(CERN, MPIM)
OCHS	73	Thesis	W. Ochs	(MPIM, MUNI)
APEL BAILLON BASDEVANT	73 72C 72 72 72	PR D7 1279 PL 41B 542 PL 38B 555 PL 41B 178 PPL 20 511	S.D. Protopopescu <i>et al.</i> W.D. Apel <i>et al.</i> (KARL P.H. Baillon <i>et al.</i> J.L. Basdevant, C.D. Froggatt, J.L. Pet	(LBL) K, KARLE, PISA) (SLAC) ersen (CERN)
BENSINGER COLTON ROY	72D 71 71 71 71	PL 36B 134 PR D3 2028 PL 36B 353	J.R. Bensinger <i>et al.</i> J.R. Colton <i>et al.</i> S.M. Roy	(WISC) , FNAL, UCLA+)
WALKER	70	PL 33B 528	J.P. Baton, G. Laurens, J. Reignier	(SACL)
	67	RMP 39 695	W.D. Walker	(WISC)